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Summary. In the paper we study the existence of nonoscillatory solutions of the system
2
ZM(t) = 5 pij (i (23 (i5))), » > 2, § = 1,2, with the property lim z;()/t* =
ji=1 —0oo

const # 0 for some k; € {1,2,...,n — 1}, i = 1, 2. Sufficient conditions for the oscillation
of solutions of the system are also proved.

Keywords: Functional differential system, Schauder-Tychonov fixed point theorem, os-
cillatory solution, nonoscillatory solutions.

AMS classification: 34K25, 34K05

This paper is concered with the asymptotic properties of solutions of nonlinear
functional differential systems in the form

2
®) =M =3 i (2 (i), 121020, i=12, n32,

i=1
under the following standing assumptions:
(1) pij, hij: [to,00) — R (i,j = 1,2) are continuous functions and lim h;;(t) = oo
ast—oo (i,j=1,2),

(2) fij: R = R (i,j = 1,2) are continuous functions and uf.,(u) >0foru#0
('r] - 1 2)) ’

(3) fij (i, = 1,2) are nondecreasing functions.
For any t; > to denote

t; = min{(inf hi;(t);t 2 t;), i,j = 1,2}.
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_ A function X(t) = (z1(t), z2(t)) is a solution of (S) if there exists a t; > to such
that X(t) is continuous on [t3, 00), n-times continuously differentiable on [t1, 00) and
satisfies the system (S) on [t;, 00).

By a proper solution of the system (S) we mean a solution X(t) of (S) such that
sup{|z1(t)] + |za(t)|: t 2 T} > 0 for any T > to. Such a solution is called oscillatory
if each of its component has arbitrarily large zeros. A proper solution of (S) is called
nonoscillatory (weakly nonoscillzitory), if each of its components (one component) is
eventually of constant sign on [T, 00) C [to, ).

" This paper has two parts. First we prove the existence of nonoscillatory so-
lutions of the system (S) with the property J_ljg zi(t)/t* = const # 0 for some
ki € {0,1,...,n—1}, i = 1,2. The assymptotic properties of solutions of this type
of nonlinear differential equations of higher orders have been studied for example in
the papers [1, 3-5].

Secondly, we establish criteria for oscillation of proper solutions of (S).

Denote

%ij (t) = sup(s: hij(s) < t), . t>to,
7(t) = max(y;(¢);4,5 = 1,2), ¢ > to.

Theorem 1. Let the conditions (1)<(3) hold and let k; € {1,2,...,n—1},i =1,2.
If '

o 2
(4) /t""“'lZIpij(t)lfij(ﬂj("ii(i))k")dt<<>0, i=1,2

1(to) i=i

for some a; > 0, j = 1,2, then for any couples (ky, k), (Ic, € {l,‘2,...‘,n —1}) and
(c1,€2) (ci > 0, i = 1,2) there exists a nonoscillatory solution X(t) = (z1(t), z2(t))
of the system (S) such that »

i . ki — S o
(5) tllxg ()t =¢, i=1,2, :
'litgzgm‘)(t) =0form;=ki+1,...,n~-1, i=1,2.
Proof. - Let a; (i = 1,2) be positive numbers such that (4) holds and k; €

{1,2,...,n=1},i=1,2. Weput b; = a,/3 i = 1,2. In view of (2) there exists a
T2 1(!0) such that

ji=1

© / 1S g 01 (o (s (0)) <hi, i=12
) i
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Let Ty = min{(inf hg;(t): t > T), i,j = 1,2} > to. We denote by C([To,00)) the
locally convex space of all vector continuous functions X(t) = (z,(t), z2(t)) defined

on [Ty, 00) which are constant on [Tp, T] with the topology of uniform convergence
on any compact subinterval of [T, 00).

We consider a closed, convex subset Y of C([Tp, 00)) defined by

. -

(7N Y = {X = (z1,22) € C([To,)); zi(t) = io, te 1o, T):
tk.‘ N tk.‘ .
bimszié%im, t>T, i=1,2}.

We define a mapping F = (Fy, F2): Y — C([To, 0)) by

¢ 2b;T:
—, t€ [TD) ’I‘]a
k;!

200 = 4 B e, [t T g
® (00 =] Z+ D kT k-1 J (n—ki-1)!

| X {: pij(u) fij (=; ()1.-_,-(11))) duds, t>T, i=1,2.
j=1

We shall show that F' is a continuous operator which transforms Y into a compact
of Y.

Ad 1. We prove that F(Y) C Y. From (8) in view of (3), (6), (7) we have

i : 2b;tks ‘ (t—s)k! T (u—s)r—ki-1
) (RX)0 < k;! ¥ T (ki — 1)! (n—ki—1) .

2
x 3 Ipij ()1 (a; (i (w)) ') duds
i=1 .

’ _
2b;tk: t—s)ki-l
STt T e &
T
b;t .
< 3;| o tszs‘ i=1,2,
s 5 ¢



t

2b;tk t — g)ki—1 7 u — s)yr—ki=1
(10:) (FX)0) > = - / ((ki_)l)! ((n_, zi -

T

2
X Z [pij (u)|£i; (aj (hij(w)) kj) duds
i=1
btk i (t —s)ki!
> h!'“!(h-nz“

b,’lk‘ .
Z—k—;!_’ t2T, i=1,2.
Ad 2. We prove that F is continuous. Let X = (zix,z2) €Y, k=1,2, ..., and
zit — x; (i =1, 2) for k — oo in the space C([To,oo)). From (8) we than have
[(FiXi)(®) - (F:X)(t)|

t 00
(t- s)""" (u— s)n—k.»-x

(1) )@ ) moko)y
2
x |p.-,'(u)l|fa,- (23 (hig (w))) = fi (23 (his (w))) | du ds
j=1
<th [ GH(u)dy,
/

where we set

2
Gf(u) =w*~h1%" Ipsj(u)l|fij (252 (hij(w))) = fij (25 (hu‘j(u)))‘-

i=1

It is easy to see that lim G¥(u)-= 0 and G¥(u) < Mi(u), where
—00

M;(u) = 2u™~ki-?

2
k .
Ipis ()l f:; (a; (hij () ).
Jj=1
Using the fact that [° M;(u)du < co and the Lebesgue dominating convergence
theorem, from (11;) we get (F; X} )(t) — (F; X)(t) for k — oo (i = 1,2) in C([Tp, 00)).
This implies the continuity of F = (Fy, F2).

Ad 3. We prove that F(Y) has a compact closure. From (8), in view of (6), for
any X € Y we have

(RXY(@) € poeth™), 12T, i=1,2
—
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Hence F(Y) is equicontinuous on any compact subinterval of [Ty, 00). Since F(Y) C
Y, F(Y) is uniformly bounded on such subintervals. Therefore by the Arzela-Ascoli
theorem F(Y') has a compact closure.

By the Schauder-Tychonov fixed point theorem there exists an X = (Z1,Z2) such
that FX = (F1X,F,X) = X. The function X satisfies (8) in which F;X = =;
(i=1,2).

Differentiating (8) in which F; X = z; (i = 1, 2) m;-times, m; = k;, ..., n~ 1, for
X =(z1,22) = X we obtain

[o2]
(u — t)n—k,'—l

‘ (B 0y — 9p. 4 (—1 ki
1 O = 0 O

2
x Y pii () fii (2 (hij(w)) du, 2T, i=12,

i=1

(e o]
(u=t)r—mi-t

13m) &™) = "™ [ Ty

2
pij (u) fij (25 (hij(u))) du,
j=1
t>T, mi=ki+1,...,n—1, (ifk; < 1), i=1,2,

Differentiating (13,-1) we get the system (S). This implies that X= (z1,22) = X is
a nonoscillatory solution of (S). From (12), (13,,,) in view of (4) we get tlim zgk‘)(t) =
—00
20;, tlim :L'Sm‘)(t) =0form; =ki+1,...,n—1,i=1,2. This is equivalent to (5),
—00
where ¢; = 2b; (i = 1,2). O

Theorem 2. Let the conditions (1)~(3) hold and let

* 2
(14) / 1Y Ipi(Mldt < 00, i=1,2.

‘Y(‘n) j=1

Then for any couple (c1,¢3) (¢; > 0, i = 1,2) there exists a nonoscillatory solution
of the system (S) such that ’ '

(15)  Jim |z =ci, Jfim 2P0 =0, k=1,2,...,n-1, i=12
Proof. Letc; >0 (i =1,2)and 0<§ < min(cy,cz). In view of (2) there exists

a K > 0 such that for all (u;, u2): |4i — €| < 6 (i = 1,2) we have

(1) i)l €K, i j=1,2.
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With regard to (14) there exists a T > y(to) such that

(o]

2
(17) ./F‘E:MAmdt 6 i=1,2.

J:l

Let To and C ([To,oo)) be the same as in the proof of Theorem 1. We consider a
closed, convex subset Y; of C([Ty, 00)) by

Yy = {X = (21,22) € C([To,0)) : |zi(t) — ;] < 6, t 2 T, i =1,2}.

We define a mapping F = (Fy, F2): Y1 — C([Ty, o)) by

(R0 = e+ £ / (5= 1) ‘Zp.,(t)fu (23 (s (4))) ds,
(18) tem,T,
(R0 = &+ ks T/ (0= 077 Lm0y a3 (9) 0
t2T, i=12

If we proceed analogously as in the proof of Theorem 1 we can prove without
difficulty that F' maps Y into itself, F' is continuous and F(Y;) has a compact closure.
Therefore there exists an X = (%1, Z2) € Y3 such that FX = (F, X, F,X) = X. The
function X satisfies (18) in which F;X = z; (i = 1,2). We can easily verify that

= (z1,z2) = X is a nonoscillatory solution of (S) with the asymptotic behavior
(15). , 0

Theorem 3. Suppose that (1)—~(3) hold and
(19) pij(t) = oigij (1), i € {-1,1}, gj: [to,00) = (0,00), 4,7 =1,2.

Let (k1, k3) be an arbitrary couple of integers k; € {0,1,...,n—1} (i=1,2). Then
tbere exists a nonoscillatory solution (z1,z3) of the system (S) such that

z,-(t)

(20) ! o Jim i =a>0, i=12

if and only if

(21) / t""‘"’zq,,(t)f.,(a,( .,(t)) )dt <oo, i=12
(o) j=1.
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for some constants a; >0, j = 1,2.

Proof. Let X = (z1,%2) be a nonoscillatory solution of (S) which satisfies (20).
Without loss of generality we suppose that z; (h;j(t)) >0fort 2Ty 2t0,i,5=1,2.
Then in view of (2) fij (zj(hij(t))) > 0 for t > Ti. From (20) we obtain

(22) lim () = ekt >0, i=1,2,
tlim xgm‘)(t) =0, mi=k;+1,...,n;, i=12

Then integrating the system (S) (n — k; — 1)-times (if k; <n —1),i = 1,2, from ¢
(Z T1) to oo and using (22) we have

(ki+1) by [(s—tpk-2 2
() = (=) i=lg, m Z:q,'j(s)fij (-’l?j (h'.j(s))) ds,

t>T, i=1,2.

Integreating the last equation from 7 to co and using (20), after some modifications

we obtain
o0 2
(23) /s"""""1 Zq;j(s)f,-j (z;(Rhij(s)))ds < o0, i=1,2.
T ji=1

On the other hand, by virtue of (20) there exist constants a; > 0 (j = 1,2) and
Ty > T, such that z; (hi;(t)) > qj (hgj(t))kj fort > T3 (i, = 1,2). Then the last
inequality, (3) and (23) imply (21).
The “if” part follows from Theorem 1 a Theorem 2.
Oscillation criteria
Now we consider the system (S) in the form
(A) .‘I:Sn)(t) =0iq:i(t)fi (123_,'(’13-,'(0)) t>tp,i=1,2, where o; € {1, l}
(24) q:: [to,00) — (0,00), i = 1,2 are continuous functions,
(25) h; and f;, i = 1,2 satisfy (1) and (2), respectively,
(26) for any b > 0 there exists § > 0 such that

inf{f;(u)];|u| 20} 26, i=12
In the sequel we use Kiguradze’s lemma. a

Lemma [2]. Let u € C"[tg,00) be such that (-—1)"u(t’)u("?(t) < 0 fort 2 to,
v € {1,2}. Then there exist an integer € € {0,1,...,n}, where £+ n + v is odd, and
T 2 to such that

u®u® () >0 fork=0,1,...,8, t>T,
(D) u(t)u®(t) >0 fork=2+1,...,n, t>T.
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Remark. Let X = (21,22) be a weakly nonoscillatory solution of (A). Then
in view of (24), (25) it follows, from (A) that X is a nonoscillatory solution.

Theorem 4. Suppose that ¢,02 = —1 and

=]

(27) /qg(t) dt =00, i=1,2.

to

Then every proper solution (z1(t), z2(t)) of (A) is oscillatory when n is odd, and for
n even it is either oscillatory or z,(t)z2(t) < 0 and, moreover, foro; = 1, 03_; = —1
(7 = 1,2) |zj(t)| is increasing while x:(,k_)j(t), (k=0,1, ..., n) tend monotonically to
zero as t — o0.

Proof. Suppose that the system (A) has a wekly nonoscillatory solution
(z1(t),z2(t)). Then in view of Remark it is a nonoscillatory solution. Without
loss of generality we suppose that oy = 1, 02 = —1.

I. Let n be odd. 1) Suppose that zi(t) > 0, z2(t) > 0 for t > t;. (The proof in
the case z1(t) < 0, z2(t) < 0 is similar.) Then from the system (A) with regard to
(24), (25) we obtain xﬁ")(t) > 0, z(")(t) < 0fort >ty > v(t1). Then by Lemma we
get £1(t) > 0 and then z,(t) > by fort 2 t3 > and some by > 0. Therefore in view
of (26) there exists §; > 0 such that fa(z1(h1(t))) > 61 for t > t4 > 7(t3). Then
from (A) we get a:(z")(t) < =8192(t), t > t4. From the last inequality, in view of (27)
we obtain 2" D(t) = —00 as t — co. The inequalities z{™)(t) < 0, z"1(t) < 0
fort 2ts >ty imply that z,(t) < 0 for all large t. This contradicts the assumption
za(t) > 0fort >

2) Let z,(t) > 0 :cz(t) < 0 for t > t;. (The proof in the case z1(t) < 0, z2(t) > 0
is similar). Then the system (A) in view of (24), (25) implies :cf")(t) <0,i=12,
-t 2 t2 2 y(t;). Because :cz(t)z("')(t) > 0 for t > 15, by Lemma we get z4(1) < 0

and then z,(t) < —aj for ¢t > 3 > 2 and some a; > 0. Therefore in view of (26)

there exists §; > 0 such that fi (zg(hz(t))) ~8; for t > 14 > 6(13). Then from

(l(\) with regard to (27) we get zl"’l)(t) < 0fort> ; fy. From z{™(t) < 0,
n-1)

(t) < 0fort > t5 we obtlan z1(t) < 0 for all large t. Thls contradxcts the
assumptlon zy(t) >0fort >

II. Let n be even. 1) Suppose that z1(t) > 0, z5(t) > 0 for ¢ > ¢;. (The proof in
the case zl(t) <0, z,(t) <0is s1m11ar) Then in view of (24), (25) the system (A)
1mphes zl")(t) >0, x(")(t) < 0fort >ty > 7(t)) and by Lemma z(t) > 0 and then
z3(t) > b3 for t > T, > ty and some b3 > 0. Therefore in view of (26) there exists
63 > 0 such that f; (z;(hz(t))) 63 for t > Ty > 4(T3). Then from (A) with regard
to (27) we get z("A 1)(t) —» 00 a8 t — 00. Therefore in view of (26) there exists 65 > 0
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such that fo(z1(hi(t))) > 84 for t > Ty > 4(T3). Further we proceed analogously as
in the case I-1) we obtaining z2(t) < 0 for large ¢, which contradicts z,(t) > 0 for
t>t.

_2) Suppose that z;(t) > 0, z2(t) < 0 for t > ¢;. (Thé proof in the case z1(t) < 0,
z3(t) > 0 is similar). Then in view of (24), (25) from (A) we get xS")(t) <0,i=12,
for t > t; = v(t;). Using Lemma, we have z{(t) > 0 and either i) z5(t) < 0,
z4(t) < 0, or ii) z5(t) > 0 for t > t3 > tp. In the case i) we proceed in the
same way as in the case [-2), obtaining a contradiction to the assumption z1(t) > 0
for t > t;. Now we consider the case ii). The component z,(t) is increasing and
llm Zg(t) = —b < 0. If we suppose that b > 0, we proceed in the same way as in the

case 1) arriving at a contradiction. Therefore b = 0, i.e. tllm z3(t) = 0. This in view
—00

of Lemma implies lnn T )(t) =0fork=0,1,
The proof of Thoerem 4 is complete. (u]
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Stihrn

ASYMPTOTICKE VLASTNOSTI RIESEN{
FUNKCIONALNO-DIFERENCIALNYCH SYSTEMOV

ANATOLL F. IvaNov, PavoL MARUSIAK

V préci je studované existencia neoscilatorickych rieseni systému
2
#MW) =3 pii(0fi;(zi (i), n22i=12
j=1

s vlastnosfami tlim :c,-(t)/tk" = const. # 0 pre nejaké k; € {1,2,...,n — 1}, i =1, 2. Dalej
—+ 00

st dokizané postaZujiice podmienky pre to, aby systém mal oscilatorické riesenie.
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