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CONSISTENT MODELS FOR ELECTRICAL NETWORKS 

WITH DISTRIBUTED PARAMETERS 

CORNELIU A. MARINOV, Bucharest, GHEORGHE MORO§ANU, Ia§i 

(Received August 29, 1988) 

Summary. A system of one-dimensional linear parabolic equations coupled by boundary 
conditions which include additional state variables, is considered. This system describes 
an electric circuit with distributed parameter lines and lumped capacitors all connected 
through a resistive multiport. By using the monotony in a space of the form L (0,T; H ), 
one proves the existence and uniqueness of a variational solution, if reasonable engineering 
hypotheses are fulfilled. 

Keywords: parabolic equations, initial-boundary value problem, monotone operators, 
variational solution 

AMS classification: 35K45, 35K50, 47B44 

1. INTRODUCTION 

The structures with distributed electrical parameters are described by the well 
known hyperbolic type telegraph equations ([4]), treated in various works ([3], [12], 
[13]). 

Our paper refers to the models of digital integrated semiconductor circuits in which 
the distributed resistance, capacitance and even conductance naturally arise. Since 
the inductance is practically absent, the equations are of parabolic type. In this 
case, most of engineering oriented works (for instance [17], [18], [5]) approximate the 
distributed element by a lumped parameter circuit, which means to study a system 
of ordinary differential equations. However, there are papers ([6-11], [15], [16]) in 
which the modelling is "exact" in the sence that the distributed parameter structure 
(i.e. the parabolic partial differential equations) is retained. This is necessary, for 
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example, when one studies the problem of the delay time in MOS digital circuits 
([17], [18]) where the correct modelling of device interconnections is essential. 

Our paper deals with the existence and uniqueness of a solution for a large class 
of circuit models, specified in Section 2 and described by a system of parabolic linear 
equations coupled by "crossed" boundary conditions, and also involving ordinary 
differential equations. Section 3 gives sufficient conditions which ensure that our 
model is a "consident" one, i.e. it has a variational solution which is unique. OUT 
main tool in proof is the theory of monotone operators ([1], [2], [12]). In Section 
4 an engineering example is given, which proves that our conditions ane not very 
restrictive so that our method can be applied to actual networks. For the same 
reason of direct applicability we keep all coefficients and parameters as they appear 
in electrical engineering in spite of a somewhat unpleassant mathematical form of 
our equations. 

The problem under study is a linear one. However, the method used in the proof, 
as will be clear below, can be used to treat some nonlinear cases which can be easily 
inferred. 

2. MATHEMATICAL MODEL 

We say that a network belongs to the (G, B) class if its resistive lumped part can 
be viewed as a linear multiport governed by the equation: 

(2.1) j = -Gv + B(t) 

Her j , v E R2n+m are respectively the current and voltage vectors at 2n -f rn pairs 
of terminals, G is a (2n -f rn) x (2n -f m) matrix (partitioned as in Fig. 2.1) and 
B(t) e R2n+m for all t > 0. 

To the first 2n pairs of terminals of the multipart n distributed parameters ele­
ments (rk > 0, Ck > 0,0* ^ 0) are connected, described by one-dimensional degener­
ate telegraph equations, [4]: 

{ duk 1 d2uk ck-rrr = — T T ~ 9 k U k 

at rk ox2 

xe(0,dk), fc = I7n, t > 0 

where Uk(t,x) is the voltage,at the moment t at a point x of the structure. To the 
last m pairs of terminals capacitors with capacity c* > 0, k = l ,m are connected, 
representing (together with some resistors from the multiport) the lumped modelled 
devices. 
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Fig. 2.1 
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If we take into account that ik = — , j 2 k _ x = ik(t,Q), j2k = - * * ( M * ) . 
rjb ox 

v2k-i = t/fc(<,0), u2ik =.Uk(t,dt) for fc = l , n and ik = CAr-n-r—, jn+* = -*(0> 
d< 

t>n+* = wjk(<) for fc = n - f l , n - f m, (2.1) yields 

(BC) 

rl 
1 

+^ 

ЗčK-.O) 
ðm 
ðr (Mi ) 

&-(м») 
čľ.%-Ҷť) 

C m ^ W 

= - G 

«i(t,0) 
«i(Mi) 

««(t,0) 
««(Mn) 
«n+l(0 

L «n+m(0 
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In fact, we shall add the initial conditions 

(IC) { 
ti*(0, x) = Ujbo(x), x € (0, dfc), k = 1, n 

«*r(0) = tito, * = n-h l , n - + m 
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In the sequel we shall use the following notation 

u = ( i i i , t i 2 , . . . , t i n ) t r , 

Ul = (un + \>Un+2,. . . , l i n + m ) r , 

t/0 = (^10, « 2 0 , . . . , W n o ) < r , 

Ul
0
 = (wn-|-l,p, t /n+2,0, • . • , Un+m,o) r> 

t/6(.s) = ( t i i ( « , 0 ) , t i i ( s , r f i ) , . . . , t i n ( s , 0 ) , t i „ ( s , d h ) ) \ 

C = diag(Ci, C2 , . •., Cm), 

C21 = C" C21, 

C22 — C~ G22, 

B2(t) = C-1B2(t), 
t 

S j ( 0 = Bx(t) - C12 • e~^2 2u0 - Gnj*S-VG" • J52(5)dB, 

0 

N(/) = G i 2 e - ^ 2 2 - C 2 i , 

M = diag(ci ,c 2 , . . . ,c n ) , 

N = d i a g ( r f 1 , r - \ . . . , r - 1 ) , 

P = diag(</i,5f2,...,//n), 

r. v f ! * ! M S = diag , + — , . . . , , + — 
V n ri rn r n y 

If we formally solve the last m equations from (BC), we get 

t t 

(2.2) ul = e -^ 2 2 i i 0 - / e ^ - ^ ^ 2 2 .G 2 i^ ( 5 )d .5+ / e ^ " ' ^ 2 2 -B2(s)ds. 

0 0 

Substituting (2.2) in to (BC) we obtain the boundary conditions (be) of a problem 
with only the function u as unknown: 

(e) M^(t,x)=N^(t,x)-Pu(t,x) 

£l ft 

(be) s(-^) (0 = -G22ub(t) + / K(* - s)ub(s)ds + flj(0 
\0X' b J0 

(ic) t/(0,^) = wo(-c) 

where the derivatives of the vector functions are meant componentwise. 
The mathematical core of this paper is the problem of existence and uniqueness 

of a weak solution of the problem (e)+(bc)+(ic). If these properties are already 
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established, they extend (due of (2.2)) also to the solution j of the problem 

(E)+(BC)+(IC). 

EXISTENCE AND UNIQUENESS 

n n 

If we denote V = [ ] Hl(0,dk) and H = n £2(0,d*) then identifying H with its 
fc = l * = 1 

own dual, we have V C H C V* in both algebraic and topological sense. Also, if we 
fix T > 0 for V = L2(0, T; V) and H = L2(0, T; H) = ft* we clearly obtain V C H C 
V* = L2(0,T, V*). For two natural numbers t ^ n, we shall denote by T(t,n) = 
{ ri, Ti,..., r^} an incresing sequence of t elements selected from {1, 2 , . . . , n} and by 
xT(i,n) the vector (xTl,xT2,...,xTt)

tr G R'. Let f(t,n) = {1 ,2 , . . . ,n} \ r(£, n) an 
increasing sequence, as well. 

It is well known that the following two norms of V are equivalent: 

Mfc = IMI* + 
Й I I 2 

\\ч 

and 

|2 

ll«llMí.^.")) = IK(ť,n)(.,OllL(0,T,l.') + lltť^.»)llL(o,T; n /-W*)) + 

*€*(<,*) 

дu 
дx 

for any r(£, n) with l ^ f ^ n and £ G II [0, <î ] provided t«f(n>n) = 0. 
/.c€T(£,n) 

Also, for u G V, if we denote by ujb(<,0) and Uk(t,dk) the trace values of 
Uk(t>.) G H^O,^) at 0 and d* respectively, then u&(.) defined in the previous 
section is in L2(0,T;R2 n) and due to the above equivalence of the V norms we have 

IMIL-(0.1;I12») ^ * IMIv-

Let us now define on V x V the form 

a(u, v) = ( # ^ > -r~)n + (Pu, v)n + (Tu6, ^ ) L 2 ( 0 , T , * - » ) 

where T : L2(0,T,R2 n) — L2(0,T,R2 n) is the linear operator defined by 

t 

(T/)(f) = Gu/(0 - J K(t - a)f(a)da. 
0 

The following properties are rather straightforward. 
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Lemma 3 .1 . 

1. For each u G V, v —* a(ur v) is a continuous linear functional on V. 

2. The operator A: V(A) = V —• V* defined by (Auyv) = a(u, v) is demicontinu-

ous. 

Note that, here and below, (y,z) denotes the value of y G V* for z G V, with 

(y, z) = (y, z )^ (the inner product in W) provided y G W*. 
du 

Let us define a linear operator B: V(B) C V -» V* by V(B) = {tx G V: — G 
ot 

du 
V* and ti(0) = u0 £ H} and tfu = M — . 

ot 

Lemma 3.2. B is maximal monotone. 

The p r o o f is essentialy known ([1], p. 167). • 

Definition. A function u is called a variational solution of the problem (e) + 

(be) + (ic) if u G V(B) and 

for all v EV. 

Let us remark that a sufficiently smooth classical solution of (e)-f (bc)-f-(ic) is a 

variational solution, as an elementary calculus shows. Conversely, the fact that u is 

a variational solution having in addition certain regularity properties (for example 
du d2u 
— G W, -—- G W) implies that u verifies (e)-|-(bc)-f-(ic) a.e. on [0,T] with T/O G H. 
ot ox2 

The following hypotheses will be used below: 
Ai. G is a symmetric matrix and G22 is a positive definite one with 7 > 0 as its 

smallest eigenvalue. 

A2. 1. If 01, 02, . . . , 9t = 0 and 0*+i, gi+2, •.., gn > 0, then there are a,/? > 0 
with a - £ > 0 and r(-f, 2n) with T* G {2ib - 1,2k} for k = IT? such that 

. . f (Guar, x)U2n J> a||xr(*,2n)|& and 

1 ||G2i*||tm ^ P\\xT{lt2n)\\*< for all x G R2n. 

2. If 01, 02, • • -, 9n > 0, then there exist a,/3 > 0 with a—^ ^ 0 and T(t,2n) 
such that (3.2) is valid. 

A3. Si G L2(0,T;R2 n) and £ 2 € L1(0,T;Rm) . 

The following property of the operator A defined in Lemma 3.1 will play a promi­
nent part in the sequel: 
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L e m m a 3.3. Let us suppose A\ and A2 to he valid. Then A is strongly monotone. 

P r o o f . Let us consider the case g\, g2, . . . , gt = 0 and </*+i, <jf*+2, . . . , gn > 0. 

Because A is linear and everywhere defined, the only fact we have to prove is the 

existence of 6 > 0 such that for any u E V 

(3.3) (Au,u)^6\\u\\2 

Let p be a complex number with A = Rep > 0. It follows by A\ that for every 

x £ C m we have 

Re((G22 + pC)*,*)C r o M T + A mm_C.) lk l lc-
« = l , m 

So the Laplace transform 

K(p) = Gl2(pl + C-lG22Y
lC-lG2i = Gi2(pC + G22)"1G2i 

exists and 

Re(K(p)Úb(p),úb(p))c2n = Re((pC + G22)-1G21ii6(p) )o21ti4(p)> 
C™ 

J_ 
Пl 

ť=l ,m 
< „...а 1 6 "' 1 * 

where Ub is the Laplace transform of Ub 6 L 2 (0,T;R 2 n ) extended with zero values 

on[T,oo). 

In view of the assumption A2.\ we obtain 

*z(k(p),uh(p),uh(p))v. ^ T + /^iNpfe 
i^litn 

for any p £ C with A > 0. 

A slight change in the proof of a known theorem regarding the positivity of kernels 

(see [1], p. 236 for the scalar case) shows taht the last inequality implies 

J \J ^ " *) t t*Wd*' Ub^)m2ndt ^ ~\\Uh^2{0>T*<) ' (TM*> «6>L*(0,T;*-») 

<3-4> >(«-7)lK^ 

where £* = 0 for r* = 2fc — 1 and & = d* if Tfc = 2fc, it -= T~£. 
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On the other hand, we easily observe that 

du du\ i du óu\ / 1 \ 
\NT*T-)»> ( m i í L -

0U||2 

foil* 
and 

(Pu,u)> [ min flfcll|Цfr/nJI2 / _ \. 
Ч=г+Ï7ľ I П 'ПЛ,-ЬҶ0/Г; П 1-2(0,dfc)) *€*(*,») 

These inequalities together with (3.4) yield the positive constant 6 in the required 

inequality (3.3). 

The case </i, g2, • • *> 0n > 0 can be treated similarly. 
Now we are ready to establish the main result. D 

Theorem 3.1, If A\f A2, A% hold, then there is a unique variational solution of 

the problem (e)+(bc)+(ic). 

P r o o f . According to Lemma 3.1, 3.2, 3.3 and to a well known perturbation 

result of Rockafellar ([1] p. 48) the operator A+B is maximal monotone and coercive. 

Therefore this operator is also surjective from V(B) in V*. This means if we take 

/ € V* with (/, v) = (B\, n}x,2(o,T;»2w), the equation Au + Bu = / has a solution in 

V(B) and due to the monotony this solution is unique. But this equation is equivalent 

to (3.1) and the proof is complete. • 

R e m a r k s . 

1. Our solution belongs to C(0,T;H)—see [2] p. 62. 

2. If u is already found, (2.2) implies u1 E capl^(0}T\Rm). 

3. The above theorem can be paraphrased as follows: If A\, A2 and A% are valid, 

the model (E)-F(BC)+(IC) of the (G, B) class of circuits is a consistent one. 

4. A N EXAMPLE 

Let us consider the simplest fan put circuit appearing in MOS interconnections, 

[17], and presented in Fig. 4.1. 

Fig. 4.1 
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This network is in the (G, B) class with 

G„ = 

G0 0 0 0 0 -G0-
0 G0 + Gi 0 0 0 0 
0 0 G0 0 0 -G 0 

0 0 0 G0 + G, 0 0 
0 0 0 0 G2 0 

-G 0 
0 -G 0 0 0 2Go. 

• 0 o • 

-G 0 0 

tт _ 
21 — 

0 0 
0 -G0 

0 0 
0 0 . 

> П2 

G22 = diag(G0,G0), B(t) = (0,0,0,0,G2e(0,0,0,0)tr. 

3 

Considering the initial condition UQ £ J] L2(0}dk) and the source e G L2(0,T), let 
fc=i 

us introduce two cases: 

1 • 9i = 92 = 0, 93 > 0, Go, G\, G2 > 0. 

The hypotheses Ai , A 2 1 , A3 are fulfilled with I = 2, T(2 6) = { 2 , 4 } , a = Go + G\ 

and /? = 7 = Go- Therefore the model is consistent. 

2. 9\,92,9s>0, G 0 , G 2 > 0 , d = 0. 

Again the assumptions Ai , A 22, A3 are fulfilled with £ = 2, f(2>6) = { 2 , 4 } , a = 

/3 = 7 = Go and the model is consistent in this case as well. 

The above result is quite natural from an intuitive engineer's point of view: when 

the distributed conductances g\ and g2 are absent from the model, we must add 

two lumped conductances G\ to the ground and the consistency is ensured. So, our 

main theorem 3.1 seems to be quite encouraging in an area where is a great need for 

results of similar type concerned with models of semiconductor circuits. 
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