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ON AN ESTIMATE OF A FUNCTIONAL 

IN THE CLASS OF HOLOMORPHIC UNIVALENT FUNCTIONS 

ZBIGNIEW JBRZY JAKUBOWSKI, KRYSTYNA ZYSKOWSKA, Lodž 

(Received May 7, 1992) 

Summary. Let S denote the class of functions f(z) = 2-f a2z2-f a3*3 + . . . univalent and 
holomorphic in the unit disc A = {z: \z\ < 1}. In the paper we obtain an estimate of the 
functional |a3 — ca2| -f c|a2|n in the class S for arbitrarily fixed c € R and n =» 1,2,3, — 
Hence, for some special values of the parameters, we obtain estimates of several interesting 
functionals and numerous applications. A few open problems of a similar type are also 
formulated. 

Keywords: univalent function, coefficient problem 

A MS classification: 30C50 

1. INTRODUCTION 

Let S stand for the well-known class of functions 

(1.1) /(*) = z + a2z
2 + a3z

3 + . . . 

holomorphic and univalent in the unit disc A = {z: \z\ < 1}. As known, in many 
papers the functional (03—ca\\ was studied for different classes of univalent functions 
of the form (1.1). The first results are due to Fekete and Szego [4] and Goluzin [5]. 
For this reason, we shall call (03 — ca\\ the Fekete-Szego-Goluzin functional (abbr. 
FSG functional). In turn, the interest in studying this functional arises from the 
possibilities of applying it in many other extremal problems. The studies were also 
taken up (e.g. [6], [7]) for the purpose of establishing the influence of the coefficient 
a2 on the form of extremal functions with respect to the FSG functional, for instance, 
by considering the functional Re[a\(a$ - cal% c € R, / € S [6] or the functional 
a?(a3 - ca%), c € R, m = 0 ,1 ,2 , . . . , / 6 SR C S [7]. 
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It is well known that, for each function / G 5, 

(1.2) | a 3 | < 2 

with equality occurring only for the Koebe function 

(13) / o ( * ) = ( l - ' £ ~ ) - ' *€A> | £ | = 1 ' 

However, the maximum of the FSG functional for c G (0,1) ([5]) is not attained 
for function (1.3). 

During the 10th Conference on Analytic Functions at Szczyrk, Zyskowska pre­
sented the main result from [10] indirectly connected with the particular case of the 
FSG functional. 

During the discussion, S. Ruscheweyh raised the question concerning the estima­
tion of the functional \a^ — ca\\ + c|a2|2, c E R, / € 5. Hence the idea arises to 
consider the functional 

(1.4) *(f) = \a3-cal\ + c\a2\
n, c € R, n 6 N = {1 ,2 ,3 , . . .} , 

in the class S. The aim of our paper is to determine the maximum of functional (1.4) 
for all n and c belonging to the respective intervals. For the remaining values of c, 
we shall give the bounds from above. The set of pairs (c, n) such that the Koebe 
function is extremal seems to be rather interesting. In the paper we also show some 
applications and related open problems. 

Obviously, from (1.2) and the well-known result of Jenkins [8] we immediately get 

|«3 - ca\\ + c\a2\
n -* Ac - 3 + 2nc, c £ 1, n € N, 

with equality occurring only for Koebe function (1.3). Consequently, it would be 
sufficient to limit our further considerations to the case c < 1. However, on account 
of the method applied, our reasoning is carried out for all c € R. 

One also knows that if / € S, then, for all 0 € (0, 2it), the function f$(z) = 
ei0f(e~l$z), z € A belongs to 5, too. Thus, the determination of the maximum of 
functional (1.4) is equivalent to the determination of the maximum of the functional 

( I J ) <?(/) = /Je(a3~ca!) + c|a2P, / € S , c € R , n € N . 
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2. AN APPLICATION OF THE VALIRON-LANDAU LEMMA 

From the Lowner theorem we have the following representations: 

a2 = - 2 / e-ft(<)d«, 
Jo 

a3 = -2 fV2t*2(0d< + 4( f°° e''k(t) dt)2, 

where k(t) is a piecewise continuous complex-valued function with |Jfc(0| = 1 for all 
t. Setting k(t) = e'W, we obtain 

G(f) = 4(1 - c) [( f°° e-1 cos0(e)d<)2 - ( f°° e'f sin0(0d*)2j 

f°° 
(2.1) - 4 / e-2<cos20(Od<+l 

Jo 

+ 2nc [( f°° e-f cos0(<)d<)2 + ( f^ e"1sin0(0d<)2] 

Put 
i»00 i»oo 

(2.2) ti = / c-f cos 0(0 dt, v = / e~* sin 0(0 dt. 
Jo Jo 

Let x be a nonnegative root of the equation 

(2.3) f°° e~21 cos2 0(0 dt = w(x) 
Jo 

where 

(2.4) M ^ ) = ( x + i ) e - 2 r , 0 0. 

Then, by the Valiron-Landau lemma [3], we get 

(2.5) | /^e-'cosOfOdil^uK*), 

with 
w(a:) = (x+ l ) e - r , O 0, 

where the form of the functions 0(0 for which the equality sign in (2.5) holds is 
known. 
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Since 

(2.6) w(y) = r e~2< sin2 0(t) dt = i - / e~21 cos2 $(t) dt = i - u>(s), 
Jo 2 Jo 2 

we also have 

(2.7) l ^ ' e ^ s i n ^ O d ^ w t y ) 

where y = t i r 1 ^ - u;(s)), y ^ 0. 
From (2.2) and (2.1) we obtain 

G(/) = 4 ( l - c ) ( t i 2 - t ; 2 ) 

( 2 < 8 ) - 4 / ° ° e~2< cos2 0(1) d* + 1 + 2nc(ti2 + tr2)"'2. 
Jo 

Estimate (1.2) and formula (2.2) imply 

(2.9) ti2 + v 2 ^ l . 

By using the Valiron-Landau lemma and taking account of inequality (2.9), the 
problem of determining the maximum of G(f) will be reduced to the investigation 
of the maxima of some functions of the variable x (or y) where x is defined by (2.3). 

Denote by G(ti2, v2; x) the right-hand side of (2.8), i.e. 

G(ti2,V
2;x) = 4 ( l - c ) ( t i 2 - t ; 2 ) 

( " ' -4u;(ar)+l + 2nc(ti2 + t;2)n/2. 

Note that, for a fixed admissible x (and, in consuequence, for a certain subclass 
of 5), the form of function (2.8') and (2.5), (2.7), (2.9) imply that the maximum of 
G(ti2,v2; x) can be attained only in the cases when 

1° u2 = 0andt;2 = 0, 
2° ti2 = u2(x) and v2 = 0, 
3° ti2 = u>2(x) and v2 = 1 - ti2, 
4° ti2 = 1 - v2 and t;2 = o/2(jf), 
5° ti2 = 0 and t/2 = u/2(y), 

with x ^ 0 and y^ 0. 
In this way, we shall obtain the above-mentioned functions of x or y, whose maxima 

can determine the sought-for maximum of the functional G(f). 
From (2.8') and (2.3)-(2.7) we have successively for c € R and n € N: 
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by case 1°, G(it2, v2; ir) = Hx(x) where 

(2.10) Hx(x) = - 4 (x + i ) e"2* + 1, x > 0; 

by case 2°, G(«2, v2; *) = r/2(.c) where 

(2.11) tf2(-0 = 4 [ ( l - c ) * 2 + ( l - 2 c ) * + i - c ] e - 2 * 

+ l + 2nc[(.c + l )e - x ] n , x^O; 

by case 3°, G(ti2,w2;x) = Hz(x) where 

(2.12) "Z{X) = 4 [2(1 "" C)X2 + (3 ~ 4C)X + 5 " H e"2* 
+ 4 c - 3 + 2*c, O 0; 

by case 4°, G(u2, v2;y) = #4(2/) where 

(2.13) "^ = "4 [2(1 ~ C) ** + (3 " 4C) V + I " 2C] e"2" 
- 4 c + 3 + 2nc, y > 0 ; 

by case 5°, G(«2,w2;y) —/tsd/) where 

(2.14) Hh{9) = ~4 [(1 ~ C) ^ + (1 ~ 2C) y + § ~ C] C"2" 
- l + 2nc[(j/+l)e-']n , y^O . 

Now, we shall determine the maxima of the functions Ht, k = 1,2,3,4,5, for any 
fixed c € R and n € N. It is easily seen that 

(2.15) Hi(x) < //i(oo) = 1, c€R, n € N , 

where Hi is defined by formula (2.10). 
Examining the function Hi[x) given by (2.11), we conclude: 

if n = 1, then 

,-/2(0) = 3 - 2 c when c < 0, 
(2.16) H2(x) 4< V ' • ' ' 1 72(*0) when e> 0, 

( H2 

where zo is the positive root of the equation 

(2.17) 4 e - * [ ( l - c ) * - c ] + c = 0; 
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if n = 2, then 

(2.18) H2(x) ^ H2(0) = 3, c€R; 

if n ^ 3, then 

( H2(x\) when c < 0, 
(2.19) H2(x) <$l V ' 

\ / / 2 (0) = 3 - 4 c + 2nc when c > 0 , 

where *i is the positive root of the equation 

(2.20) 8e~*[(l - c)x - c] + 2n nc[(x + \)e'x)n'1 = 0. 

In turn, examining the function H$(x) given by (2.12), we obtain, for n G IM, 

{ //3(0) = 3 - 4 c + 2nc when c ̂  \, 

H3(x2) when £ < c < l , 

//3(oo) = - 3 + 4c + 2nc when c £ 1, 
where ar2 = (2c - 1)/2(1 - c). 

From the examination of the function //4(y) given by (2.13) we have, for n £ N, f//4(oo) = 3 - 4 c + 2n( 
(2.22) 7/4(i/) << 
V ' W ^ \ / / 4 ( 0 ) = - 3 + 4c + 2" 

c when c < § , 

c when c ^ f . 

Finally, from the investigation of the function H$(y) given by formula (2.14) we 
get: 

if n = 1, then 

{ /f5(oo) = - 1 when c ̂  0, 

HM when 0 < c < i , 

//5(0) = 3(2c - l ) when c ^ i , 
where yo is the greater positive root of the equation (2.24) 4e~*[(l - c) y - c] - c = 0; 

if n ^ 2, then 

(2.25) « i W < / J ' , ( ~ ) — ' * » . < W + l->, 
v " ^ \lY,(0) = -3 + 4c + 2"c »toi ,>!/(4 + y). 
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3. MAIN THEOREMS 

Next, we shall carry out a comparison of the estimates of functions //*, k ^ 
1,2,3,4,5, obtained for suitable values of c and n. 

The estimates of the functions H2(x) and H$(y) imply that it is necessary ^Q 

consider separately the cases n = 1, n = 2 and n ^ 3, for suitable values of c € R. 
Let n = 1. From (2.15), (2.16), (2.21), (2.22) and (2.23) it follows that, for any 

function / € 5, 

max{l, 3 — 2c, —1} when c J$ 0, 

max{l, H2(x0), 3 - 2c, #5(2/0)} when 0 < c < £, 

max{l, H2(x0), 3 - 2c, 3(2c - 1)} when ± ^ c ^ £, 

max{l, #2(*o)v //3(-C2), 3 - 2c, 3(2c - 1)} when \ < c < f, 

max{l, H2(x0), H3(X2), 3(2C - 1)} when | t$ c < 1, 

max{l, -f/2(xo), 3(2c— 1)} when c ^ 1, 

<?(/) Š < 

where J/2, i /3 , #5 are given by (2.11), (2.12), (2.14), while XQ and yQ are the positive 
roots of equations (2.17) and (2.24), respectively and x2 = (2<: - l ) /2( l - c). 

From the examination of the function H2(x) defined by (2.11) it follows that 
H2(XQ) > 3 — 2c = H2(0) and H2(XQ) > 1 = H2(oo) where XQ is the root of equation 
(2.17). It is easily verified that //s(yo) < 1 where / /5 is given by (2.14) and j/o is 
the root of equation (2.24). It can be shown that if c ^ £, then the function H3(x) 
defined by (2.12) is decreasing; hence H3(0) = 3 - 2 c > 3 (2c - 1) = H3(oo). If c > ±, 
it suffices to examine the function H3(x) and the difference H3(x) - H2(x), Then we 
obtain that H2(x0) > H3(x2) if | < c < c*, whereas H3(x2) > H2(XQ) if c* 1$ c < 1, 
with c* being the only root of the equation 

(3.1) e ( 2 c - 1 ^ c - 1 ) - 3 c + 2 = 0, 

£0 being the positive root of equation (2.17), and x2 = ( 2 c - 1)/2(1 — c). Moreover, 
//3(oo) = 3(2c - 1) > H2(x0) if C > 1. 

Consequently, if n = 1, then, for each function f € S} the following estimate of 
functional (1.5) holds: 

(3.2) G(f) Š 

#2(0) = 3-2c when c ̂  Q, 

H2(XQ) when 0 < c < c*, 

H3(x2) when c* ^c< 1, 

#3(00) = 3(2c - 1) when c £ 1, 
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G(f) ś { 

where H2i H3 are defined by formulae (2.11), (2.12), xo is the only root of equation 
(2.17), x2 = (2c - 1)/2(1 - c) and c* is the only root of equation (3.1). 

Next, let n = 2. From (2.15), (2.18), (2.21), (2.22) and (2.25) it follows that, for 
any function / 6 5, 

' max{l, 3, -1} when c < £, 

max{l, 3, 8c — 3} when \ ^ c i$ i , 

max{l, 3, H3(x2), 8c - 3} when \ < c < 1, 

k max{l, 3, 8c — 3} when c ^ 1. 

In this case, the examination of the function //3 yields H3(x2) > 3 = //3(0) when 
c € (£, }), and H3(x2) > 8c - 3 = //3(oo) when c € ( } , 1), * 2 = (2c - 1)/2(1 - c). 

So, in this case, the following estimate of functional (1.5) holds: 

{ //3(0) = 3 when c $ \, 

H3(x2) when j < c < l , 

H3(oo) = 8c - 3 when c > 1, 

where H3 is defined by formula (2.12), and x2 •= (2c - 1)/2(1 - c). 

Finally, consider the case when n ^ 3. From (2.15), (2.19), (2.21), (2.22) and 

(2.25) it follows that, for any function / € 5, 

max{l, i¥2(*i), 3 - 4 c + 2nc, - 1 } w h e n c < 0 , 

max{l, 3 - 4c + 2nc, - 1 } when 0 ^ c < ^ r , 

G(f) t$ < max{l, 3 - 4c + 2nc, - 3 + 4c + 2nc} when - ^ ^ c ^ ~, 

m a x { l , 3 - 4 c + 2nc, H3(x2)y - 3 + 4c + 2nc} when ± < c < l , 

k max{l, 3 - 4c + 2nc, - 3 + 4c + 2nc} when c ^ 1, 

where / / 2 , H3 are given by (2.11), (2.12), while x\ is the only root of equation (2.20) 

and* 2 = ( 2 c - l ) / 2 ( l - c ) . 

From the examination of the function H2 in this case it follows that H2(x\) > 

3 — 4c + 2nc = H2(Q) and H2(x\) > 1. Whereas, examining the function #3 , we 

obtain in this case that H3(x2) > 3 - 4c + 2nc = //3(0) > #3(00) when c € (5 , }), 

while H3(x2) > - 3 + 4c + 2nc = #3(00) > H3(0) when c £ (} , 1). 

Consequently, if n > 3, then, for each function / € 5, the following estimate of 

functional (1.5) holds: 
H2(xi) when c < 0, 

. iY3(0) = 3 - 4 c + 2nc when O ^ c ^ ± 
(3.4) G(f)<{ ' " y 

H3(x2) when ± < c < 1, 
#3(00) = -3-+ 4c + 2nc when c ^ 1, 
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where //2. # 3 **e defined by formulae (2.11), (2.12), Xi is the root of equation (2.20) 
and* 2 = ( 2 c - l ) / 2 ( l - c ) . 

We shall next examine whether, and for which c G R, estimates (3.2), (3.3) and 
(3.4) are sharp. 

Let us first notice that, in those estimates from (3.2), (3.3) and (3.4) in which the 
maximum of the function Hk is attained at the points 0 or oo, the extremal function 
is Koebe function (1.3). 

In the case n = 1, equality in (3.2) takes place for Koebe function (1.3) with 
e = ± 1 when ct^O and with e = ±i when c ^ 1. 

If n = 2, equality in (3.3) takes place for Koebe function (1.3) with e = ± 1 when 
c .$ | and with e = ±i when c ^ 1. 

Similarly, in the case n ^ 3, equality in (3.4) holds for Koebe function (1.3) with 
e = ± 1 when 0 ^ c t $ | and with e = ±i when c ^ 1. 

Next, we shall prove that estimates (3.2) for 0 < c < c* and (3.4) for c < 0 are 
sharp. 

It is sufficient to prove the latter case, the proof of the former is analogous. 

In order to show that, for c < 0, estimate (3.4) in the class 5 is sharp, it is 
enough to prove, in view of case 2° from Section 2 and on account of the Valiron-
Landau lemma, that there exists a function 0+(t) for which v2 = 0, i.e. (compare [3], 
pp. 104-107) 

(3.5) / e-*sin0-,(Oci* = O 
Jo 

and |e"~*cos0«.(O| = <p(t) where 

={:-
for O^ť^ar, 

1 " ' for x < t < oo. 

Let x\y x\ > 0, be a solution of equation (2.20), whereas 0*(t) a function defined 
by the formulae 

*-** for 0 ^ t ^ xu 
9џ(t) = Г C O S 0 , » _ 

for a?t < t < oo. 

Then 

sitгØ,(í) = 
f ±У/І - e-(«-*') foŕ 0 ^ ť ̂  ŁЄl, 

\ 0 for x\ < t < oo, 

whence one can easily obtain the formulae for the function km(t) = ei0*W. 
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Choosing different signs in portions of the interval (0, x\), one can satisfy condition 
(3.5). Indeed, let us consider, for instance, the function 

V>(r)= / e-Vl-e-('-~«>dí 
Jo 

- f , e-Vl-e-('-- ' )dť, т€{Q,xi). 

It is continuous in the interval (0, £i), ^(0) < 0, tl)(xi) > 0, thus there exists a point 
To € (0, x\) such that ^(TQ) = 0. Putting then 

8ІПØ,(0 = | 

VI - e2<*-*0 for O^ř^ro, 
sine^U) = < -\/l - e2('-*i) for T0^t^x\, 

0 for ari < t < oo, 

we eventually obtain condition (3.5). 
Let us observe that the functions H$(x) and H*(y) given by formulae (2.12) and 

(2.13), respectively, have been obtained in the case when u2 + v2 = 1 (compare 3°, 
4°). It is known from estimate (1.2) that this equality is possible only for Koebe 
function (1.3). From (1.5) and (1.3), putting t = e'*, 0 ^ y? < 2K, we get 

G(f0) = (3 - 4c) cos 2<p + Tcy c € R, u € N. 

It is easily verified that 

G(/0) ^ „maxj(3-4c) co*2<p + 2"c] = | ^ ***£ 
when c < | , 

o^<2ttlvv " ' ^ ' ~ ~J ^ -.3 + 4C + 2nc when c ^ f, 

n € N . 
Thus, this implies that, in cases 3° and 4°, we can find a sharp estimate of the 

functional G(f) at the points (0,1), (1,0) only. In the remaining cases, we shall only 
get an estimate from above. Such cases take place for those n and c for which, in 
(3.2), (3.3) or (3.4), the value of the function H3 at the point x2 = (2c - 1)/2(1 - c) 
occurs. For, then, we should have u2 + v2 = 1, |ti| = u(x2) and, respectively, 
\v\ = | f£° e~* sin 0(t) dl|. Consequently, for those c for which the value of the function 
Hz occurs and for a fixed s, the polygon with vertices given by the conditions l°-5° 
seems too large. 

Thereby, (3.2), (3.3), (3.4) and (1.5) and (1.4) imply the following 
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Theorem 1. If f € S is any function of form (1.1), then we have 

\*s-cal\ + c\a2\ ^ < 

when ct^O, 

when 0 < c < c*, 

when c* ^ c < 1, 

when c > 1 

f 3 - 2c 

c(x0 + l )e- 3 ? 0 +2e- 2 j r o + l 

#3(^2) 

U ( 2 c - 1 ) 

where x0 is the only root of the equation 

4 e - * [ ( l - c ) x - c ] + c = 0, 

H3 is defined by formula (2.12), x2 = (2c - 1)/2(1 - c), while c* is the only root of 
equation (3.1). For any c < c* and c ^ 1, there exist functions of the class S for 
which the equality sign in the above estimates takes place. 

T h e o r e m 2. If f € 5 is any function of form (1.1), then we have 

r 3 when c ^ \ , 

\a3 - ca\\ + c\a2\
2 ^ < H3(x2) when £. < c < 1, 

k 8 c - 3 when c ^ 1, 

where H3 is given by (2.12) and x2 = (2c - 1)/2(1 — c). For each c < ^ and each 
c ^ 1, there exist functions of the class S for which the equality sign in the above 
estimates takes place. 

Theorem 3. Iff 6 S is any function ofform (1.1), n—any integer number, n "£ 3, 
then we have 

-c (n-2)2 n - 1 [ (a?i + l ) e - j : i ] n 

+2e~2x* + 1 

\a3-ca\\ + c\a2\
n < \ 3 - 4 c + 2nc 

/ / 3 ( * 2 ) 

- 3 + 4c + 2nc 

where x\ is the positive root of the equation 

when c < 0, 

when 0 < c < 5, 

when I < c < 1, 

when c ^ 1, 

8e~*[(l - c)ar - c] + cn2n[(ar + I J e - T " 1 = «» 

#3 w given by (2.12), and x2 = ( 2 c - 1)/2(1 - c). .Fbr any c ^ 5 and c *£ 1 there 
exist functions of the class S for which the equality sign in the above estimates takes 

place. 
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4. APPLICATIONS 

We shall give some simple applications of the results obtained, admitting that 
some of them are known. 

Let us put, for example, 

(4.1) gx(z) = [f(l/z)]~l = z + !#> + a^/z + . . . , 1< |*| < oo, 

(4.2) g2(z) = zy/f(z*)/z2 = z + a< V + a £ V + . . . , : e A 

(4.3) jfe(*) = log[/(z)/z] = 2(a<3)z + a<3)*2 + . . . ) , z € A, 

(4.4) P4(-r) = l / / # W = l + a(
1
4)z + a(

2
4)22 + . . . , * f i A 

(4.5) g*(w) = / - » = »+ 4 S V + 45)u;3 + ..., M < J, 

(4.6) ^6(z) = [z//(z)]fc = l + a<6)z + a(
2

6V + . . . , * € A 

Jt = 2,3. . . 

(#5 denotes the inverse function of / ) . 
Making use of Theorems 1, 2 and the relations between the coefficients 02, a3 in 

expansion (1.1) and suitable coefficients a}p) in (4.1)-(4.6), we obtain, for instance, 
the following eestimates: 

la^l+lo^US; 

I42)l + | l 4 2 ) l 2 ^ | ; 

(3)|-.|я(3)|-*-3.. 
2' ҺП+-ҜT<i 

2|43)l + l43)l ^ 1 + 2e-2*" + Џx0 + l)e" 4 3 ) l+ l4 3 ) Kl + 2e-2*- + 5 

where a?o is the root of the equation 4e~r(a? — 1) + 1 = 0; 

^23; 

|48 ) | + 2|45)|2^13; 

l4V-^l4 6 ) IS .3* 2 , it = 2,3 

Ш 



5. ON THE CLASS S(|a2|) 

Let S(\a2\) denote a subclass of the family S of functions (1.1) with a fixed \a2\ € 
(0,2). Note that modifying the procedure presented before, we can examine the 
maximum of functional (1.5) in the class 5(|a2 |). The consideration will be carried 
out in the case n = 2. 

From (2.1), (2.2) and (2.8') we then have 

(5.1 J G(f) = (2c - l) |a2 |2 + 8(1 - c) ti2 - 4 / ° ° e~2t cos2 0(t) dt + 1. 
Jo 

With no loss of generality we may assume that 

u = /°°^- 'cos0(Od<€(O,l ) . 
Jo 

In virtue of the variational lemma from I.E. Bazylevic's paper [1], it is known 
that, among all admissible functions 9(t) taking values such that u = Ao G (0,1), 
the minimum of the integral /0°° y2(t)dt, where y(t) = e"*cos0(i), is attained for 
the function yo(t) = min[e~', C]. The constant C satisfies the equality 

/ y0(t)dt = A0. 
Jo 

Let y0(t) = e""* for t G (0,ar) and y0(t) = e~* for t ^ x. We shall then get 
Ao = u(x). As Ao G (0,1) is arbitrarily fixed, there exists exactly one x € (0,oo) 
satisfying the above equation. Moreover, 

rV'cos^) ) 2 ^ £ l°° yl(t)dt = w(x). 
Jo Jo 

In the problem considered, we have 0 ^ u = Ao < | | a 2 | ^ 1, the function a; 
being decreasing, thus the subsequent considerations should be confined to those x 
for which Ao = w(x) .$ §|a2|. 

Let x = £(|a2 |) stand for a root of the equation 

(5.2) u,(*) = i|a2|. 

So, in view of (5.1), we are to estimate the function 

(5.3) H3(x) = 8(l-e)u2{x)-4w(x) + l, x>x, 
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where w(x) = (x + l)e~*, w(x) = (x + \)e'2x (cf. Section 2). Since H'3(x) = 
—8xe~2*[2(l — c)x + 1 — 2c], x ^ £, therefore, for c ^ 1, we have max/M*) = 
#3(oo) = If whereas for c 1$ \, maxH3(x) = H3(x). 

Let \ < c < 1. Then H'3(x) > 0 for 0 < x < x2 and H'3(x) < 0 for x > x2 

where x2 •& (2c — 1)/2(1 - c) > 0. Hence max#3(x) = H3(x2) when x ^. x2 and 
max#3(ar) = Hz(x) when 5 > x2. The formula for x2 and (5.2) imply that 

r, / >. f ^ ( x 2 ) when |a2| ^ 2w(x2), 
max #3(3?) = < ~ 

\H3(x) when |a2| ^ 2u(x2). 

From (5.2), (5.3) and the analysis we have carried out we obtain 

Theorem 4. If a function f of form (1.1) belongs to the class 5(|a2|), then 

(5.4 ) Re(a3 - ca\) + c\a2\
2 ^ 4e'2£(x2 + * + i ) + 1 

when c ^ - , |a2| -$2, 

(5.5 ) tfe(a3 - ca?,) + c|a2|
2 í$ 4e"2 f(i2 + i + - ) + 1 

1 
2 

when - < c < 1, |a2| ^ 2w(.c2), 

(5.6) « c ( o 3 - c a | ) + c |a 2 | 2 <(2c- l ) |a2 | 2 + 2e-2xa + l 

when 2 < c < 1 ' M * - X M < - i 

(5.7) /?e(a3-ca^) + c | a 2 | 2 ^(2c- l ) | a 2 | 2 + l 

wAeji c ^ 1, |a2| ^ 2, 

where u(x) -s (* + l)e"*, *2 = (2c - 1)/2(1 - c), w(i) = i|a2 |, i ^ 0. 

The equality in (5.4) and (5.5) can hold only if ti = | |d2 | , v = 0, w(z) = «, 
«>(*) s J ~ y3(<)dl with the corresponding x. So, in cases (5.4) and (5.5), we have 
the conditions 

(5.8) / e- ' cos 0(t) dt = u(x), 
Jo 

(5.9) / e- 'sto«(0d. = 0I 
Jo 

(5.10) [00e-2taxt9(t)dt = w(i). 
Jo 
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If, however, the equality in (5.10) holds, then e~* cos 0(t) = yo(t) with x = x. Con­
sequently, cos0(t) = e""x+t for t ^ x and cos 0(t) = 1 for t ^ £. Then, of course, 
u -= u;(-c) and one may choose sin0(t) (cf. the proof of the estimate in Theorem 3) 
so that (5.9) takes place. Consequently, estimates (5.4) and (5.5) are sharp. 

In the case of the equality in (5.6), the relations u = v(x2)> fQ eT2t cos2 0(t) dt = 
w(x2) and w(x) = | | a 2 | , £ < x2 should hold. In the last case, the equalities x = oo, 
f™y2(t)dt = ti;(oo)= 0 necessarily hold, so u = 0, |sin0(OI = 1 and |a2| = 2\v\. 
Let 

v = v(r) = / e-M< - / e-*dt, r > 0. 

Thus there exists, in this case, a function of the class 5(|a2 |), 0 ^ |a2 | .$ 2, realizing 
in (5.7) the equality sign. 

From (5.4), (5.6) and (5.7) we immediately obtain the above Theorem 2. 
Analogous investigations for n ^ 2 have not been the aim of the present paper. 

6. OPEN PROBLEMS 

To conclude with, let us notice that functional (1.4) can be modified a little. In 
particular, it seems interesting to investigate, for example, the following functional 
defined on the class S: 

| a 3 - a a 2 | + |aa 2 | , a € C, n € N, 

(6.1) | a 3 - a a ! | + /?|a2| ,\ a € C, fi £ R, n € N, 

(6.2) | a 3 - a a £ | + a|a2 |n, a < 0, n € N. 

In the case of (6.2), the problem concerns the determination of the minimum of this 
functional. Case (6.1) when n = 1 will provide, in particular, an estimate of the 
sum of the moduli of coefficients in various classes associated with the class 5 (see 
4. Applications). 

Of course, it remains open to determine in Theorems 1, 2 and 3 sharp estimates 
in the intervals c* ^ c < 1 and 5 < c < 1. In spite of several different attempts, 
these cases have resisted so far. 
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