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Summary. The paper establishes sufficient conditions for the existence of solutions of 
Neumann's problem for the differential equation /iy ' + ky = f(t,y) which tend to the 
solution of the reduced problem ky = f(t,y) on [0,1] as // -+ 0. 
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1. INTRODUCTION 

We will consider the two-point problem 

(1) taj"+ ky = f(t,y), t e [0,1], 

| / ( 0 , / , . ) = 0 , - / / ( l , / / ) = 0 . 

where //. is a small, positive parameter, k a negative constant and / 6 C 1 ([0,1] x R). 

We can view this equation as the mathematical model of the nonlinear dynami­

cal system with a high-speed feedback. We apply the method of upper and lower 

solutions to prove the existence of a solution for (1). 

As usual, we say that a £ C2([0,1]) is a lower solution for (1) if Q'(0,/L/) ^ 0, 

«'(1,//.) s; 0, and (ia"(t,//.) + ka(t,fi) ^ f(t,a(t,n)) for every t £ [0,1]. An upper 

solution P G C2([0,1]) satisfies 0'(O,n) ^ 0, /3'(1,//) :> 0, and /J/3"(t,//) + kp(t,/i) <: 

f(t,0(t,fJ,)) for every f 6 [0,1]. 

L e m m a 1. (Cf. [2], pp. 20-30) If a, 15 are iow-er and upper solutions for (1) such 

that a ^ 0 on [0,1], then there exists a solution y of (1) with a < y ^ fi on [0,1]. 



Denote D(u) = {(t,y); 0 < t ^ l,\y - u(t)\ < 6},6 > 0 is a constant and u is a 

solution of the reduced problem ky = f(t,y) on [0,1]. 

The main result is the following theorem. 

2 . EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS 

T h e o r e m 1. Let f be a function such that f e C" (D(u)) and 

(i) 9f(t,y) I w < _k fm ev&_y ^ ^ e J } ^ 

Tiieji thej-e exits u0 such that for each n e (0,/i0] the problem (1) has a unique 

solution satisfying the inequality 

\y(t,fi)-u(t)\ ^Vi(t,iJ,)+V2(t,lJ.) + Cli on [0,1], 

wiiere 

(f \ I vml e x p I ~ (m// ')1 /2(i ~ _] + (>XP [ - (>»//01/2(* ~ 1)] 
• W W | « W | ( m / / , ) 1 / 2 ( e x p [ ( m / / , ) , / 2 ] ^ ( l x p [ _ ( ) ( , / M ) 1 / 2 ] ) • 

v2(t,u) = | t t ' ( l ) | 6 X P [ ( m / " ) 1 / 2 ^ + e x p [ - ( m / M ) l / 2 t ] 
1 ( m / W ) i / . ( e x p [(m/w)V2] _ Cxp [ - ( m / / . ) - / - ] ) ' 

JJJ = —fc — u\ C is a positive constant and u is a solution of the reduced problem 

ky = f(t,y) on [0,1]. 

P r o o f . We define lower solutions by 

a(t,n)-u(t)-v1(t,n)-v2(t,IJ,)-T(n) 

and upper solutions by 

P(t,u) = u(t) + Vl(t,u) + v2(t.u) + r(/j.); 

here T(u) = ur/m, where r is a constant which will be defined below. 

Obviously, a ^ /? in [0,1] and a, /3 satisfy the boundary conditions prescribed for 

the lower and upper solutions of (1). 

Now we show that u,a"(t,n) + ka(t,u) >• f(t,a(t,u)) and iid"(t,u) + k(i(t,u) < 

f(t,P(t,u)) on [0,1]. Denote h(t,y) = f(t,y)-ky. By the Taylor theorem we obtain 

h(t,a(t,u)) =h(t,a(t,u)) -h(t,u(t)) = ^ ^ ^ ( v i ( t , u ) + v2(t,n) + T(,,)), 
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where (t,B(t,n)) i s a point between (t,a(t,n)) and (t,u(t)), and (t,0(t,/i)) e D(u) 

for sufficiently small u, for instance if // £ ( 0 , / J O ] . Then 

ua"(t,u) - h(t,a(t,u)) > /HI" - /u>i" - / W + " ' (^l + "2 + T) ^ -ju|u"| + /UT 

(because uv" = mi'i and uv2 on [0,1]) for every t e [0,1], If we choose a constant r 

such that r ^ |u"(t) | , t 6 [0,1] then / ,a" ( t , / i ) > h(t,a(t,u)) in [0,1]. The inequality 

for /3 can be proved similarly. The existence of a solution of (1) satisfying the above 

inequality follows from Lemma 1. D 

R e m a r k 1. Applying the technique of the proof of Theorem 1 wc obtain imme­

diately the uniform boundedness of {j/(t , / j) , / i e (0,/,0]} and [y"(t,u),u e ( 0 , / J 0 ] } 

on every compact set K C (0,1). Moreover, if u'(0) = 0 (u'(l) = 0) then y' an y" 

are uniformly bounded on K C [0,1) (A' C (0,1]) and if u'"(0) = u ' ( l ) = 0 then y' 

and y" are uniformly bounded on [0,1] for u € (0,/ ,0]. 

R e m a r k 2. If a solution of the reduced problem does not satisfy the prescribed 

boundary conditions, then unlike the Dirichlet problem (see e.g. [1], [3]), in the case 

of Neumann's problem the initial and/or endpoint nonuniformities do not arise in 

y', but in y". 

3. A S Y M P T O T I C BEHAVIOR OF SOLUTIONS AT ENDPOINTS 

E x a m p 1 c 1. We consider the linear problem 

/'!/" — y = sin 27rt, y'(Q,a) = y'(l,n) = 0. 

Its unique solution 

sin2-t 2 7 T ( e x p [ ( l / / t )
1 / 2 ( l - t ) ] + e x p [ ( l / / t )

1 / 2 ( t - l ) ] ) 
V( ' ' t J 47t2,t + 1 (4TI2// + l ) ( / l ) - 1 / ' 2 (exp [ - (l/,,.)1/2] - exp [ (1 / /0 1 / 2 ] ) 

2 r . ( e x p [ ( l / / , ) 1 / 2 t ] + c x p [ - ( l / , Q 1 / 2 t ] ) 

(4K 2 / , + ^ W - V ^ e x p [ - ( l / , , ) 1 / 2 ] - exp [ ( l / , , ) 1 / 2 ] ) 

tends (by virtue of Theorem 1) to the solution of the reduced problem as jx —> 0 + 

within [0,1]. On the other hand, lim | I / " (0 , / J , ) | = lim |y"( l , / i ) | = 00. 

T h e o r e m 2. Let a function f S C2(D(u)) satisfy the condition from Theo­

rem 1 and Jet §£(0,y) ^ 0 (U(l,y) + o) for every y 6 D(u). Then the set 
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{y"(t,n); n _ (0,u0],t € [0,1]} is unbounded. (More precisely, lira |?/'(0,//)|( = 

lira \y"(l,u)\) = ooj. 

P r o o f . Assume to the contrary that {y"(t, / /) ; // g (0. u0]j e [0.1]} is bounded 

(this implies, on the basis of Remark 1, the uniform boundedness of y'(t, //) on [0,1], 

jU e (0,/to]), and the existence of a sequence //„ -> 0+ such that lim T/ ' (0 , / / . „ ) 

( lim j/"(l , / i„)) exists. 

The problem (1) is equivalent to the integral equation 

,. , / 'cxp[-(-*/M) , / 2( s+()]+exP[-(-*/„)1 / 2((-. . l , , , . . . • 
y(t,u)= / l

 7 4- l .—r Lf(s,y(s,fi))ds 
J 2(-M'/a(exp [-2(-*/M)i/s]-1) J\'*\>r>J 
0 

/ • e xp[ - ( -* / / , )
1 / 2 (2 + s - , ] + e x p [ - ( - * / „ ) , / 2 ( 2 - ( - . , ] , / , . . , 

+ 7 .(-*,,^(exPL-.(-*/.)^R ^ ( ^ ( ^ d * 
0 
/ a [-(-*/,)^a(.+0]+exP [-(-*/„ ) .

/3,. s_ i ) ] ^ 
j 2(-M>/2(exP [-2(-*/. ) '/=]-l) )\'«y,^» 

/exp[-(-*/,1) , / 2(2-S-0]+exp[-(-*/ / ,)
1 / 2(2+(-«)] , . 

+ / ? T 1—\ -f(s,y(s.u))ds 
J 2(-*A.)»/2 (exp [-2(-*/M)i/*j - l ) J l J l ' " 

Hence we get 

_ _ _ _ _ _ / exp [ - ( -* / ,„ ) • /» . ] • , exp [-(-*/< .„)-/- '(2-.)] , 
Mn j (-*)'/20.„)-'1/=(expp2(-*/^„)i/2]-l) J V JV , P " ^ 

/ g _ _ g _ ) _ / exp [- (-*/,„ )V» ( 1 + , ) ] + [_ ( _ V ) t „ ) . / 3 ( 1 _ , ) ] X 

V Mr. j (-*)Va(Mn)3/a(exp[-2(-*/..)i/»]-l) •>\'»\,^>/ J 
0 

Using twice integration by parts we obtain by the mean value theorem for integrals 

the following relations: 

,,,,, . _ _ 2(exp[(-A;/ / /Q'/^ ])f / ( l , ? / ( l , / , , 1)) 
" ^ ' (-^n)1/2(exp[-2(-/,:///„)V2 ]_i) 

(cxp[-2(-fc//<n)^]+l)f/(0., l;(0,//„)) 

(-_/ ._)i/2(exp[-2(-_// .n)V2]_i) 

+ (-k)-1(-^Sf(0l(lM),y(6l(Hn),IXn))) 



_ „,. u . = 2(exp[(-fc/,« n ) 1 /-])&/(0,„(0, / . , ,)) 

' K ' / , , J ( - f c / / „ ) ' / 2 ( e x p [ - 2 ( - f c / / ( n ) 1 / 2 ] - l ) 

( e x p [ - 2 ( - f c / / f „ ) ' / 2 ] + 1 ) ^ / ( 1 , j/(l,/ t„)) 

( - f c / x n ) 1 / 2 ( e x p [ - 2 ( - f c / M n ) 1 / 2 ] - l ) 

+ ( - f c ) ~ 1 ( - d ^ / ( ^ 1 ( / J » ) ' ^ i ( / i » ) , M » ) ) ) ) , 

where 0 sg $i(pn) (/l (/-««)) ^ 1. Hence we have 

( exp [ - 2 ( - * / / . „ ) 1 / 2 ] + 1) 1^/(0, j/(0, ,<„)) I 
(2) \y"{0,nn)\ > 

(-/ , :// п ) 1 / 2 (1-ехр[-2(-А-/ / ( „) '/2]) 

2(ехр[(-*/М„)1/2])к/(1,у(1,//п))| 

(2') | . " ( i , / i . ) þ 

( - f c / í n ) 1 / 2 ( l - e x p [ - 2 ( - f c / / t „ ) ' / 2 ] ) 

И*0~1|^/('iG*»).v(*O*»),.*»))| 

( e x p [ - 2 ( - f c / д , t ) 1 / 2 ] + l ) | A / ( l , ; , , ( ! , / f n ) ) | 

( - f c / i ^ v ҷ i - e x p f - г í - * / / . , , ) 1 / * ] ) 

2 ( c x p [ ( - f c / ; i n ) 1 / 2 ] ) | & / ( o , ÿ ( o , / . n ) ) | 

"~ (-fc^vҷi-expf-гí-*/^)1^]) 

+ (kГ1\- f{ ~i{џn),y( 1(џn),џn))\). 
At 

From the above assumptions it follows that 

\j^f{9lUin),y(ei{lin),nn))\^cu 

(|^/(*i0_),v(*-0*»j,.»»))|<<-). 

Taking limits on both sides of the inequality (2) ((2')) we come to a contradiction. 

• 
R e m a r k 3. It is well known that conditions (i) guarantees uniqueness of the so­

lution for the boundary problem (1) in the set _>(_), but between different solutions 

Ui,U2 of the reduced problem satisfying condition (i) in Z-(ui), D(u2), respectively, 

there may be such solutions which switch n-times between u\ and u2 for any nonnega-

tive integer n. For an autonomous equation, the exact formulation is a straighforward 

adaptation of the results and conclusions of O'Malley in [1], therefore being omitted. 

In general, the problem of existence of such solutions for a nonautonomous equation 

remains open. 
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