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KYBERNETIKA —VOLUME /8 (1982), NUMBER 5

SOME NONLINEAR STATISTICAL PROBLEMS
OF A POISSON PROCESS

FRANTISEK STULAJTER

Some results of the theory of random vectors with values in linear spaces are used to study
the structure of a space of random variables with finite dispersion generated by a Poisson process
and the problem of estimation of nonlinear functionals of an intensity measure of a Poisson
process.

1. INTRODUCTION

The aim of this paper is to study some nonlinear statistical problems of a Poisson
random process. Similar problems are considered for example in [1] or in [3] for
double stochastic Poisson processes. We shall study in more details the structure
of the space I(P(4)) of random variables with finite dispersion generated by a Poisson
process with an intensity measure A and the problem of estimation of nonlinear
functionals of an unknown intensity measure A of a Poisson process. It is shown that
L}(P(2)) is equal to the orthogonal sum of L(P(2)); n = 0, where LZ(P(4)); n 2 0
are (mutually orthogonal) subspaces of I*(P(4)). L} is the space of constants, L] is
“the lincar subspace” of I*(P(4)), generated by the centered Poisson process, L
is “the quadratic subspace” of I2(P(1)}, and so on. Generating sets of L3(P(1)) for
i = 1,2, 3 and 4 are given. The same result is true for the space of random variables
with a finite dispersion generated by a Gaussian process with zero mean value and a
given covariance function as it is shown in [8]. But the rule according to which we
form the generating sets of I2; n = 0 for a Gaussian process is different from that
derived here for the generating sets of a Poisson process.

In the Part 4 of this paper it is shown that every “polynomial” of a measure i,
(given by A,(A) = [,/ di,) has an unbiased estimate. It is shown that a dispersion
of the best unbiased estimate can be calculated by the same way as it is given in [9].
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2. PRELIMINARIES REGARDING POISSON PROCESS

There are many possibilities to define a Poisson process. The best way, for our
objective, is to define a Poisson process as a random point measure valued vector
as it is done in [7], where the following statements can be found.

Let (T, 77) be a measurable space; denote by .#(T, ) the vector space of finite
measures defined on (T, ) and by (T, 7) the space of bounded measurable
functions defined on (T, 7). Let ¢(.#, £,) be a o-algebra of subsets of .#(T, 7),
generated by linear transformations y — ;z(A); A e 7. Then we have: for every fixed
finite measure A e #(T, 7) there exists a unique probability measure P(1) defined
on (M(T,T), 6(M, %)) called the Poisson law with intensity 1 on (T, 7).
This measure is a distribution of a Poisson process X transforming a probability
space (Q, #, P,) into (4, %). Realizations of the random process X have the form

n{aw,
X(®) = ¥, 8, Where {1,(), .., t,,(®)} is a finite set of points of T'and § is a Dirac
j=1
measuré. The random process X has the following properties: for every Ae J
the random variable

n{w)
X(o), x> = J d( Y, 0y0y) = Na(®) = the number of points
A j=1
t{w)in the set 4,

has a Poisson distribution with the parameter A(4). If f,, ..., f, belong to £ (T, 7)
and have disjoint supports, then <X, f,>,...,<X,f,) are independent random
variables, where

o)
X, f> () = X(w), f> = ff.- d( ;5,,@,); i=1..,n.

The real Laplace transform of the probability space (.4, €, P(4)) s given by Lp(f) =
= [e¥) dP(2), where ¥ is an isomorphism between the vector space Lo(T, 7, ),
consisting of classes of equivalence of real measurable functions defined on (T, )
and the space L(.#, €, P(1)), given by

1) (3 40) = 20

We can write Lpg(f) = exp {[ (¢/ — 1)di}. The Laplace transform is ﬁnitef,
and so defined, for those functions fe Lo(T, 7 4) for which a function ¢ = ¢
belongs to (T, 77, A); it is the set

D={fely:f=1lng; g Z 0, ge T, 7,4)}.

The function f = 0 mod A is an inner point of the set D, from which we have that

a transformation xp defined by
[T (1) = En[Y. #07] 5 Ye LA 6 P). JeD
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is an isomorphism between the Hilbert spaces I*(.#, ¢, P(A)) and a reproducing
kernel Hilbert space H(K;) with the kernel

Kz(f:f’) = LP(}.) (‘L_‘;‘L>s f,feD.

The problem of equivalence of two Poisson laws P(4) and P(4,) is solved by the
next assertion: let / and 4, be two positive finite measures on (7, ). Then P(1) and
P(1,) are equivalent iff 2 and 4, are equivalent. In the last case denote by f; = di[d/,.
Then

P . .
0 oo - 1.
where i is the above mentioned isomorphism restricted to LY(T, 7, A,).

Now Iet T=[0,T,], T, > 0 be an interval on the real line. Then N(f) =
=X, %o,s 0 =t £ T, is a Poisson process with an intensity measure 1, for
which we have:

EfN(®] = 4([0,{]); 02t T,
and
Ry(s, ) = Cov;[N(s), N(t)] = A([0, min (5, 1)]) = (0,51 Xt0.)racsy -

In a special case when 4 is Lebesgue measure we get R,(s, f) = min (s, t), what is the
covariance function of the Gaussian Wiener process, too. In the following section
we show how these results can be used to solve some nonlinear statistical problems
of a Poisson process. The results obtained, are similar to those valid for a Gaussian
random process, described in [8] and [9].

3. THE STRUCTURE OF THE SPACE I}/, % P(i)

Let (T; 77) be a measurable space, A a finite measure on it and P(4) a distribution
of a Poisson process X with values in (.#, ). To solve statistical problems of non-
linear estimation of random variables (for example problems of nonlinear filtration)
based on a Poisson process it is necessary to know the structure of the space Lz(.li, %,
P(2)) = IX(P(%)).

It was mentioned in the Section 1 that the Hilbert space I*(#, %, P(4)) is iso-
morphic with the reproducing kernel Hilbert space H(K ) with a kernel

K;_(f, g) - Lp(z) (f ; !l) = exp {j‘ (ef/Z Le9? _ 1) dl},
T

where this kernel is defined on a set E x E with

E={fely:? e (LT, 0} ={f:/=lnh;h 20,he Z(A)}.

According to this isomorphism, the system of random variables {exp ¥(f); fe E}
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gencrates L*(.#, €, P(4)). Since it is difficult to characterise the space H(K}), we use
the fact that the set of random variables {exp {y(f) — fr(¢/ — 1)di};feE}
generates I2(P(1)) too, and according to Lemma 2 of [8] we have the following
assertion: the Hilbert space I?(P(4)) is isomorphic with a reproducing kernel Hilbert
space H(M,) of functionals defined on E, with a kernel
[ (-1 d),}] =
T

My(f. ) = Excy [p fun - [@-vatfew fro- |
= exp{fT(ef —1)(ef - l)di}, f,9€E.

Now let H(N ,1) be a reproducing kernel Hilbert space with a kernel

Nyh, b') = cxp{[ h.h’d)}; h,heF,
T

where
F={hel T, 7,}):h = -1 mod A} .

Define a transformation § on a sct of: generating clements of #(N;) onto a set of
generating elements of H(M,) by %(N,(.,h)) = M,(.,In(h + 1)); he F. $ can be
naturally extended to an isomorphism between H(N,) and H(M,), because we have:

ANA(os 1) N (s B iy = <IN, 1))y SN (e W arsy =
= (My(,n(h + 1), My(c, In (B + DPuay = exp {(h B )} 5

h, h' € F. Thus we have proved the following lemma:

Lemma 3.1. The Hilbert space L*(.#, %, P(2)) is isomorphic with the reproducing
kernel Hilbert space H(N,) with the kernel N(h, h") = exp {fr hi’ di}; h, h' e F.

Now we are able to give the following theorem.

Theorem 3.1. There exist an isomorphism say ¢, between the Hilbert space
XA, %, P(2)) and exp O IN(T, 7, 3) = & I{T, 7, A)"°, where I*(2)'® is the

nz0

n-th symmetric tensor power of the space L*(4).

Proof. It was proved in Lemma 3.1. that IX(P(4)) is isomorphic with H(N,; F)
where N,(h, i) = exp {(h, 1')2»)} is defined on F x F, F being a subset of I*(1).
It is known from the properties of RKHS (see [5]) that H(N,; F)} is isomorphic
with a subspace of RKHS H(N,; I*(2)) of functionals defined on I*(1) generated
by a set of functionals {N,(., h); h e F}. Since H(N,; I*(1)) is isomorphic with
exp © I*(2), it is enough to show that the set {N,(., h); h € F} generates H(N ;; I}(4)).
Let fe H(N,; I*(1)) and let <f, N;(., Ay 200 = O for all he F. We have
to show that f = 0. In our case it holds thatf(g) = Zo(f,» I®..® g)umn@, where

nZ
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f, € I3(2)"®. Further we have: N (g, h) = Z ((l/n VE®...®hg®...®g)gpe
and thus 0 = </, N;(+, D) pevsy = Z (g,,, h ® .® Iz),zwy.e for all h e F, where g,

is a projection of f, onto the subquce LZ(,{)"O of I*()"®. From the last equality
we get that ¥ £/(g,, h"®)pagyee = 0 for all 1 2 0 and for all he I%(2) = {he [*(4):
nz0

chz0 modv,{}, what is possible only in the case when (g,, i"®) = 0 for all h e I%,(4).
If we set h = Zc h;, where cy, ..., ¢, are any nonnegative real numbers and hy, ...
Lhye Lz,r(}) then we get that (g,,, ( Z €;h;)"®)p2yn@ — @ polynomial in nonnegative

variables ¢y, ..., c, is identically equal to zero, from which we get that (g,,, hy © ...
0O h,,)L;m,.o; hy,..., h, e L2+(/1) — a coefficient of polynomial by a variable
€1 ... ¢, is equal to zero. Since the set 1% (1) generates I*(2), the set {h, © ... © h,;
hyy .. h € I% (A)} generates I*(2)"® for all n = 0, and thus g, must be zero element
for all nz0. ]

Now we shall study in more details the special case when T= [0, T,]; Tp > O,
7 = %(T)and s a finite measure on (7T, 7). From Theorem 3.1. we have

Corollary 3.1. The Hilbert space [*(.#, %, P(%)) is isomorphic with the Hilbert
space exp © H(R,;), where Ra(s, z); s, te T is the covariance function of a Poisson
process N(2) = <X, x0,q>; 0 St £ To.

Proof. It was mentioned in Part 1 that (Ry(.,s), Ri(+s )Duery = Rils, 1) =

= (Xto,s1» Xo,m)iacyy- Since the system of functions {¥,.; t€ T} generates L*(4)
and the set {R,(-, t); t € T} generates H(R,), L*(2) and H(R,) are isomorphic. [}

Tt follows from the definition of exp ©® H(R;) as a direct sum of Hilbert spaces
H(R;Y'®; n 2 0 and from the isomorphism between I*(P(1)) and exp O H(R),),
that the same partition to orthogonal components must hold for the space I2(P(4)),
too. According to this we can write: I*(.#, 4, P(1)) = @ L4, %, P()) where

L(P(%)) are orthogonal subspaces of I*(). For problems of nonlinear estimation
of random variables the following theorems is useful.

Theorem 3.2. Let T = [0, T,], T > 0 and let A be a finite positive measure on
(T, B(T)). Then for any random variable U e I*(.#, %, P(2)) we have U = & U,
where nz0

U, = #E,[U . #(Ry(, 1) O ... O R, t )]sty oo € T) 5

n z 0, and x is an isomorphism described in Corollary 3.1.

Proof. Since the set {R,(, ;) © ... © Ry(-, t,); 11, ..., t,€ T} generates H(R,)"®,
the system of random variables {%(R,(., t;) © ... © Ry(-, t,)); 1, ..., t,€ T} gene-
rates the Hilbert space Lf,(P(A)); n = 0. A symmetric function of n-variables
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(1 oo 1) 1 E[U  %(R,(-. 1) © -.. © Ry(., 1,))] — an element of H(R}®), we can
identify with that element of the space H(R,)"®, the image of which by theisomorphism
% is the random variable U, — a projection of a random variable U on the subspace
LX(P(%))- (For more details see [8]). O

Now we shall try to clarify how the random variables x({R,(., ;) © ... © Ry(., t,);
1, ..., 1,€ T}) — generating elements of L,(P(1)) can be found for n = 0.

Let ¢ be the isomorphism from Theorem 3.1. Then we have

¢(exp © (h — 1)) = exp {x{/(ln h) + L(h - 1) d/l} s hei(2),

where exp O h = . 1//n! I"® or
nz0

o(cxp © (=) = exp {w(m -1+ Lm},

n

where f is any function from I?(4) such that f < 1 mod 4. If we set f =Y ¢xp0.0p0
i=1

where 0 < t; <1, £ ... £ t, are any fixed points from the interval [0, Tol,n20

and ¢y, ..., ¢, are any suitable chosen real numbers such that Cidgo,r = 1, then we
i=1
get

Aexp © (= 3,6 R 1) = 9(exp © (= T o) =

= €Xp {w(ln (1 —Zxcil[o,m)) +.>:l“iJ. 10,13 d'{}~
i= i= T

From the equality

xp 0 (~ Zc R(t) =Y. i al ..%(»Rl(.,tl))"‘e 0.0 (= Ry(-.t))*®

n =0 ng=

we have that (-1)" R;(., ,) @ ... © R,l(., t,,) is a coefficient by a variable ¢, ... ¢,
Since {Rl(., )0 ... OR (., t,); 11, .. t,€ T} generates H(R,)'®, to find
x(Ry(-,1,) © ... © Ry(-, t,)), it suffices to find a coefficient by ¢y...c, in an

expansion of the random variable exp {y/(In (1 — Z Cidonn)) + 2 ¢ [1 Xpo,rg 44}
To do this, we can proceed as follows: using formally the expression In (1 — x) =

= —Ex"’l/k + 1 we get
k=0
exp {utn (1 = o) + B[ 70,0 =
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AN + S e soandif =
1 () 121 J.TK[o,z.]

i=1

= exp ici (L o, 44 — N(r,.)> - J.Tkgz (;‘glcf:—omzk(w(,) .

Expanding the function exp into an infinite series we get the coefficient by c, ... ¢,
of this expandion. We are not able to derive an general expression for this coefficient
for any n = 0. Here are the first four, derived by this method:

#(R,(., 1)) = N(t) — J.T Yoqdiite T
Let us denote by M(t) = N(t) — [1 ¥0,7d2; t € T. Then
2#(Ry(-- 1) O Ry(-» 1)) = M(1,) M(t;) — N (min {1, £,}); t;,t,€T.
Ry 1) © Ry, 12) O R+, 13)) = .ljl M(t) - élM(t,-) N(min (T3 — {t})) +
+ 2N(min T5), where T3 = {1y, 65, t3}; t,,t,,t:€[0, Tp] = T.
MR-, 1) © ... O Ry(-, 1)) =i1:'[1 M(t) —%M(ri) M(t;) N(min (T,—{t;, 1;})) +
+ 2!‘_2‘M(t;) N(min (T, — {t;})) — 3! N(min T,) + ZiN(min {t,1.}).
CN(min (T, — {t,,1})), where Ty ={t;,....,t}; ty,...104€T.

Remark. Setting t;, =...=t,=T,=1,n=1,..,4 and A =1 Lebesgue
measure, where | > 0, we get the first four orthogonal polynomials of a complete
orthogonal system of a Poisson distribution on integers with a parameter I:

po(x) =1

p(x)=x-1

pal) = (x — I — x

pa(x) = (x — I)* = 3x(x — 1) + 2x

palx) = (x — D)* — 6x(x — 1)* + 8x(x — I) + 3x> — 6x,

where

ro
D pi(x)pj(x);e Y=ady; 1,2,...4.

xz0
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4. ESTIMATION OF FUNCTIONALS OF AN UNKNOWN INTENSITY
MEASURE OF A POISSON LAW

The basis for this part is a general theory of locally best unbiased estimates as
given in [6] and used for example in [9]. Now we shall apply this theory to the special
case of the estimation of functionals of an unknown intensity measure of a Poisson
law.

As we mentioned in Part 2, for two Poisson laws with 4 < 4, on (T, &), we have

dP(i) _ _ _ di
aP() exp {W(ln 1) J; (fi—1) dlo} , where f, a

As we have shown in the preceding part, the system of random variables
{exp (Y(Inf) = [ (f — 1) dAo}; f € L% (Ao)} generates (4, €, P(L,)). Every random
variable of a type exp {y(Inf) — [r(f — 1)dA}; fe IA(4,) can be regarded
as a Radon-Nikodym derivative dP(4,)/dP(4,) of a measure P(l;) with respect
to the measure P(1,), where /, is defined on (T, 7) by A(A) = [, f ddo; f € (o),
A e J . Thus there exist a one-to-one correspondence between measures 4 absolutely
continuous with respect to 1, and functions (precisely equivalent classes of functions)
from L% (4o).

From a general theory of locally unbiased estimates [6] we have that a functional
F(.) defined on a set of measures, which are absolutely continuous with respect to 1,
or equivalently, on the set L% (4,), has an unbiased estimate with a finite dispersion
at i, if and only if, F(.) belongs to a reproducing kernel Hilber space H(K,) of
functionals defined on I (1,) with a kernel

N - g [9PG) dP(,)T _ - Cpep
Kl ]) = Esq [dP().O) dP(xO)] .eXP {L (=00 -1 dlo} o L el(o).
It was shown in Theorem 3.1 that H(K,,) and exp ® L*(4,) are isomorphic, from
which we get the following characterization of the space H(K ) suitable for a case
of estimation of functionals.

Theorem 4.1. The reproducing kernel Hilbert space H(K,) consists of functionals

of a type F,(.); g € exp © I*(%,) defined on the space I (4o) and such that
Fff) =3 (9w (f = 1)'®)pagsoyr0, Where g = @ g,cexp O (L)
nz0 n20
and
n L,
IFollfin = [9lEporacn s W = Tnl W for he L*l).
\/ (3

Proof. Setting g, = (g — 1)°; geI%(l,) we get, that F,(.) = K,(.,9) is
an element of H(K, ). Using the definition of the norm for the class of functionals
F,(.) we get that

Foo Koo or [ Pavcany = 2 (0w (= 1" )rziore = Fi(f)

nz0
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for every g € exp @ L*(4,), f € L% (4,) and the second property of reproducing kernel
Hilbert space H(K,,) is proved. 0

It was shown in Part 3 that in the case when T = [0, T,], Tp > 0, the system
{(R(-, 1) © ... O R(, 1,)); ty, ..., t,€ T} of random variables generates L2(P(1,))
for every n =z 0. From this we have

B, [AR(-. 1) © - © R(e, )] = E,,o[:{(R[., )6 ... O R(-.1) 91“_@} -

dP(/lo)
- J Xo,01 @ - © Kpoealf — 1)'© dAg® =
Tn

= [1 [ 0o 0 = 082 = [T 2400, 00) ~ 210, 1]
for any feI%(4o) and we see that a random variable x(R(., ;) © ... ® R(., 1))

is an unbiased estimate of a functional F,(f) = ﬂ [2AT0, 1]) — Ao([0, t])] depend-
ing on Ag.

We are interested in functionals independent of 4,. Analogically with results given
in [9] we can show that any “polynomial” of a measure A, has an unbiased estimate.
By a “polynomial of a degree p” we mean a functional P,(.) given by

P
P(f) =3 j‘ hy £ A28 s fe 1A (R). hy € I2(L)© .
n=0JT"
According to the proof of Lemma 5.1 in [9] we have

J' b, f®dn® =% (”)j (,[ h, dzg”“@> (f - 1@ di®
T i=o \! Ti\Jn-t

for any n = 0, from which we can derive that any polynomial has an unbiased
estimate. For a dispersion of the best unbiased estimate P, of a polynomial P,(f) =

r
=Y [pnh, f"® di2®, where h, € I*(Ao)'® we have from Lemma 5.1. of [9]:

n=0

v [F _ P p minlmnl/pN /)y i hodjnmne hodam=0® diie

ar, [Pl =% X Z LT A _ hydAg 0 -
n=1m=1 i=1 ri\J - m-i

Let us investigate a special case when
1
=9:0...04,, = T;Zga, ®..®49,,-
iV n e

Then we get:

) =1 [ assic= a5 ([ Lz
j=1JT T i=0 Ti\JTr i n!

.®g,, i "®> Goneins ® - ® g, (f — 1)®d2® =

G
g ( ) ( l s, dﬂ.o) (j:"fi[mj; 90, (f = 1) d/lc,)
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and
2

! - n n 2 . 1 n—i n
[P o = EalPE]= T () ””n‘zﬂl o ® 4,

L(10)'®

Example 4.1. Let n = 2. Then we get:

2
Pz(f) = 'I;[x J.ngfd;m = -Lgl d/’bofr.‘lz dig +J;% dloJ.ng(f' l)dio +
+J.ngd/10-" alf = 1)dio +ﬁg,(f_ 1) di -4—J‘Tg2(f~ D) diy

The locally best unbiased estimate P, of P, is given
2

ﬁz = H _|-gi dig +J- g1 d2, . ‘P(gz) +J.ng dig - <P(91) + ‘/’(91 © 92)-
T

i=

Setting g; = Yo,y 1 = 1,2 we get that the random variable P, = N(1,). N(1,) —
— N(min {t,, 1,}} is the best unbiased estimate of the functional

L RSO AOR): e T SeE G
Wit

2
Var[P2] = | Paliixsny — P3(1) =J‘ g3 dloJT 93 dio + <j 9192 df—o) +
T T

2
+J [91J g2 ddo + ng g1 d/{o] d2 .
T T T

If g, = X005 i = 1, 2, then
Var, [P,] = 2,([0, 1,]) - 46([0, t2]) + 43([0, min {1, t}]) +
+ 45([0, 1.]) A6[(0, #;]) + 243([0, £,]) Ao[ (0, min {r, 1;}]) +
+ 25([0, 1,]) 26([0, £2]) -

Setting t; = 1, = t, we get
Var, [F,] = 240([0, 1]) + 443([0, r]) — the classical result.

Example 4.2. Let P5(f) = (fg . fd4e)*: Then

=5 -] ([ o)

P, — the best umbiased estimate of Py is given by:

g ) e

B , 2 4 4
Va1 = 6ol + 18l ([, 0 %)+ Slolin ([ 0 050)
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For g = o, we get Py = N()) N(1) ~ 1) (N(1) — 2) and
Var, [F5] = 623([0, {]) + 1823([0, 1]) + 943([0, 1]) ,

what is again a classical result given in [2].
(Received July 15, 1981.)
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