Mathematic Bohemia

Nirmala B. Limaye; Mulupuri Shanthi C. Roo
 On 2 -extendability of generalized Petersen graphs

Mathematic Bohemica, Vol. 121 (1996), No. 1, 77-81

Persistent URL: http: //dml.cz/dmlcz/125939

Terms of use:

(C) Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http: //dml.cz

ON 2-EXTENDABILITY OF GENERALIZED PETERSEN GRAPHS

N. B. Limaye, Mulupuri Shanthi C. Rao, Bombay

(Received September 13, 1994)

Abstract

Summary. Let $G P(n, k)$ be a generalized Petersen graph with $(n, k)=1, n>k \geqslant 4$. Then every pair of parallel edges of $\operatorname{GP}(n, k)$ is contained in a 1-factor of $G P(n, k)$. This partially answers a question posed by Larry Cammack and Gerald Schrag [Problem 101, Discrete Math. 73(3), 1989, 311-312]

Keywords: one factor, 2-extendable, generalized Petersen graphs
AMS classification: 05C70

A simple loopless graph G with an even number of vertices is said to be 2 -extendable if G has a pair of parallel edges and if every such pair is contained in a 1 -factor of G. Let $k<n$ be natural numbers. The generalized Petersen graph $G P(n, k)$ is the graph with a vertex set $V=\left\{u_{i}, v_{i}: 1 \leqslant i \leqslant n\right\}$ and the edge set $O \cup I \cup C$, where

$$
O=\left\{u_{i} u_{i+1}: 1 \leqslant i \leqslant n\right\}, I=\left\{v_{i} v_{i+k}: 1 \leqslant i \leqslant n\right\} \text { and } C=\left\{u_{i} v_{i}: 1 \leqslant i \leqslant n\right\}
$$

Here $i+1$ and $i+k$ are taken modulo n. The edges in O, I and C are referred to as the outer edges, the inner edges and the spokes, respectively.

In 1989, G. Schrag and L. Cammack [1] proved that
(i) $G P(n, 1)$ is 2-extendable if and only if n is even,
(ii) $G P(n, 2)$ is 2 -extendable if and only if $n \neq 5,6,8$,
(iii) $G P(2 k, k)$ is not 2 -extendable for all $k \geqslant 2$,
(iv) $G P(3 k, k)$ is not 2 -extendable for all $k \geqslant 3$,
(v) if $3 \leqslant k \leqslant 7$, then $G P(n, k)$ is 2-extendable if and only if $n \neq 3 k$.
(vi) if $k \geqslant 4$, then any pair of parallel edges containing a spoke can be extended to a 1 -factor, and
(vii) $G P(n, k)$ is 2-extendable for all $k \geqslant 2, n \geqslant 3 k+5$.

They conjectured that $G P(n, k)$ is 2 -extendable for all $k \geqslant 3$ and $n \neq 2 k, 3 k$. In this note we prove that $G P(n, k)$ is 2 -extendable for all $n, k \geqslant 4$ such that $(n, k)=1$. While many cases considered here are covered by [1], we give a uniform treatment which covers several additional cases including the important cases $n=2 k+1,3 k-1$, $3 k+1$.

Theorem. If $n, k \geqslant 4$ are natural numbers such that $(n, k)=1$, then $G P(n, k)$ is 2-extendable.

Proof. Let e and f be two given parallel edges of $G P(n, k)$, where $(n, k)=1$. We divide the problem into six possibilities:

$$
\begin{array}{ll}
P(1): e, f \in O, & P(2): e \in O, f \in I, \quad P(3): e \in O, f \in C, \\
P(4): e, f \in I, \quad P(5): e \in I, f \in C, \quad P(6): e, f \in C .
\end{array}
$$

In $P(6)$, the set C consisting of all spokes is the required 1-factor. Moreover, since $(n, k)=1, O$ and I play the same role in $G P(n, k)$. Hence we have only to consider $P(1), P(2), P(3)$. If $k>n / 2$, then $G P(n, k)$ is isomorphic to $G P(n, n-k)$. Thus we can assume that $k<n / 2$. Without loss of generality, we can take $e=u_{1} u_{2}$. We shall denote the desired 1-factor containing e and f by F.

Case 1: n is even
In this case, I as well as O can be written as a union of two disjoint 1-factors. Moreover, if we remove two adjacent points from either O or I, then the resulting path, which is of odd length, has a unique 1-factor.
$P(1)$: Let $f=u_{r} u_{r+1}, 3 \leqslant r \leqslant n-1$.
If r is odd, then F is obtained by taking the 1-factor of O containing $u_{1} u_{2}$ and $u_{r} u_{r+1}$ together with any one of the two 1 -factors of I.

If r is even with $r+k-1 \leqslant n$, then let $F=F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$, where F_{1} is the unique 1-factor of $I-v_{r-1}-v_{r-1+k}$,

$$
\begin{gathered}
F_{4}=\left\{u_{r+k} u_{r+k+1}, u_{r+k+2} u_{r+k+3}, \ldots, u_{1} u_{2}, \ldots, u_{r-3} u_{r-2}\right\} \\
F_{2}=\left\{u_{r-1} v_{r-1}, u_{r-1+k} v_{r-1+k}\right\}, \quad F_{3}=\left\{u_{r} u_{r+1}, u_{r+2} u_{r+3}, \ldots, u_{r+k-3} u_{r+k-2}\right\}
\end{gathered}
$$

If r is even with $r+k-1>n$, then clearly $r+2-k \geqslant 3$. Again F is obtained by taking $F_{1} \cup F_{2} \cup F_{3} \cup F_{4}$, where F_{1} is the unique 1 -factor of $I-v_{r+2}-v_{r+2-k}$, $F_{2}=\left\{u_{r+2} v_{r+2}, u_{r+2-k} v_{r+2-k}\right\}, F_{3}=\left\{u_{r+3-k} u_{r+4-k}, \ldots, u_{r} u_{r+1}\right\}$, and $F_{4}=$ $\left\{u_{r+3} u_{r+4}, u_{r+5} u_{r+6}, \ldots, u_{1} u_{2}, \ldots, u_{r-k} u_{r-k+1}\right\}$.
$P(2)$: Let $f=v_{r} v_{r+k}, 1 \leqslant r \leqslant n$.
In this case F is obtained by taking the union of the 1-factor of O containing $u_{1} u_{2}$ and the 1 -factor of I containing $v_{r} v_{r+k}$.

$P(3):$ Let $f=u_{r} v_{r}, 3 \leqslant r \leqslant n$.

Let $2 t$ be the greatest even integer less than r and $s=\min \{2 t, 2 k\}$. We can now take F to be $F_{1} \cup F_{2} \cup F_{3}$, where

$$
\begin{aligned}
& F_{1}=\left\{u_{i} v_{i}: i \neq s, s-1, \ldots, s-2 k+1\right\} \\
& F_{2}=\left\{u_{s} u_{s-1}, u_{s-2} u_{s-3}, \ldots, u_{s-2 k+2} u_{s-2 k+1}\right\} \\
& F_{3}=\left\{v_{s} v_{s-k}, v_{s-1} v_{s-k-1}, \ldots, v_{s-k+1} v_{s-2 k+1}\right\}
\end{aligned}
$$

Clearly f is in F_{1} and e is in F_{2}.
Case 2: n is odd
In this case, $O-u_{i}$ as well as $I-v_{i}$ have a unique 1-factor for each i.
$P(1)$: Let $f=u_{r} u_{r+1}, 3 \leqslant r \leqslant n-1$.
If r is odd, then take $i=n$. If r is even, then take $i=3$. Let $F=F_{1} \cup F_{2} \cup F_{3}$, where F_{1} is the unique 1-factor of $O-u_{i}, F_{2}=\left\{u_{i} v_{i}\right\}$ and F_{3} is the unique 1-factor of $I-v_{i}$.
$P(2)$: Let $f=v_{r} v_{r+k}, 1 \leqslant r \leqslant n$.
In this case, $n \geqslant 2 k+1$. Here we have to handle the cases $n=2 k+1$, $2 k+3,3 k-1$, and $n=3 k+1$ carefully. In what follows, F_{1} will always be the set of all spokes not on points of F_{2} and F_{3}. For $n \neq 3 k-1,3 k+1$, we take $F=F_{1} \cup F_{2} \cup F_{3}$ with $F_{2}=\left\{u_{i} u_{i+1}, u_{j} u_{j+1}, u_{i+k} u_{i+1+k}, u_{j+k} u_{j+1+k}\right\}, F_{3}=$ $\left\{v_{i} v_{i+k}, v_{i+1} v_{i+1+k}, v_{j} v_{j+k}, v_{j+1} v_{j+1+k}\right\}$, where i and j are given in the following table:

		i	j
$n=2 k+1$	$r \in\{k, k+1, k+2, k+3\}$	$k+2$	k
	$r \notin\{1,2, k, k+1, k+2, k+3, n, n-1\}$	1	r
$2 k+3<n$	$r \in\{k+1, k+2, n-k+1, n-k+2\}$	$n+1-k$	$k+1$
$n \neq 3 k+1,3 k+1$	$r \notin\{1,2, k, k+1, k+2, n-k$	1	r
	$n-k+1, n+2-k, n\}$		
$n=2 k+3$	$r=2 k+3$	$k+4$	$k+2$

See figure 1 for the case $k=5, n=2 k+3=13, r=n-k=8$ and Figure 2 for the case $k=5, n=2 k+1=11, r=n-1=10$.

Here the cases $f=v_{1} v_{1+k}, v_{2} v_{2+k}$ are not considered since these edges appear along with the edge $u_{1} u_{2}$ in most of the 1-factors given by the table. Also, the cases $f=v_{k} v_{2 k}$ (when $n \neq 2 k+1$), $v_{n-k} v_{n}$ (when $n \neq 2 k+3$), $v_{n} v_{k}$ are not considered, since these edges appear along with the edge $u_{1} u_{2}$ in the 1 -factor for the values

$r=k-1, n-k-1, n-1$ respectively, given by the table. For several values of r, this table in fact gives two distinct 1 -factors containing $u_{1} u_{2}$ and $v_{r} v_{r+k}$.

Let $n=3 k-1$.
If $r \in\{2, k+1, n-k+1=2 k\}$, we take $F_{2}=\left\{u_{1} u_{2}, u_{k+1} u_{k+2}, u_{2 k} u_{2 k+1}\right\}$, $F_{3}=\left\{v_{2 k} v_{1}, v_{2} v_{k+2}, v_{k+1} v_{2 k+1}\right\} . \quad$ If $r \in\{1, k+2, n-k+2=2 k+1\}$, we take $F_{2}=\left\{u_{1} u_{2}, u_{k+1} u_{k+2}, u_{2 k+1} u_{2 k+2}\right\}, F_{3}=\left\{v_{1} v_{1+k}, v_{2 k+1} v_{2}, v_{k+2} v_{2 k+2}\right\}$.

If $r \notin\{1,2, k, k+1, k+2,2 k=n-k+1,2 k+1, n-k=2 k-1, n\}$, we can take $F_{2}=$ $\left\{u_{1} u_{2}, u_{r} u_{r+1}, u_{1+k} u_{2+k}, u_{r+k} u_{r+1+k}\right\}, F_{3}=\left\{v_{1} v_{1+k}, v_{2} v_{2+k}, v_{r} v_{r+k}, v_{r+1} v_{r+1+k}\right\}$. Here it may appear that the cases $f=v_{k} v_{2 k}, v_{n-k} v_{n}, v_{n} v_{n+k}$ are not considered. But we note that these edges appear along with $u_{1} u_{2}$ in the 1 -factors for $r=k-1$, $n-k-1, n-1$, respectively, except when $k=4, r=n-k=7$. But in this case the edges $u_{1} u_{2}$ and $v_{7} v_{11}$ appear in the 1 -factor
$\left\{u_{1} u_{2}, u_{4} u_{5}, u_{6} u_{7}, u_{8} u_{9}, u_{10} u_{11}, u_{3} v_{3}, v_{7} v_{11}, v_{4} v_{8}, v_{1} v_{5}, v_{9} v_{2}, v_{6} v_{10}\right\}$
Finally, let $n=3 k+1$.
If $r \in\{2, k+1, n+1-k=2 k+2$,$\} , we take F_{2}=\left\{u_{1} u_{2}, u_{k+1} u_{k+2}, u_{2 k+1} u_{2 k+2}\right\}$, $F_{3}=\left\{v_{2+2 k} v_{1}, v_{2+k} v_{2}, v_{k+1} v_{2 k+1}\right\}$.

If $r \in\{1, k+2, n-k+2=2 k+3\}$, we take $F_{2}=\left\{u_{1} u_{2}, u_{k+1} u_{k+2}, u_{2 k+2} u_{2 k+3}\right\}$, $F_{3}=\left\{v_{1} v_{k+1}, v_{k+2} v_{2 k+2}, v_{n+2-k} v_{2}\right\}$.

If $r \notin\{1,2, k, k+1, k+2, n-k=2 k+1,2 k+2,2 k+3, n\}$, we take $F_{2}=$ $\left\{u_{1} u_{2}, u_{r} u_{r+1}, u_{1+k} u_{2+k}, u_{r+k} u_{r+1+k}\right\}, F_{3}=\left\{v_{1} v_{1+k}, v_{2} v_{2+k}, v_{r} v_{r+k}, v_{r+1} v_{r+1+k}\right\}$. Again the edges $f=v_{n} v_{2 k}, v_{2 k+1} v_{n}, v_{k} v_{n}$ appear along with the edge $u_{1} u_{2}$ in the 1-factors for $r=k-1,2 k, n-1$, respectively.
$P(3):$ Let $f=u_{r} v_{r}, 3 \leqslant r \leqslant n$.
If r is odd, then take $i=r$ and F as in $P(1)$.
If r is even, consider four points $u_{k+1}, u_{k+2}, u_{n+1-k}, u_{n+2-k}$. Since n is odd, $k+1 \neq n+1-k$ and $k+2 \neq n+2-k$. Moreover, $n>2 k-1$ implies that
$k+1 \neq n+2-k$. If u_{r} is different from u_{k+1}, u_{k+2}, take $i=k+1$. If u_{r} is one of u_{k+1}, u_{k+2} but $r \neq n-k+1, n-k+2$, we take $i=n+1-k$. We then let $F=\left\{u_{1} u_{2}, u_{i} u_{i+1}, v_{1} v_{i}, v_{2} v_{i+1}\right\} \cup\left\{u_{j} v_{j}: j \neq 1,2, i, i+1\right\}$.

Finally, suppose $r=k+2=n+1-k$. Here $k=r-2$ and hence it is even. Let $F_{1}=\left\{u_{1} u_{2}, u_{r} v_{r}, u_{3} v_{3}, u_{n} v_{n}, v_{1} v_{k+1}=v_{1} v_{r-1}, v_{2} v_{r+2-k}=v_{2} v_{r+1}\right\}$. To construct F_{2}, consider the path from u_{4} to u_{r-1} in the cycle O. This path contains $k-2$ points, where $k-2$ is even. Hence this path of odd length has a unique 1-factor. Similarly, the path from u_{r+1} to u_{n-1} on the cycle O also has unique 1-factor. Take F_{2} to be the union of these two 1 -factors. Let $F_{3}=\left\{v_{4} v_{4+k}, v_{5} v_{5+k}, \ldots, v_{r-2} v_{r-2+k}=v_{k} v_{2 k}\right\}$. Now let $F=F_{1} \cup F_{2} \cup F_{3}$. See Figure 3 for the case $k=6, n=2 k+1=13, r=8$.

Fig. 3
This completes the proof of the theorem.
Remark. We have assumed $k \geqslant 4$ but the construction given here can be suitably modified for the cases (i) $k=2, n \geqslant 7, n$ odd and (ii) $k=3$. Note that the Petersen graph $G P(5,2)$ is not 2-extendable.

References
[1] G. Schrag and L. Cammack: On the 2-extendability of the generalized Petersen graphs. Discrete Math. 78 (1989), 169-177.

Authors' addresses: N. B. Limaye, Department of Mathematics, University of Bombay, Bombay, 400098 , India; Mulupuri Shanthi C. Rao, Wilson College, Bombay, 400007 , India.

81

