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KYBERNETIKA; VOLUME 27 (1991), NUMBER 5

ON A CHARACTERIZATION
OF THE SHANNON ENTROPY

MARZENA KOSNO, DOMINIK SZYNAL

We give a characterization of the Shannon entropy using less restrictive assumptions on
symmetry than extreme symmetry and block symmetry of Prem Nath and Mohan Kaur [2].

1. INTRODUCTION

Let "
@n ={(P1’P2,--', pn): p;20, i= L2,...,n, .lei = 1} , nzx1l,

be the set of all finite discrete n-component probability distribution with nonnegative
elements. There are different axioms for the Shannon entropy H,: 2, - R, n = 1,
defined by \

H,(P1s Pas s P) = —k;pk log; pi . (1)

with 0 log, 0 = 0. For instance, D. K. Fadeev [1] proposed the following postulates:
I. p— h(p) := H,(p,1 — p) is a continuous function of p, 0 < p < 1.
II,. H,is a real symmetric function of (py, p, ..., p,) on 9, for n > 2.
III,. H, is recursive, that is
Hn(pla P25 -ee pn) = Hn—l(pls D2y -ees Pn) +
+ (p1 + p2) Ho(p1/(p1 + P2)> P2/(P1 + P2))s PL+p2>0
IV. H,(3,1) =1 1
H. Tverberg [4] has shown that (1) holds true when in I  is an integrable function
while P. M. Lee [3] ordered only & to be measurable. Moreover, Prem Nath and
Man Mohan Kaur [2] have shown that one can use in II, an extreme symmetric
function or a block symmetric function instead of symmetric function.
In this note we weaken the symmetry postulate II, and we generalize results

of Prem Nath and Man Mohan Kaur. Moreover, we use so called grouping axiom
instead of III,.
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2. THE MAIN RESULTS

The following theorem characterizes the Shannon entropy.

Theorem 1. Let H,(1), Hy(ps, p2), -, HiP1, P2---» Pa) be a sequence of real
functions defined on 2,, n = 1.
We assume the following three conditions as axioms:

I' h(p) := H,(p, 1 — p) is a Lebesgue integrable function on [0, 1].
II, (the axiom of reduced symmetry).
H(P1s s Pa=25 P15 Pu) = Hi(D1s -0y Puc2s P> Pay) for all
(P P2y s PA) €Dy, m 2 2.
III,, (the grouping axiom).
Letting P, =k§:1 P, P, =1, wehave

Hn(pla Paseees Pn) = HZ(Pn—-la pn) + Pn—lHn—l(pl/P,,-l, veey Pn-—l/Pn—l) .
Then n
Hn(pls P25 ey Pn) = “‘CkZ.lPk log py (2)

where C is a positive constant,
Proof. By III, we have

Hy(py, P2, P) = Ha(py + P2, 0) + (P + p2) Hy(p1/(py + p2)s p2f(p1 + P2))
and

Hy(py, P, p2) = Hy(py + p, P2) + (p1 + p) Hy(py/(p, + ), p/(py + D))
Now, by II, we get

Hy(ps + P2, ) + (py + p2) Ho(po/(P1 + P2), pof(py + p2)) =
= Hy(p, + p, p2) + (P + P) Haps/(P1 + P), pf(p, + D).
Again using II; we have
Hy(py + P2, p) + (1 = p) Ha(pyf(1 — p) /(1 = p)) =
= Hy(ps, py + 1) + (1 — p2) Hy(p/(1 = p2), p,J(1 - p,)).
Hence we conclude that the function h satisfies the following functional equations
(@) Hp)=rl—-p) -
(6) h(p) + (1 = p) h(p2/(1 = p)) = h(pz) + (1 - p,) h(p/(l — p2))
Now following Tveberg’s arguments [4] we can get
h(p) = C[—plogp — (1 — p)log (1 — p)]

where C is a positive constant, which proves (2) for n < 2,
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Using now I1IT, and the induction principle we get , _— .
H (Pn P25 eees Pn) = HZ(Pn 1 Pn) + P, H, 1(1’1/ 15 =+ Pn~ I/Pn 1) =

= —C[P—llogpn 1+pn10gpn+Pn 1Z(Pk/ n— 1)103(Pk/Pn 1)]~
= ~CZPkIOngs

which completes the proof of (2). , : : O

It is not difficult to verify that the function
fa: D, —» R defined by
fn(xla X25 +o05 Xp—25 Xp—15 xn) = Xp-1 + Xn
satisfies the axiom of reduced symmetry but it is not symmetric and even it is no
extreme symmetric neither block symmetric Indeed, we see that
111
f4(7’€’251_2‘)_4 +1z = f4(2’6’12’4
but
1 1 11 1 1 3 111
f4(E’Tz’§’Z) =z+z1=32 *f4(2’ 6> 4> 12
Moreover,
1 111 1 1 111
flipepi)=i+ti=1+fiG oo

and

1 111
f4(4’12’2’6 __+€=3*f4(2’6’4912

One can also state that the axiom of reduced symmetry is independent of the

postulates of extreme symmetry and block symmetry. It is enough to take into account
the functions

FulX1s X2 oy X,) = X4 + X,
and

f2n(x1’ X35 eens xZn) =X; + X3 + Xy + X2 '

respectively.

3. GENERALIZATIONS

Note that in the proof of Theorem 1 we have used II;, only for n = 2 and 3. Thus
in fact we have proved the following result.

Theorem 2. Suppose that real functions H,(1), Hy(py, P2)s -+ s Hi(P1> P2s -+ s Pu)
defined on 9, n = 1, satisfy I', III; and

1I". Hy(py, p) = H,(p2, p1)

H3(P1’ P2 Ps) = H3(P1’ Ps; Pz) .
Then (2) holds.
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Note that the conditions T1” and III, for n = 3 imply the symmetry of H 3(p1s P25 P3)
Indeed, using ITL; and 11", we have

Hy(p1s P2> P3) = Ha(p1 + P2y P3) +
+ (p1 + p2) Hy(ps[(ps + P2)> P2[(py + P2)) =
= Hy(p> + Py, p3) + (2 + p1) Hy(p2/(p2 + p1)s P1/(P2 + py) =
= Hj(ps, p1» p3) = Hs(P2, P3> Py) -

On the other hand from II” and III;, we deduce that
Hy(py, p2> P3) = Hy(p1s P3s P2) =
= Hy(ps + 3, p) + (p1 + 23) Ha(ps/(p1 + p3)s Psf(p1 + p3)) =
= H,(ps + Py, p,) + (ps + p1) Hao(ps/(ps + p1)s pi/(ps + p1) =
= Hj(ps, p1; p2) = Ha(P3, P2, 1)

Hence we get the following equalities
Hy(ps, P2, P1) = H3(p3 P1> P2) = Hs(py1, P3, P2) =

= H3(p13 D2, P3) = H3(p25 Py Pa) = Ha(Pz, Ps» pl)

which prove the symmetry of H3(p, P2, p3).

The above observation leads us to a stronger version of P. M. Lee [3] characteriza-
tion of the Shannon entropy, in which the symmetry of H,(py, p,) and H3(py P2, P3)
is replaced by the symmetry of H,(p;, p;,) and the reduced symmetry of H 3(1)1, D2, P3)-

Namely, we have the following result.

Theorem 3. Suppose that real functions H,(1), Hy(py, P2)s ---s Hy(P1s P2s +++ P)s
n = 1, satisfy the axioms II” and III, of Theorem 2, and h(p) := H,(p, 1 — p) is
a Lebesgue measurable function on (0, 1).

Then (2) holds true.

Note that H, for n = 3 can be expressed in terms of the single function h. The
property III, gives the following formula

Hn(Pn P25 - Pn) =kZ(2th(Pk/Pk) .
Inthecase p; = p, = ... = p, = 1/n we have

F(n) = Hy(Un, n, ..., 1n) = (l/n)kikh(l/k) .

(Received February 28, 1990.)
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