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KYBERNETIKA- VOLUME 21 (1985), NUMBER 6 

A COMPACT VARIABLE METRIC ALGORITHM 
FOR LINEARLY CONSTRAINED NONLINEAR 
MINIMAX APPROXIMATION 

LADISLAV LUKSAN 

The paper contains a description of an efficient algorithm for linearly constrained nonlinear 
minimax approximation. This algorithm uses an elimination of constraints together with the 
product-form variable metric updates. The main advantage of the new algorithm consists in 
a simple determination of the direction vector. No quadratic programming subproblem has 
to be solved. The efficiency of the algorithm is demonstrated on test problems. 

1. INTRODUCTION 

This paper contains a description of an efficient algorithm for linearly constrained 
nonlinear minimax approximation, where a point x* e R„ is sought such that 

(1.1) E(x*) = min E(x) 
xeL„ 

where 
E(x) = maxj,(x) 

ieK 

and 
L„ = {x e E„:ajx ^ bpj e L] 

where L(x), i e K, are real valued functions in the n-dimensional vector space R„ 
with continuous second-order derivatives, and where K, L are some index sets. 

The problem (1.1) can be transformed into the equivalent problem of nonlinear 
programming, where we seek a pair (x*, z*) e R„+1 such that 

(1.2) z* = min z 
(x,s)eN„+i 

where 
Nn +! = {(x, z) e R„+,: j;(x) ^ z, i e K, a]x ^ bp j e L} . 

It is clear that z* = E(x*). Let I(x*) = {ieK : / / ** ) = E(x*)} and J(x*) = 
= {jeL: ajx* = bj] be the sets of indices of active functions and active constraints 
respectively and suppose that the vectors \g](x*), 1]T, iel(x*), [aJ, 0]T , j e J(x*), 
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are linearly independent. Then necessary conditions for the solution of the problem 
(1.2) have the following form 

iel(x*) jsJ(x*) 

(1-3) ! " * = !> 

/j(x*) = z , iel(x*), 

ajx* = 6 , , j e J(x*) , 

(1.4) u* ^ 0 , »* £ 0 , 

where a ;(**), iel(x*), are gradients of the functions ft(x*), iel(x*), and where 
uf, iel(x*), v*, j e J(x*), are nonnegative Lagrange multipliers. 

The algorithm for solving (1.1), which is under examination in this paper, is 
essentially the quasi-Newton method applied to (1.3). This algorithm is a generaliza­
tion of the variable metric method described in [10] and it uses an elimination 
of constraints together with the product-form variable metric updates as it was descri­
bed in [8]. In each iteration beginning at the feasible point x e L„ we determine 
a set J(x) of indices of active constraints and a set Is(x) which approximates, in some 
sense, the set I(x*). Using Ie(x) instead of I(x*) and J(x) instead of J(x*) in (1.3) 
and linearizing (1.3), we find a direction vector s e R„ which is a feasible descent 
direction for the problem (l . l) at the feasible point x e L„. This linearization makes 
use of an approximation of the Hessian matrix of the Lagrangian function associated 
with the problem (1.2). The direction vector s e R„ is used for finding a new point 
x+ e L„ such that x+ = x + as where the steplength a is chosen to guarantee a suffi­
cient decrease of the function (1.1). The main advantage of the proposed algorithm 
consists in a simple determination of the direction vector s e R„. It is a considerable 
simplification as compared with the method [11], which has to solve a quadratic 
programming subproblem in each step. The computation of the direction vector 
is the same in all steps. We need to combine neither different methods nor different 
direction vectors. Numerical experiments show that the new algorithm is compar­
able with the efficient method of recursive quadratic programming [11]. It also 
surpasses, in most cases, the method of recursive linear programming [12] and it is 
more efficient than the variable metric method described in [8], which uses horizontal 
steps only. 

2. DETERMINATION OF THE DIRECTION VECTOR 

Let x e L„ and let I(x) = {ieK :f{x) = F(x)} and J(x) = {jeL: a]x = b}) be 
the sets of indices of active functions and active constraints respectively at the feasible 
point x e L„. We assume, in this paper, that each feasible point x e L„ is regular, i.e. 
that the vectors [flj(x), 1]T, i e I(x), [a j , 0]T, j e J(x), are linearly independent. 
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This section is devoted to the determination of a feasible descent direction for the 
problem (1.1). Let e > 0 and let 

(2A) Is(x) = {ieK:f(x)^F(x)-s}. 

In order to simplify the notation, we omit the parameter x. We denote by u the vector 
containing all uh i ele, by / the vector containing a l l / , i els, by e the vector con­
taining all e;, iels, where e; = 1, i els, and by B the matrix containing all gh i els, 
as its columns. Furthermore we denote by v the vector containing all v}, j e J, and 
by A the matrix containing all a}, j e J, as its columns. 

Using Is instead of I(x*) and J instead of J(x*) in (1.3) and linearizing (1.3), 
we get 

Gs + Bu = Av, 

(2.2) BTs = ze-f, 

ATs = 0 , 

eTu = 1 , 
where 

G = I«;G; 

is the Hessian matrix of the Lagrangian function associated with the problem (1.2) 
(G;, iels, are Hessian matrices of the functions/ ;, i els, at the feasible point xeL„) . 

Definition 2.1. Let S be a matrix such that [A, S] is a nonsingular square matrix 
of order n and ATS = 0. Then we say that A, S is an orthogonal pair of matrices 
generated by the set J. 

Lemma 2.1. Let the Hessian matrix G be positive definite. Then there exists a matrix 
S such that A, S is an orthogonal pair of matrices generated by the set J, and the 
direction vector s e R„ given by (2.2) can be expressed in the form 

(2.3) s = Ss 
where 

s = -Bu , 

(2.4) BTBu =f-ze, 

eTu = \ , 
and where B = STB. 

Proof. Using (2.2) we get 
s = -HBu + HAv 

and 
-BTHBu + BTHAv = ze - f, 

ATHBu - ATHAv = 0 , 

where H = G_1. The matrix H exists and is positive definite since G is positive 
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definite. Eliminating the vector v from the last equations, we obtain 

(2.5) s = -(H - HA(ATHA)~1 ATH) Bu 

and 
BT(H - HA(ATHA)-' ATH) Bu = f - ze . 

The matrix H — HA(ATHA)~1 ATH is positive semidefinite since H is positive 
definite. Therefore, there exists a matrix S with linearly independent columns such 
that 

(2.6) SST = H - HA(ATHA)~1 ATH . 

Obviously ATS = 0 since ATSSTA = ATHA - ATHA(ATHA)-1 ATHA = 0. More­
over [A, S] is a nonsingular square matrix of order n since the matrices A, S have 
linearly independent columns, ATS = 0 and STw = 0 implies w = Ay with y = 
= ( A ^ A ) - 1 ATHw. Setting the matrix (2.6) into (2.5), we get 

s = -SSTBu 
and 

BTSSTBu -f-ze 
which prove (2.3) and (2.4). • 

The Hessian matrix G is usually unknown. Therefore, it will be supposed in the 
rest of this paper that H is only a positive definite approximation of the matrix G"1. 
We shall be working only with the matrix S which will be updated by means of the 
product-form variable metric corrections. 

Definition 2.2. We say that the nonsingularity condition is satisfied for a given 
e > 0 (at the feasible point x e L„) if the matrix BTB + XeeT is nonsingular for an 
arbitrary parameter X > 0. 

Lemma 2.2. Let the feasible point x e L„ be regular. Then there exists a number 
s > 0 such that the nonsingularity condition is satisfied for it. 

Proof. Since 
BTB + XeeT = [ F 

•••«]• 
the nonsingularity condition is violated only if the matrix [BT, e]T has linearly 
dependent columns, i.e. only if there exists a nonzero vector w such that 

Bw = 0 , 

eTw = 0 . 

But Bw = 0 together with B = STB implies that Bw = Ay for some vector y. There­
fore the nonsingularity condition is violated only if the vectors [gT, 1]T, i e Ic, 
\aT, 0]T , j e / , are linearly dependent. Since the set K is finite, there exists a nonzero 
number £ > 0 such that Is = I. Therefore, the nonsingularity condition cannot be 
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violated for such a number s > 0 since the vectors \gT, l ] T , i e I, [a j , 0]T, j e J, 
are linearly independent at a regular feasible point. D 

The equations (2.4) have the same form as those used in [10]. Therefore we can 
continue in the same way as in [10]. Let us introduce the notation. 

(2.7) C = (BTB x AeeT)-1, 

p = Ce , 

in case the nonsingularity condition is satisfied. 

Lemma 2.3. Let the nonsingularity condition be satisfied for a given £ > 0. Then 
the solution of the system (2.4) can be expressed in the following form 

s = -Bu , 

(2.8) u = Cf - (z - X) p , 

z = X + (pTf - \)\eTp . 
Proof. See [10]. • 

Lemma 2.4. Let the nonsingularity condition be satisfied for a given £ > 0. Then 
XeTp :§ 1. Moreover, XeTp = 1 if and only if the vectors gh ielt, cij, j e J, are 
linearly dependent. In the last case, Bp = 0. 

Proof. See [10]. Note that the vectors gt, i ele, aj, j e J, are linearly dependent 
if and only if the matrix B has linearly dependent columns (see proof of Lemma 2.2). • 

Lemma 2.5. Let the nonsingularity condition be satisfied for a given £ > 0. Let S 
be the vector obtained from (2.4). Then S = 0 if and only if the feasible point x e L„ 
is the solution of the system (1.3) with I(x*) replaced by J£ and J(x*) replaced by J. 

Proof. The feasible point x e Ln is the solution of the system (1.3) with l(x*) 
replaced by JE and J(x*) replaced by J if and only if Bu = Av, f — ze = 0 and 
eTu = 1. (The conditions aTx = bj, j e J, are satisfied automatically by definition 
of the set J.) But Bu = Av if and only if Bu = 0, which is satisfied together with 
/ — ze = 0 and eTu = 1 if and only if s = 0, where s is the vector obtained from 
(2.4). • 

Lemma 2.6. Let the nonsingularity condition be satisfied for a given £ > 0. Let w 
be the Lagrange multiplier vector determined by (2.4) and let uk be a component 
of the vector u with the index k e le. Let I~ — I£\ {k} and let the triple (s~, u~~, z~) 
be the solution of the system which results from the system (2.4) after replacing 
/ . b y / ; . Then 

(2-9) gT
ks~ = uk(pkyk + 5k) - (fk - z~) 

where s - = SS~ and fikyk + Sk > 0. 

Proof. See [10]. Note that g^s' = gjs~ where gk - STgk. • 
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The above lemmas can be used to prove the following theorems which are general­
izations of the theorems stated in [10] . 

Theorem 2 .1 . Let the nonsingulari ty condit ion be satisfied for a given e > 0. Let 
the triple (s, u, z) be defined by (2.8) such that s 4= 0 and u = 0. Let the functions 
/,-, ieIE, have bounded Hessian matrices in a neighbourhood of a feasible point 
x e L„. Then s = SS is a feasible descent direction for the problem (1.1) at the feasible 
point x 6 L„. 

Proof. Let us define 

g = Bu 

(2.10) and g = Bu . 

Then (2.8) and (2.10) imply 

Srg = -fs < 0 

since s + 0 by the assumption. Using (2.4), we get 

(2.11) Brs = Br~s = ~BrBu = - ( / - ze) . 

N o w we are going to prove 

(2.12) lira f ( * + " > " f ( % )
 = * - F . 

_->o + a 

Tak ing sufficiently small steplength 0 < a < 1 we can suppose t h a t F(x: + as) > 
> fi(* + as) for all indices i $ IE. Let k e IE be the index such t h a t F(x + as) = 
— fk(x + as). The function fk has a bounded Hessian matr ix in a ne ighbourhood 
of the point x e Rn. Therefore, there exists a constant K such that 

E(x+as)<jJt + aaTs + ~ K | | s | ] 2 . 

Using (2.11), we get 

F(x + as) < fk + agr
ks + ~- K\\s\\2 = fk + a(z - A ) + y JC|s | | 2

 = 

a 2 

< F + a(z - F) + — K| | s | | 2 

V ) . II II 

s i n c e / t < F and a < 1. Therefore we obta in (2.12). Finally we a r e going to prove 
tha t z — F = STg. Since u >, 0 and j ; < F for all indices i e IE, the inequality 
(Fe - ff u = 0 is valid. Using (2.4) a n d (2.11) we get 

z-F = (ze - Fe ) T u = (ze - j ) T M - (Fe - / ) T u < 

< (ze - / ) T u = SrBu = sT5 . 

Using all proven inequalities, we obtain 

F(x + as) - F(x) .T^ _ 
hm —i ^ i - i = z — F < slgr < 0 . • 
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Theorem 2.2. Let a feasible point x e L„ be regular. Then there exists a number 
E > 0 such that the nonsingularity condition is satisfied end either the feasible 
point x e L„ is a solution of the problem (1.3) with I(x*) replaced by Ie and J(x*) 
replaced by J or the direction vector s e R„, obtained from (2.3), is a feasible descent 
direction for the problem (1.1) at the feasible point x e L„. 

Proof. Lemma 2.2 guarantees that there exists a number s > 0 for which the 
nonsingularity condition is satisfied. Three cases can occur for such a number e > 0. 

(a) The conditions 

(2.13) XeTp = 1, 

(2.14) / = Fe 

are satisfied simultaneously. 

(b) The case (a) does not occur but 

(2.15) s < (1 - leTp)\\\p\, . 

(c) Neither the case (a) nor the case (b) occurs. 

In the case (a) we can use Lemma 2.4 and Lemma 2.5. The equality (2.13) implies 
Bp = 0 (see Lemma 2.4). Using (2.8) and (2.14) we obtain 

Bu = (F - z + X) Sp = 0 , 

so that I = -Bu = 0 and the feasible point x e L„ is a solution of the problem (1.3) 
with I(x*) replaced by Ie and J(x*) replaced by J (see Lemma 2.5). 

In the case (b) we can define numbers s ; = F — ft for i e Ie. It is clear that 0 < 
g Ej = s for i e Ie. Using (2.8) and (2.H) we obtain 

gTs = gTs = - ( / , - z) = - / . + I + (pTf - 1)1 erp 

for an arbitrary index i e Ie so that 

gTseTp = XeTp - 1 + s^Pj - £ e ^ ^ ieTp - 1 + cff̂ jj A < 0 

by (215). Since eTp > 0, we get gTs < 0 for all indices iele. Consequently s e R„ 
is a descent direction for the function (1.1). It is also a feasible direction since ATS = 0 
by Definition 2.1 and, therefore, ATs = ATSs = 0 by (2.3). 

In the case (c) we can reduce the number s (divide it by 10 for example) and we can 
repeat all the prosess. Since the set K is finite, there exists a nonzero number e > 0 
such that J£ = L The condition (2A4) is satisfied in this case. If in addition (2.13) 
holds, we obtain the case (a). If (2.13) does not hold, we get 

(1 - AeTp)l\\P\\1 > 0 

since the vector p is finite. This number remains unchanged on further decrease of e. 
Therefore the condition (2.15) is satisfied for a sufficiently small value e > 0 and we 
obtain the case (b). We have proved that for a sufficiently small value e > 0 the case 
(c) does not occur, which proves the theorem. • 
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The theorems we have proved can be used in case the feasible point x e R„ is not 
a solution of the problem (1.3) with l(x*) replaced by Ie and J(x*) replaced by J. 
Theorem 2.1 does not depend on the value e > 0 provided the nonsingularity condi­
tion is satisfied, but the Lagrange multipliers have to be nonnegative. On the other 
side Theorem 2.2 does not depend on the sign of Lagrange multipliers but the value 
£ > 0 is limited by the condition (2.15). 

Now we are considering the case when the feasible point x e L„ is a solution of the 
problem (1.3) but the conditions (1.4) are violated. 

Lemma 2.7. Let the nonsingularity condition be satisfied for a given s > 0. Let 
XeTp = 1. Let kele and let the vectors e~, p~ be defined in the same way as the vectors 
e, p, respectively, with J£ replaced by I~ = Ie \ {k}. Then X(e~)T p~ = 1 if and only 
if pk — 0 where pk is a component of the vector p with the index A: e ls. 

Proof. Since XeTp = 1, we get Bp = 0 by Lemma 2.4. Let B~ be the matrix 
defined in the same way as the matrix B with IE replaced by / ~ = Ic \ {k}. If pk = 0 
then B~ has linearly dependent columns so that X(e~)T p~ = 1 by Lemma 2.4. 
If, on the other side, X(e~)T p~ = 1, we get B~p~ = 0 by Lemma 2.4. Denote by p 
the vector that is of the same dimension as the vector p, such that p; = p~ for 
i e 1~ and pk = 0. Then Bp = 0. If p =f= p then, by setting w — X(p - p), we obtain 
Bw = 0 and eTw = XeTp - X(e~)r p~ = 1 - 1 = 0 which is in contradiction with 
the nonsingularity condition (see proof of Lemma 2.2). Therefore, p = p so that 
Pk = Pk = 0- • 

Theorem 2.3. Let the feasible point x e L„ be a solution of the problem (1.3) with 
I(x*) replaced by IE and J(x*) replaced by J. Let the assumptions of Lemma 2.6 
be satisfied with uk < 0. Then s~ = Ss~ is a feasible descent direction for the problem 
(1.1) at the feasible point x e L„. 

Proof. Since the feasible point x e L„ is a solution of the problem (1.3) with 
I(x*) replaced by Ie and J(x*) replaced by J, the conditions (2.13) and (2.14) hold 
so that J£ = L Moreover, from (2.8) we get w = (F — z + X) p which together 
with uk < 0 implies pk + 0. Therefore, /(e~)T p~ < 1 by Lemma 2.7. Since Ie = I, 
the set le remains unchanged for a small enough number e > 0. Therefore, we can 
consider the condition 
(2-16) £ < ( l - ; . ( e ~ ) T p - ) / | b ~ | 1 

as satisfied and, as in the proof of Theorem 2.2, we get gTs~ < 0 for all indices 
; e I~. Moreover, since uk < 0, we get 

gTs~ = uk(flkyk + Sk) - (fk - z~) < - ( / , - z~) 

by Lemma 2.2 so that gjs" < 0 (see again the proof of Theorem 2.2). Consequently 
gTs~ < 0 for all indices iels which implies that the direction vector s~ e R„ is 
a descent direction for the function (1.1). It is also a feasible direction since ATS = 0 
by Definition 2.1 and, therefore, ATs~ — ATSs~ = 0 . ~~ 
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Lemma 2.8. Let the nonsingularity condition be satisfied for a given e > 0. Let A, 

S be an orthogonal pair of matrices generated by the set J. Let v, < 0 for some / e J, 

where 

(2.17) D = (ATA)"1AT^, 

with g defined by (2A0). Let A~, S~ be an orthogonal pair of matrices defined by 

the set J ~ = J \ {/} such that S" = [S, s0] and STs0 = 0. Then s(~' = - S ~ ( S ~ ) T g 

is a feasible direction for the problem (1.1) at the feasible point xeL„. Moreover 

a]s(-) > 0. 

Proof. See [7]. • 

Theorem 2.4. Let the feasible point x e L„ be a solution of the problem (1.3) with 

I(x*) replaced by Ie and J(x*) replaced by J. Let the assumptions of Lemma 2.8 

be satisfied with vt < 0. Let the triple (s~, u~, z~) be a solution of the system which 

results from the system (2.4) after replacing B = SrB by /J~ = (S~) T B. Then s~ = 

= S~s~ is a feasible descent direction for the problem (1.1) at the feasible point 

x e L„. Moreover ajs~ > 0. 

Proof. Let g = Bu and g~ = Bu~. First we prove that 

12 18) s~a~ — 5o ~  
K ' J 1 + sT

0BCBTs0 

where C is a positive semidefinite matrix. The pair (u~, z~) is a solution of the 

system 

/ r e " 1 , el + p T s 0 l [sT

0B, 0] 

which has the following form 

(D + wwT)y~ = d . 

Using the Sherman-Morrison formula, we get 

D-1wwTD-1 

m 

У = (D + wwTYxd= [D-x - -
1 + wтD' 

- \d - y -
D-Ьvи-V 

1 + wтD-> 

where y = D xd. With respect to the original system, we can write y = 

= [(u-)T, z ~ ] T y = [uT, zf, w = [sT5, 0 ] T and 

D-1 = 

[Г:Г C -

so that 

C e Л ľ 

eтCe ' 

e т C 

e т Ce' 

ČBTs0s0Bu 

1 + slBČBTs0 

Ce 

eTCe 

1 

eTCe-J 
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where C = C — CeeTC/eTCe is a positive semidefinite matrix. Using the last formula, 
we get 

sr
0g~ = sr

0Bu- = slBu - $_*#_&_ - °1*± _ * £ _ 
1 + slBCBrs0 1 + srBCBrs0 1 + slBCBrs0' 

which is exactly (2.18). Note that positive semidefiniteness of the matrix C implies 
1 + srBCBrs0 S 1 so that srg~ has the same sign as srg. 

Now we are going to prove that s~ = S~s~ is a feasible direction and ajs~ > 0. 
Suffice it to prove ajs" > 0 since (A~)T s~ = (A~)T S~s~ = 0 follows from Defini­
tion 2.1. We can write 

s - = S~S- = -S-(S-)rBu~ - -S~(Syg-

by (2.3) and (2.4) with S replaced by S~. Therefore, 

ajs~ = - a T S~(S~) T a~ = -arSSrg- - ars0slg- = -aTs0slg~ 

since arS = 0 by Definition 2.L Using Lemma 2.8, we get 

«Ts<~> = -arS-(S-)rg = -ars0s
r
0g > 0 . 

Since sTa ~ has the same sigu as s^g and since ajs0 + 0 (which follows from s0 + 0, 
Srs0 — 0 and (A~Y s0 = 0), the last inequality implies ars~ > 0, which was to be 
proved. 

Finally we prove that s~ = S~s~ is a descent direction for the function (1.1). 
Since the feasible point x eL„ is a solution of the problem (1.3) with l(x*) replaced 
by Ie and j(x*) replaced by J, the conditions (2+3) and (2.14) are satisfied so that 
It = I. Define 

C" = ((B-)r B- + lee*)-1 = (BrB + leeT + Brs0s
r
0B)-1 . 

Using Sherman-Morrison formula, we get 

c - = c _ CBrs0s
r
0BC 

1 + sr
0BCBrs0 

(see (2.7)) so that 

pBrs0s
r
0Bp 

eTC~e = eTCe 
1 + srBCBrs0 

Note that 1 + srBCBrs0 S 1 since the matrix C is positive definite. We prove that 
srBp + 0, which implies eTC~e < eTCe and consequently AeTC~e < 1. Using 
(2+3) and Lemma 2.4, we get SrBp = 0 so that Bp = Av by Definition 2.L Since 
sTA~ = 0 by Definition 2.1, slat + 0 (which follows from s0 + 0, Srs0 = 0 and 
(A_)T s0 = 0), and vt < 0, we obtain 

slBp = srAv = sr
0alvl + 0 , 

which was to be proved. Therefore, 2eTC~e < 1. Since Ie = I, the set /,, remains 

414 



unchanged for a small enough number e > 0. Therefore, we can consider the condi­
tion 

e < (1 - XeTC-e)j\C~e\1 

satisfied and, as in the proof of Theorem 2.2, we get gTs^ < 0, for all indices i e Ie, 
which implies that the direction vector s~ = S~~3~ is a descent direction for the 
function (1.1). • 

We have used the same notation (s~, u~, z~) in Theorem 2.4 as in Theorem 2.3 
even if they are the solutions of quite different systems. But the above theorems 
cannot be used simultaneously so, by our opinion, no misunderstanding can happen. 

The theorems we have proved can be used for the construction of a feasible descent 
direction for the problem (1.1) at the feasible point x e L„. If the feasible point x e L„ 
is not a solution of the problem (1.3) with l(x*) replaced by Ie and J(x*) replaced 
by J, we can use either Theorem 2.1 or Theorem 2.2. Using Theorem 2.2 in case 
the condition u 5: 0 does not hold, we have to check the validity of the condition 
z - F < 0 which guarantee the direction vector s e R„ is a descent one for function 
(1.1) at the feasible point x e L„. When the condition z — F < 0 is violated, we have 
to decrease the value £ (dividing it by 10 for example) and repeat the determination 
of the direction vector s e R„. If the feasible point x e L„ is a solution of the problem 
(1.3) with I(x*) replaced by Ie and J(x*) replaced by J, we can use either Theorem 
2.3 in case uk < 0 for an index kele or Theorem 2.4 in case vt < 0 for an index 
/ e J. Therefore, a feasible descent direction s e R„ can be determined in each feasible 
point x e L„ which is not a solution of the problem (1.1) and the new feasible point 
x+ eL„, where x+ = x + as, can be found such that F(x+) < F(x). 

Numerical experiments show that it is advantageous to construct the set I~ = 
= Ie\{k} and compute the direction vector s~ eR„ by means of (2.3) and (2.4) 
with Ie replaced by I~ whenever uk < 0 for some k e Ie. The fact that the computed 
direction vector is a feasible descent direction for the problem (1.1) at the feasible 
point xe Ln can be verified by the combination of Lemma 2.6 and Theorem 2.2. 
Note that the validity of the condition z — F < 0 has to be checked in this case 
and the value e > 0 has to be decreased if it does not hold. 

3. DESCRIPTION OF THE ALGORITHM 

In this section we are describing an algorithm which uses the direction vector 
determined by (2.3) and (2.8). First, we must introduce some details concerning 
certain steps of the algorithm. 

To improve the stability of the algorithm, we use the triangular decomposition 

(3.1) RTR = BTB + XeeT 

instead of the inversion C = (BTB + XeeT)~x. The upper triangular matrix R is 
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computed recursively. Let (R+)TR+ = (B+f B+ + Xe+(e+f, where e+ = [eT, l ] 1 

and B+ = [R, 5t~] with bt = ST#;. Then 

(3.2) 

where 
m 

RTf. = F S ; + Xe, 

r\ = bTbt + X - r f o 
(see for instance [15]). 

After deleting the index k from the set Is, we need to find the decomposition 
(R~)T R~ = (R_)T B~ + Xe-(e-f, where e~ results from the vector e after deleting 
the component ek and B~ results from the matrix B after deleting the column bk. 
Let P be a permutation matrix which transfers the column bk of the matrix B to 
the last position so that RP is an upper Hessenberg matrix. Let Q be an orthogonal 
matrix such that QRP = f, where T is an upper triangular matrix. Then TTT — 
= PTRTQTQRP = PTRTRP, so that 

(3.3) r-rT-,7.1 

and 
(T~f f- = (B-ys-. 

Therefore, 
R" = f-

is a matrix satisfying the desired condition. 

The number X > 0 has to be taken to guarantee the positive definiteness of the 
matrix (3.1). The most advantageous choice of the number X > 0 is such that makes 
the matrix (3.1) optimally conditioned. However, it is computationally time-consum­
ing. Therefore, we use the simple choice X = 1 in the algorithm. 

The algorithm makes use of three additional matrices A, S and R which represent 
a current set of active constraints. Here A, S is an orthogonal pair of matrices generat­
ed by the set J (see Definition 2.1) and R is an upper triangular matrix such that 
RTR = ATA. The matrix R serves for the computation of the Lagrange multipliers 
from the equation 

(3.4) RTRu = ATg , 

which is equivalent to (2.17). 

The matrices A, S and R must be adjusted after each change of the current set 
of active constraints. In this case the second-order information obtained by the 
variable metric updates in the previous steps has to be conserved. A more detailed 
investigation of this problem is given for instance in [7]. Suppose that a new constraint 
with the normal aJt say, has to be added to the set of active constraints. Suppose 
that the normal cij is not a linear combination of the normals ah i e J and let's set 
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j + = JKJ {;}. Then A+ = [A , aj] and 

(3.5) R+ = [R, ril 

[O, r2\ 
where 

RTrt = ATaj , 

r\ = a]a} - rrrt 

(see [3]). The matrix S+ can be determined as in [13]. Then 

(3-6) S+=S-fL-^s_fs\aJs 

where S is a matrix resulting from the matrix S after deleting an arbitrary column 
sk and s = SSTaj. Furthermore t is a root of the quadratic equation 

co2t2 + 2tsT
kaj - 1 = 0 

where a> = aT
JSSraJ = sTaj - (slaj)2. Note that A+, S+ is an orthogonal pair 

of matrices generated by the set J + = / u {j} and 

S+(S+)T = SST - _ ^ I _ _ I 
a]SSTaj 

holds which guarantee that the second order information, obtained in the previous 
steps, has not been lost. 

After deleting the index / from the set J, we need to find the matrices A~, S~ and 
R~, where A~, S~ is an orthogonal pair of matrices generated by the set J~ = J\ {/} 
and R~ is an upper triangular matrix such that (R~)T R~ = (A~)T A""• A procedure 
described in [4] can be used in this case. Let P be a permutation matrix which 
transfers the column a, of the matrix A to the last position so that RP is an upper 
Hessenberg matrix. Let Q be an orthogonal matrix such that QRP = T where T is 
an upper triangular matrix. Denote 

T1or\';l * t l 
Let A be a matrix resulting from the matrix A after deleting the column at and 

(3.7) R~ = T~ , 

S~ = [S, s0] 
where 

s0 = APT-1!! 

then (R~)T R~ = (A~)T A~ and A~, S~ is an orthogonal pair of matrices generated 
by the set J~ = J \ { / } . Moreover STs0 = 0, which is the necessary assumption 
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of Theorem 2.2, and 

SST = S-(S-)T-S"(5")Tfl'a'S"(ST 
1 ' «TS-(S-)V 

holds which guarantee that the second order information, obtained in the previous 
steps, has not been lost. 

Having the direction vector s e R,„ we need to determine a steplength a and compute 
the point x+ = x + as, which is a new approximation of the solution of the problem 
(1.1). To guarantee the global convergence of the algorithm, we choose the steplength 
a so that 

F(x+) - F(x) < e2asTg 

where g is the vector defined by (2.10) and 0 < 2e2 < 1. The theoretical motivation 
for this choice is given for instance in [5]. The steplength a is usually determined 
by means of a bisection or by means of a safeguarded quadratic interpolation which 
uses function values only. The inequality a < a2 has to be satisfied, where 

. (b, - aTx 
(3.8) a2 = mm 

jej \ a}s 

and 
J = {) e L\ J : a]s < 0 } , 

to maintain the point x+ e L„ to be feasible. The efficiency of a line search strongly 
depends upon the initial estimate of steplength a. This initial estimate is most fre­
quently determined by means of the linearization of the functions f{x), i e K, in the 
case of nonlinear minimax approximation. Let 

0.9) ^^(a^m 
where 

/8 = {ieK\I£:s
Tgi> sTg} . 

Then 

(3.10) a = min (1, au a2) 

is a suitable initial estimate of the steplength. 

The matrix S should be chosen in such way that SST approximates the matrix 
G"1 — G~iA(ATG~1A)~1 ATG_1 as closely as possible, where G is the Hessian 
matrix of the Lagrangian function associated with the problem (1.2) (see (2.6)). 
Therefore, it is advantageous to use the product-form of variable metric updates 
which belong to Broyden's class. Let g = STg and g+ = STg +, where 

9 = E ui 9t(x) 
iele 



and 
g+=Yui9i(x+), 

be reduced gradients of the Lagrangian function associated with the problem (1.2) 
at the feasible points xeL„ and x+ eL„ respectively. Denote d = as, y = g + — g 
and Q = dTd, a = yTd, x = yTy, where a is a steplength obtained by line search 
(so that x+ = x + as). Then the matrix S can be updated by one of the formulae 

(3.11a) S + = S + - S ( l(-) d У Ґ 

(3.11b) S + =S + -Sd[ l[-)ã-ў 

- 1 

(3.11c) S+ =S+ i v " ~ "' S(d - y) (d - y)T , 
Q — 2a + x 

which are the DFP method, the BFGS method and the rank-one method in the 
product form respectively (see [1] and [14]). Note that (3.11) can be used only if 
a > 0. This condition cannot be satisfied automatically since the steplength a is 
chosen to reduce the minimax objective function F[x) while a is computed from the 
difference between the reduced gradients of the Lagrangian function. Therefore, 
the computation of the matrix S + has to be slightly modified. Two procedures 
exhibited good efficiency during the implementation of the algorithm: 

(a) The matrix S is updated by (3.11) only if 

(3.12) a ^ £3T 

where 0 < e3 < 1. In the opposite case we set S + = S. 

(b) The procedure described in [13] is used. In this case we replace, in the formulae 
(3.11), d and a by fid + (1 — p)y and \ia + (1 — /.)-, where 

(3.13) џ = min i.lL-Jíì 

Now we are in a position to describe the complete algorithm. Since it is more 
advantageous to work with relative tolerances, we define the set IE by the formula 

(3.14) IE = {ieK-.fi^ F - e max (e, |E|)} 

instead of (2.1). To ensure the numerical stability of the algorithm we use the set 

(3.15) J = {jeL:\aTx-bj\ < £ l} 

instead of that defined in Section 2. 
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Algorithm 3.1. 

Step 1: Determine an initial feasible point x e L„ (it can be determined by the 
procedure described in [2]). Compute the values / ; : = fix), i e K, and the 
gradients gt := fl;(x), ieK. Compute the value of the objective function 
F := max/ ;(x). S e t M : = 0. 

ieK 

Step 2: (Restart.) Using (3.15), determine the set J c L of indices of linear con­
straints, which are active at the feasible point x e L„ and which have linearly 
independent normals. Determine an orthogonal pair of matrices A, S generat­
ed by the set J and compute the upper triangular matrix R such that RTR = 
= ATA. These matrices can be computed recursively by the formulae (3.5) 
and (3.6) where j is the index passing over all J and where A, R are empty 
matrices and S = / (the unit matrix of order n) at the beginning of this 
processes. Go to Step 5. 

Step 3: Set d := — oe^ and y := g — gt. Compute the values Q := drd, a : = 
:= yTd and T := fy. If MOD = 0 and a S e3T, go to Step 4. If MOD = 0 
and a < e3T, go to Step 5. If MOD = 1 then set p. := min (1, (1 — e4) T : 
: (T — a)) and compute d := fid + (1 — p.) y and a := pa + (1 —p.) x. 

Step 4: (VM update.) Compute the matrix S+ by (3.11a), (3.11b) or (3.Hc) accord­
ing to whether MET = 1, MET = 2 or MET = 3. Set S := S + . 

Step 5: Set e := e0. If NEW = 0 then go to Step 7 else go to Step 6. 

Step ^6: (Addition of an active constraint.) Set j := NEW. Let A+, S+ and R + 

be matrices determined from the matrices A, S and R by (3.5) and (3.6). 
Set A := A+, S := S+ and R := R+. 

Step 7: Set REM := 0. 
Step 8: Set l:= 1. Using (3A4) determine the set /E <=. K of indices of functions, 

which are nearly active at the feasible point x e L„ and which have linearly 
independent gradients. Compute the upper triangular matrix R such that 
(3.1) holds. This matrix can be computed recursively by the formula (3.2) 
where ; is the index passing over all Is and where B, R are empty matrices 
at the beginning of this process. If the decomposition (3A) does not exist 
(i.e, if r2 ^ £5 in (3.2)) then go to Step 13. 

Step 9: Determine the vector u and the number z according to (2.8) where we use 
the triangular decomposition (3.1) instead of the inversion (2.7). If either 
REM = 1 or XeTp rS 1 - e6 go to Step 11. 

Step 10: Determine the index k e IE in such way that uk = min (t/;). If uk + e5 > 0, 

go to Step 11. If uk + 8j S 0 then set lz := IE\{k}, R := R~ where R~ 
is the upper triangular matrix determined by (3.3), set REM := 1 and 
go to Step 9. 

Step 11: Compute g : = Bu and g : = STg where B is the matrix which contains the 
gradients o;, i eIE, as its columns. If REM = 0, go to Step 14. 
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Step 12: If z - F + e5 ^ 0, go to Step 17. 

Step 13: If e ^ e5 then terminate the computation (the algorithm fails). If e > e5, 

then set £ := e/10 and go to Step 7. 

Step 14: If || ~| > 85, go to Step 17. 

Step 15: Compute the vector v by means of (3.4). Determine the index I e J in such 
way that vt = min (D,) and set OLD : = j . If v, + s5 > 0 then terminate 

the computation (the solution of the problem (l . l) has been found with 
required precision). 

Step 16: (Deletion of an active constraint.) Set j := OLD, Let A~, S~ and R~ be 
matrices determined from the matrices A, S and R by (3.7). Set A := A~, 
S := S~ and R := R~. Set REM := 1 and go to Step 8. 

Step 17: (Determination of the direction vector.) Set s := —Sg. Determine the trial 
steplength a t by (3.9) and the maximum steplength a2 by (3.8). Set NEW: = j , 
where; is the index of the constraint, which becomes active for the maximum 
steplength has been chosen. 

Step 18: (Line search.) Set xt := x, g± := g and Ft :=F. Determine the steplength 
a to satisfy the conditions 0 < a < a2 and Ft — F > E2 a||o|| (the initial 
estimate of a is given by (3A0)). Set x := xx + as. Compute the values 
j ; '• = fi{x), ieK and the gradients gt := g{x), ieK. Compute the value 
of the objective function F := maxj;(x). 

ieK 

Step 19: Compute g := Bu and g := STg, where B is the matrix which contains 

the gradients gh iele, as its columns. 

Step 20: If (a2 - a) ||s|| > e2, set NEW:= 0. Set M := M + 1. If the restart is 
required (after a certain number of iterations) then go to Step 2 else go to 
Step 3. 

Algorithm 3.1 can be controlled by the integers MET and MOD. The parameter 
MET serves for the selection of the variable metric update from (3.11) (standard 
value is MET = 2). The parameter MOD determines a modification of the variable 
metric method. If MOD = 0 then the procedure (a) is used (see (3.12)) while if 
MOD = 1 then the procedure (b) is used (see (3.13)). Algorithm 3.1 uses additional 
integers M, REM, NEW and OLD. Here M is an iteration count, REM is an integer 
indicating whether the index k was deleted from the set IE in case the corresponding 
Lagrange multiplier uk was negative, NEW is the index of the constraint added to the 
set J and OLD is the index of the constraint deleted from the set J. Besides, Algorithm 
3.1 uses several tolerances. The values 10"2 ^ e0 j£ 1 0 " \ et = 10"6, e2 = 10"2, 
£3 = 10~2, £4 = 10"1, e5 = 10"1 0 and e6 = 10~2 were used in the implementation 
of this algorithm on an IBM 370/135 computer in double precision arithmetic. 

Algorithm 3.1 can fail in Step 13. This situation arises only if either the regularity 
condition is satisfied for no value £ > £5 (see Definition 2.2) or the condition (2.15) 
is violated for all values £ > £5. 
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4. NUMERICAL EXPERIMENTS 

The efficiency of Algorithm 3.1 has been tested by means of test problems which 
are given in [11]. Results of the tests are shown in several tables. Each row of each 
table corresponds to one example numbered as in [11]. Each column of each table 
corresponds to one run of the algorithm. Several numbers are given for each run and 
each example: 

NI — number of iterations (value of integer M after termination), 

NF — number of different points at which the values fix), i e K, were computed, 

NG — number of different points at which the gradients gt(x), ieK, were computed, 

P — relative precision of the computed optimal value of the objective function 

F(x) (only in Table 3a and Table 3b). 

All tests have been performed with two different line search procedures. The letter A 
indicates the line search procedure in which the usual quadratic interpolation has 
been used while the letter B refers to that where each function fi(x), i e K, has been 
approximated by means of a special parabola (see [11] for details). 

Table la and Table lb demonstrate a considerable influence of the value of param­
eter £0, which serves for the definition of nearly active functions. These tables corre­
spond to the choice MET = 2 and MOD = 0. 

The numerical experiments summarized in Table la and Table lb show that the 
value e0 = 10"1 is advantageous in all cases with the exception of the problem U 5 
where the value £0 = 10"2 gives better results. The tests of Algorithm 3.1 have been 
done also for values £0 < 10"2. In all these cases the efficiency of Algorithm 3.1 
was less than in those given in Table la and Table lb. Similar results have been 
reached for the choice MET = 2 and MOD = 1 but the previous one was slightly 
more efficient. 

Table 2a and Table 2b contain results of the tests for different values of the controll­
ing parameter MET. The value e0 = 10"1 was used in all cases together with the 
choice MOD = 0. 

Table 2a and Table 2b show that the choice of the variable metric method has no 
expressive influence on the efficiency of Algorithm 3.L 

To compare several methods for linearly constrained nonlinear minimax approxim­
ation, Table 3a and Table 3b have been set. These tables contain results of the tests 
for the method of recursive linear programming [12] (LP), the variable metric 
method described in [8] (VM), the method of recursive quadratic programming [11] 
with dual quadratic programming algorithm [9] (QP) and the new method described 
in this paper (Algorithm 3.1). The last two methods have been tested in two different 
runs which have used two different line search procedures (the same as in the previous 
tables). The values £0 = 10" \ MET = 2 and MOD = 0 were used in the Algorithm 
3.1 with exception of the case U 5 where the value e0 = 10~2 was used instead 
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Table la. 

Line search A Line search B 

e 0 = 1 0 - 1 e 0 = 5 . 1 0 - 2 s0= 1 0 - 2 e 0 = 1 0 - l e 0 = 5 . 1 0 - 2 
« o = Ю~ 2 

NI = 10 NI = 11 NI = 13 NI = 10 NI = 11 NI = 13 
U l N F = 12 N F = 13 N F = 15 N F = 12 N F = 13 N F = 15 

N G = 12 N G = 13 N G = 15 N G = 12 N G = 13 N G = 15 

NI = 11 NI = 14 NI = 15 NI = 10 NI = 11 NI = 11 
U 2 N F = 15 N F = 21 N F = 20 N F = 15 N F = 16 N F = 17 

N G = 13 N G = 16 N G = 17 N G = 12 N G = 13 N G = 13 

NI = 61 NI = 51 NI = 49 NI = 51 NI = 50 NI = 57 
U З N F = 71 N F = 58 N F = 56 N F = 56 NF = 61 N F = 68 

N G = 63 N G = 53 N G = 51 N G = 53 N G = 52 N G = 59 

NI = 18 NI = 22 NI = 36 NI = 20 NI = 21 NI = 23 
U 4 N F = 21 N F = 30 N F = 45 N F = 26 N F = 28 N F = 32 

N G = 20 N G = 24 N G = 38 N G = 22 N G = 23 N G = 25 

NI = 197 NI = 103 NI = 25 NI = 17 NI = 19 NI = 18 
U 5 N F = 387 N F = 199 N F = 42 N F = 30 N F = 30 N F = 28 

NG = 199 NG = 105 N G = 27 N G = 19 N G = 21 N G = 20 

NI = 19 NI = 55 NI = 44 NI = 17 NI = 41 Ní = 36 
U 6 NF = 26 NF = 87 NF = 62 NF = 22 NF = 58 NF = 43 

N G = 21 N G = 57 N G = 46 N G = 19 NG = 43 N G = 38 

NI = 26 NI = 32 NI = 52 NI = 26 NI = 32 NI = 57 
U 7 NF = 29 NF = 37 NF = 77 NF = 29 NF = 35 NF = 79 

N G = 28 N G = 34 N G = 61 N G = 28 N G = 34 N G = 59 

Table lb. 

Line search A Line search B 

« o = Ю _ 1 E 0 = 5 . 1 0 - 2 є0= 1 0 - 2 є0= 1 0 - 1 e 0 = 5 . 1 0 - 2 a0= 1 0 - 2 

NI = 9 NI = 11 NI = 11 NI = 9 NI = 11 NI = 11 
L l N F = 11 N F = 13 N F = 13 N F = 11 N F = 13 N F = 13 

N G = 11 NG = 13 N G = 13 N G = 11 NG = 13 N G = 13 

NI = 4 NI = 4 NI = 4 NI = 4 NI = 4 NI = 4 
L 2 N F = 6 N F = 6 N F = 6 N F = 6 N F = 6 N F = 6 

N G = 6 N G = 6 N G = 6 N G = 6 N G = 6 N G = 6 

NI = 13 NI = 13 NI = 13 NI = 13 NI = 13 NI = 13 
L З N F = 15 N F = 15 N F = 15 N F = 15 N F = 15 N F = 15 

NG = 15 N G = 15 N G = 15 N G = 15 N G = 15 N G = 15 

NI = 75 NI = 75 NI = 75 NI = 75 NI = 75 NI = 75 
L 4 N F = 77 N F = 77 N F = 77 N F = 77 N F = 77 N F = 77 

N G = 77 N G = 77 N G = 77 N G = 77 N G = 77 NG = 77 

NI = 28 NI = 26 NI = 75 NI = 28 NI = 26 NI = 75 
L 5 N F = 30 N F = 28 N F = 77 N F = 30 N F = 28 N F = 77 

N G = 30 NG = 28 N G = 77 N G = 30 N G = 28 N G = 77 
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Line search A Line search B 

MET= 1 MET= 2 MET= 3 MET= 1 MET= 2 MET= 3 

NI = 10 NI = 10 NI = 10 NI = 10 NI = 10 NI = 10 
U l N F = 12 N F = 12 NF = 12 N F = 12 N F = 12 N F = 12 

N G = 12 N G = 12 N G = 12 N G = 12 NG = 12 N G = 12 

NI = 12 NI = 11 NI = 11 NI = 10 NI = 10 NI = 10 
U 2 N F = 17 N F = 15 N F = 14 N F = 15 NF = 15 N F = 15 

N G = 14 N G = 13 N G = 13 N G = 12 N G = 12 N G = 12 

NI = 45 NI = 61 NI = 46 NI = 38 NI = 51 NI = 43 
U З N F = 53 N F = 71 N F = 53 N F = 41 N F = 56 N F = 49 

N G = 47 N G = 63 N G = 48 N G = 40 N G = 53 N G = 45 

NI = 37 NI = 18 NI = 17 NI = 98 NI = 20 NI = 22 
U 4 NF = 40 N F = 21 N F = 21 . N F = 149 N F 26 N F = 30 

N G = 39 N G = 20 N G = 19 NG = 100 N G = 22 N G = 24 

NI = 196 NI = 197 NI = 197 NI = 20 NI = 17 NI = 23 
U 5 N F = 386 N F = 387 NF = 386 N F = 34 NF = 30 N F = 39 

N G = 198 NG = 199 NG = 198 N G = 22 NG = 19 N G = 25 

NI = 33 NI = 19 NI = 35 NI = 16 NI = 17 NI = 18 
U 6 N F = 54 N F = 26 N F = 59 N F = 21 N F = 22 N F = 26 

N G = 35 N G = 21 N G = 37 N G = 18 N G = 19 N G = 20 

NI = 30 NI = 26 NI = 30 NI = 27 NI = 26 NI = 25 
U 7 N F = 41 NF = 29 NF = 45 N F = 36 NF = 29 N F = 35 

N G = 32 N G = 28 N G = 32 N G = 29 N G = 28 N G = 27 

J n e search A Line search B 

MET= 1 MET= 2 MET= 3 MET= 1 MET= 2 MET= 3 

NI = 9 NI = 9 NI = 9 Nl" = 9 NI = 9 NI = 9 
L 1 N F = 11 N F = 11 NF = 11 N F = 11 N F = 11 N F = 11 

N G = 11 N G = 11 NG = 11 N G = 11 N G = 11 N G = 11 

NI = 4 NI = 4 NI = 3 NI = 4 NI = 4 NI = 3 
L 2 N F = 6 N F = 6 N F = 5 N F = 6 N F = 6 N F = 5 

N G = 6 N G = 6 N G = 5 N G = 6 N G = 6 N G = 5 

NI = 13 NI = 13 NI = 13 NI = 13 NI = 13 NI = 13 
L 2 N F = 15 N F = 15 NF = 15 N F = 15 N F = 15 N F = 15 

N G = 15 N G = 15 N G = 15 N G = 15 N G = 15 NG = 15 

NI = 75 NI = 75 NI = 75 NI = 75 NI = 75 NI = 75 
L 4 N F = 77 N F = 77 N F = 77 N F = 77 N F = 77 N F = 77 

N G = 77 N G = 77 N G = 77 N G = 77 N G = 77 N G = 77 

NI = 39 NI = 28 NI = 36 NI = 39 NI = 28 NI = 37 
L 5 N F = 41 N F = 30 NF = 40 N F = 41 N F = 30 N F = 40 

NG = 41 N G = 30 N G = 38 N G = 41 N G = 30 N G = 39 
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ТаЫе За. 

LP vм Q P - A Q P - B New — A New — B 

NI = 13 NI = 18 NI = 8 NI = 8 NI = 10 NI = 10 
U l N F = 25 N F = 20 N F = 10 N F = 10 N F = 12 N F = 12 

N G = 25 N G = 20 NG = 10 NG = 10 NG = 12 N G = 12 
P = 10" 7 P = 10~7 P = 1 0 " 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 

NI = 18 NI = 26 NI = 12 NI = 9 NI = 11 NI = 10 
U 2 N F = 28 N F = 36 N F = 19 N F = 13 NF = 15 N F = 15 

N G = 28 NG = 28 N G = 14 N G = 11 N G = 13 NG = 12 
P = 10" 6 P = 10~ 4 P = 1 0 " 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ ' ° 
NI = 10 NI = 134 NI = 298 NI = 61 NI = 51 

U З N F = 14 NF = 142 NF = 589 F N F = 71 N F = 56 
N G = 14 NG = 136 NG = 300 N G = 63 N G = 53 
P = 10" 6 P = 10" 5 P = 1 0 " 6 P = 10~ 9 P = 1 0 ~ 9 

NI = 230 NI = 63 NI = 14 NI = 14 NI = 18 NI = 20 
U 4 N F = 252 N F = 73 N F = 19 N F = 17 N F = 21 N F = 26 

NG = 252 NG = 65 NG = 16 N G = 16 N G = 20 NG = 22 
P = 1 0 " 4 P = 10" 5 P = 1 0 " 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 9 

NI = 43 NI = 48 NI = 249 NI = 17 Ní = 25 NI = 18 
U 5 NF = 51 NF = 78 NF = 493 NF = 30 NF = 42 NF = 28 

N G = 51 N G = 50 NG = 251 N G = 19 NG = 27 N G = 20 
P = 10" 5 P = 10" 4 P : : 1 0 " 9 P = 1 0 " 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 

NI = 66 NI = 102 NI = 15 NI = 16 NI = 19 NI = 17 
U 6 NF = 78 NF = 120 NF = 20 NF = 20 NF = 26 NF = 22 

N G = 78 NG = 104 N G = 17 NG = 18 N G = 21 N G = 19 
P = 10~5 P = 10~4 P = 10~ 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 

NI = 122 NI = 21 NI = 19 NI = 26 NI = 26 
U 7 NF = 128 ғ N F = 33 N F = 30 N F = 29 N F = 29 

NG = 128 NG = 23 N G = 21 N G = 28 N G = 28 
P = 1 0 " 9 P = 1 0 " 1 0 P = 10~ 1 0 P = 1 0 ~ 1 0 P = 1 0 ~ 1 0 

of the value s0 = 10 *. The letter F in Table 3a and Table 3b denotes the case when 
the algorithm fails. 

Results of the tests show a considerable reliability and efficiency of the new algo­
rithm (the efficiency is measured by the number of calls of the subroutine for comput­
ing values fix), ieK, and the gradients gt(x). ieK. Algorithm 3.1 is comparable 
with the QP method but it requires no solution of a quadratic programming sub-
problem. It is also more efficient than the LP method and the VM method. 

The LP algorithm, VM algorithm, QP algorithm and the new algorithm were 
implemented as Fortran subroutines POMX 61, POMX 62, POMX 66 and POMX 65, 
respectively, in the Software Package for Optimization and Nonlinear Approximation 
SPONA (see [6]). All results given in this section have been obtained using these 
subroutines. 

(Received May 12, 1984.) 
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Table 3b. 

LP VM Q P - A Q P - B New — A New— B 

NI = 7 NI = 11 NI = 6 NI = 6 NI = 9 NI = 9 

L l N F = 9 NF = 13 N F = 8 NF = 8 N F = 11 NF = 11 
NG = 9 N G = 13 N G = 8 N G = 8 N G = 11 N G = 11 
P = 10~8 P = 1 0 " 8 P = 1 0 " 1 0 P = 1 0 " 1 0 P = 1 0 " 1 0 P = 1 0 " 1 0 

NI = 56 NI = 4 NI = 4 NI = 4 NI = 4 NI = 4 
L 2 N F = 76 N F = 6 N F = 6 N F = 6 N F = 6 N F = 6 

N G = 76 N G = 6 N G = 6 N G = 6 N G = 6 N G = 6 
P = 1 0 " 1 0 p = и r 1 0 P = 1 0 " 1 0 P = H Г 1 0 P = 1 0 " 1 0 P = 1 0 " 1 0 

NI = 9 NI = 12 NI = 7 NI = 7 NI = 13 NI = 13 
L З N F = 11 N F = 14 N F = 9 N F = 9 N F = 15 NF = 15 

N G = 11 N G = 14 N G = 9 N G = 9 N G = 15 N G = 15 
P = 1 0 " 6 P = 10~ 4 P = 1 0 " 9 P = 1 0 " 9 P = 1 0 " 1 0 P = 1 0 ~ 1 0 

NI = 7 NI = 74 NI = 75 NI = 75 NI = 75 NI = 75 
L 4 N F = 9 NF = 76 NF = 77 N F = 77 N F = 77 N F = 77 

N G = 9 N G = 76 N G = 77 N G = 77 N G = 77 N G = 77 
P = 10" б P = 1 0 " 6 P = 1 0 " 1 0 P = 1 0 " 1 0 P = H Г 1 0 P = 1 0 ľ 1 0 

NI = 7 NI = 35 NI = 10 NI = 10 NI = 28 NI = 28 
L 5 N F = 11 N F = 37 FN = 14 N F = 14 N F = 30 NF = 30 

N G = 11 N G = 37 N G = 12 N G = 12 N G = 30 NG = 20 
P = 1 0 " 7 P = Ю" 6 

P = 1 0 " 9 P = 1 0 " 1 0 P = 1 0 " 1 0 P = H Г 1 0 
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