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HAMILTONIAN CONNECTEDNESS AND A MATCHING 

IN POWERS OF CONNECTED GRAPHS 

ELENA WISZTOVÁ, Žilina 

(Received March 24, 1994) 

Summary. In this paper the following results are proved: 
1. Let Pn be a path with n vertices, where n ^ 5 and n ^ 7,8. Let M be a matching 

in Pn- Then (Pn)
4 — M is hamiltonian-connected. 

2. Let G be a connected graph of order p > 5, and let M be a matching in G. Then 
G5 — M is hamiltonian-connected. 

Keywords: power of a graph, matching, hamiltonian connectedness 

AMS classification: 05C70, 05C45 

1. INTRODUCTION 

By a graph we mean a finite undirected graph with no loops or multiple edges (a 

graph in the sense of [1] and [2]). If G is a graph, then we denote by V(G), E(G) and 

5(G) the vertex set, the edge set and the diameter of G, respectively. The number 

\V(G)\ is called the order of G. If u, v, w G V(G), then the degree of u in G and the 

distance between v and w in G will be denoted by degou and dG(v,w), respectively. 

If W C V(G), then we denote by (W)G the subgraph of G induced by W. 

A path connecting vertices u and v in G is referred to as u — v path in G. We say 

that a graph G is hamiltonian-connected if for every pair of distinct vertices u and 

v of G, there exists a hamiltonian u — v path in G. 

If a spanning subgraph F of G is a regular graph of degree one, then we say that 

F is a 1-factor of G. A set M C £ (G) is called a matching in G if no two edges 

in M are incident with the same vertex. We denote by M(G) and H(G) the set of 

matchings in G and the set of hamiltonian paths of G, respectively. 
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For every integer n > 1, by the n-th power G n of G we mean the graph with 

V(G") = V(G) and 

E(Gn) = {uv;u,veV(G) and I ^ dG(u,v) ^n}. 

We now mention some results concerning hamiltonian properties of powers of con­

nected graphs. 

T h e o r e m A. [5] If G is a nontrivial connected graph, then G3 is hamiltonian-

connected. 

Theorem B . [6] Let G be a connected graph of order p ^ 4 and Jet M 

be a matching in G. Then there exists a hamiltonian cycle C of G4 such that 

E(C) n M = 0. 

Theorem C. [3] Let G be a connected graph of order p ^ 4. Then for every 

matching M in G4 there exists a hamiltonian cycle C ofG* such that E(C)C\M = 0. 

2. RESULTS 

In the present paper we prove the following two theorems: 

T h e o r e m 1. Let Pn be a path with n vertices, where n ^ 5 and n jt 7,8. Let M 

be a matching in Pn. Then (PnY — M is hamiltonian-connected. 

Theorem 2. Let G be a connected graph of order p ^ 5 and Jet M be a matching 

in G. Then G5 - M is hamiltonian-connected. 

To prove Theorem 1 we will use two lemmas and five remarks. The following 

lemma immediately follows from Theorem B. 

Lemma 1. Let M be a matching in a complete graph Kn, where n ^ 5. Then 

Kn — M is hamiltonian-connected. 

The following notation will be useful for us. 

Let n ^ 1 be an integer, and let Wi,...,w„ be mutually distinct vertices. We 

denote by An the path with 

V(An) = {wi,...,wn} and E(An) = {wiWi+i; 1 ^ i ^ n - 1}. 
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A permutation (h,k2,. •-,kn) of the set { l , 2 , . . . , n } with the property that 

\h - fc;+i| ^ k for every i _ {1,2, . . . , n - 1} determines the hamiltonian path 

P 6 ^ ( (An)* ) with _?(P) = {«»*._;*„«;„.«)*„...,_;*„_,«)*_}. The path P is a 

«|„, - w*_ path of (A-)* and also a _>*,„ - _)„, path of (-.„)*. 

Finally, we define 

An» = ^4„ — wn_1wn + wn-2Wn for n ^ 3. 

R e m a r k 1. Let M be a matching in A4. Then there exist hamiltonian _>i — w3, 

_>2 - «'3 and w2 — w4 paths of (A, ) 3 - M. 

Let T be a tree of order p = 4 which is not isomorphic to A4. Then T is isomorphic 

to A*,. For the sake of simplicity we will assume that T = A4t. Let M be a matching 

in T. For every j , j € {1,3,4}, there exists a hamiltonian «;2 - Wj path of T 2 — M-

R e m a r k 2. Let M be a matching in ,45 . Clearly, (.45)4 is the complete graph. 

It follows from Lemma 1 that (^45)
4 — M is hamiltonian-connected. 

We define the following matchings in A5 : 

Mi = {wiw2,w3w4}, M2 = {wiw2, _>4_>5}, M3 = {W2W3, w4wa}. 

For every matching M' e M(Ab) there exists k e {1,2,3} such that M' C Af„. 

The permutations 

(1 ,3 ,5 ,4 ,2) , (1 ,4 ,5 ,2 ,3) , (1 ,3 ,2 ,5 ,4) , (1 ,4 ,2,3,5) , (2 ,4 ,1,3,5) , 

(3 ,1 ,4 ,2 ,5) , (4,1,3,2,5) for k = 1, 

(1 ,4 ,3 ,5 ,2) , (1 ,4 ,2 ,5 ,3) , (1 ,3 ,5 ,2 ,4) , (1 ,4 ,3,2,5) , (2 ,4 ,1,3,5) , 

(3 ,1 ,4 ,2 ,5) , (4,1,3,2,5) for k = 2, 

(1 ,4 ,3 ,5 ,2) , (1 ,4 ,2 ,5 ,3) , (1 ,3 ,5,2,4) , (1 ,3 ,4,2,5) , (2 ,1 ,4,3,5) , 

(3 ,4 ,1 ,2 ,5) , (4,2,1,3,5) for k = 3 

of the set {1,2 ,3 ,4 ,5} determine in (A 5) 3 - A-„ the hamiltonian _>i - _>j and u». — W5 

paths, where 1 ^ i < j ^ 5. 

Hence for every i,j, i e {1,2,3,4} and j e {2,3,4,5} there exist hamiltonian 

wt - wb and wi - WJ paths of (^45)
3 — M. 

R e m a r k 3. Let M be a matching in As- The permutations 
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(1 ,4 ,6 ,3 ,5 ,2) , (1 ,4 ,6 ,2 ,5 ,3) , (1,3,5,2,6,4) , (1 ,3,6,4,2,5) , (1 ,3,5,2,4,6) , 

(2 ,5 ,1 ,4 ,6 ,3) , (2 ,6,3,5,1,4) , (2,6,4,1,3,5) , (2 ,5,3,1,4,6) , (3 ,6,2,5,1,4) , 

(3 ,6 ,2 ,4 ,1 ,5) , (3 ,5,1,4,2,6) , (4,1,3,6,2,5) , (4 ,1,3,5,2,6) , (5,2,4,1,3,6) 

of the s e t{ l , . . .,6} determine the hamiltonian Wi - Wj paths of (Ae)4 - M, where 

1 sS i < j < 6. 

This means that (Ae)4 - M is hamiltonian-connected. 

R e m a r k 4. Let M be a matching in A7. The permutations 

(1 ,4 ,6 ,3 ,7 ,5 ,2) , (1 ,4,6,2,5,7,3) , (1 ,3 ,7 ,5 ,2 ,6 ,4) , (1 ,3,7,4,6,2,5) , 

(1 ,3 ,7 ,5 ,2 ,4 ,6) , (1 ,3,6,4,2,5,7) , (2 ,6,4,1,5,7,3) , (2 ,6 ,3 ,7 ,5 ,1 ,4) , 

(2 ,6 ,4 ,1 ,3 ,7 ,5) , (2 ,5,7,3,1,4,6) , (2 ,6,4,1,3,5,7) , (6 ,2 ,4 ,1 ,5 ,7 ,3) , 

(6 ,2 ,5 ,7 ,3 ,1 ,4) , (6 ,2,4,1,3,7,5) , (6 ,2,4,1,5,3,7) , (7 ,5 ,1 ,4 ,2 ,6 ,3) , 

(7 ,5 ,2 ,6 ,3 ,1 ,4) , (7,3,6,2,4,1,5) 

of the set { 1 , . . . , 7} determine the hamiltonian u>; - Wj paths of (A7)
4 — M, where 

i e { l , 2 , 6 , 7 } , j 6 { l , 2 , . . . , 7 } a n d i / j . 

The permutations 

(3,6,2,7,5,1,4), (3,6,2,7,4,1,5), (4,1,3,6,2,7,5) of the set {1 ,2 , . . . ,7} determine the 

hamiltonian w3 — w<\, w3 - w&, w^ - ws paths of (A7)
& - M. 

If M = {w\w2, W6W7}, then there exist no hamiltonian w3 - wt, w3 - wit 104 - w5 

paths of (A7)
4 - M. 

This means that (A7)5 — M is hamiltonian-connected and for i e {1,2,6 ,7}, 

j € { 1 , 2 , . . . , 7}, % jt j there exist hamiltonian it); - Wj paths of (A7)
4 - M. 

R e m a r k 5. Let M be a matching in A8. 

1. We denote 

M\ = E(A8 -w\)r\M. 

Then M\ e M(A8 - w\). It follows from Remark 4 that for every j , j e 

{2 ,4 ,5 ,6 ,7 ,8} , there exists a hamiltonian w3 - w, path Pi e H((AS - w\)4 - Mi) . 

Then 

P — P\ + tui«;3 is a hamiltonian w\ — Wj path of (^4s)4 — M, 

P = P\ + w\Wj is a hamiltonian w\ - w3 path of (^s) 4 — M if j = 4. 

Analogously we can show that for every j , j € {1 ,2 , . . . , 7}, there exists a hamil­

tonian w8 - Wj path of (,48)4 - M. 

2. We denote 

Mi = E(A8 - w\ - w2 - w3) n M. 

Then Mi G M(A8 -W1—W3- w3). It follows from Remark 2 that for every j , j -

{4,6 ,7 ,8}, there exists a hamiltonian ws-Wj path Pi € 7i((A8-w\~w2-w3)
4-M\). 



We put 

P = Pi + wsw3 + w3wi + v)iw2 if wxw2$M, 

P = Pi +w5wi +w1w3 + v>3W2 if wiw2£M. 

Then P is a hamiltonian w2 — Wj path of (As) ~ M. 

Further, we put 

P = Pi + WjWi + wiw3 + w3w2 if j—4 and w2w3 $ M, 

P = Pi+ WJW3 + w3wi + witfj if J = 4 a n d W2W3 e M. 

Then P is a hamiltonian w2 - ws path of (As) - M. 

The path 

P = Pi + w5wi + wiw3 + w2wj if j = 4 

is a hamiltonian u)2 — W3 path of (As)4 — M. 

Analogously we can show that for every j , j e {1.2, • •., 6,8}, there exists a hamil­

tonian w7 - Wj path of (A$)4 - M. 

3. The permutations 

(3 ,8 ,6 ,2 ,7 ,5 ,1 ,4) , (3 ,8,6,2,7,4,1,5) , (3 ,8,5,2,7,4,1,6) , 

(4 ,1 ,3 ,8 ,6 ,2 ,7 ,5) , (4 ,1 ,3 ,8 ,5 ,7 ,2 ,6) , (5,1,3,8,4,7,2,6) 

of the set { 1 , . . . , 8} determine the hamiltonian wt - Wj paths of (A$)b - M, where 

3 ^ i < j < 6. 

4. If M = {u)iw2,«'3M>4,tt>5U>6,u>7M'8}, then for i,j,3<,i<j<^6 there exists no 

hamiltonian to, - ty,- path of (As)4 - Af. 

This means that (As)
5 - M is hamiltonian-connected and for i e {1,2,7,8}, 

j 6 { 1 , 2 , . . . , 8 } , »' jt j there exists a hamiltonian Wi - Wj path of (As)4 — M. 

Lemma 2. Let n > 9, and iet M be a matching in An. Then (An)
4 — M is 

hamiltonian-connected. 

P r o o f . We distinguish the following cases and subcases: 

1. Let n = 9. In (^4g)4 - M we shall construct hamiltonian Wi - Wj paths, where 
1 <i < j ^9. Denote 

Wi = {wi , . . . , i05}, W2 = {w5,...,w9}, 

Gi = (Wi)Ao and G2 = (W2)Aa. 
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Moreover, denote by Mi and M2 the matchings with the properties 

Mi e M(GX), M2 e M(G2) and Mx U M2 = M. 

1.1. 1 <. i < j <. 5 or 5 <. i < j <. 9. 

We prove the proposition of Lemma 2 for the case 1 <. i < j <. 5. 

If 5 <. i < j <. 9, then the proof is analogous. 

It follows from Remark 2 that there exists a hamiltonian u>; — Wj path Pi ^ 

H((Gi)4-Mx) and a hamiltonian iu5-™6 path P2 e ft((G2)
4-M2). If wj = w5 , then 

according to Remark 2 there exists a hamiltonian u>i - w5 path Pi e H((Gi)3 -Mi)-

This implies that there exists x e V(d) such that a;w;5 e E(Pi) and x±wx. 

Then d ^ x . i u e ) <. 4. We put 

P = ( P i U P j J - ^ t D s + i ^ -

Then P is a hamiltonian u>; - i«j- path of (Ag)4 - M. 

1.2. 1 <. i < 5 and 5 < j <. 9. 

According to Lemma 1 there exists a hamiltonian wi - wb path Pi e H((Gi)4 - Ml) 

and a hamiltonian ID5 - Wj path P 2 e •H((G2)4 - M 2) . We put 

P = P i U P 2 . 

Then P is a hamiltonian wt - Wj path of (Ag)4 - M. 

From these two subcases it follows that (A9)4 - M is hamiltonian-connected. 

2. Let n ^ 10. Assume that for every tree Am, where 9 <. m < n, it is proved 

that (^4m)4 - M* is hamiltonian-connected for any matching M* e M(Am). 

In (An)
4 — M we shall construct hamiltonian ui; - ur,- paths, where 1 <. i < j <_ n. 

2.1. 1 <. i < j <. 5 or (n - 4) <_ i < j <_ n. 

We prove the proposition of Lemma 2 for the case 1 <. i < j <. 5. If (n - 4) <. i < 

j <. n, then the proof is analogous. Denote 

Wi = {wi,...,w5}, W2 = {w$,...,wn}, 

Gi = (Wi)A„ and G2 = (W2)An. 

Moreover, denote by Mi and M2 the matchings with the properties 

Mi e M(GY), M2 e M(G2) and Mi U M2 = M. 

It follows from the induction hypothesis and Remarks 3, 4, 5 that there exists 
a hamiltonian w5 - we path P2 e H((G2)

4 - M2). It follows from Remark 2 that 



there exists a hamiltonian wt - Wj path Pi 6 %((Gi)4 - Mi) and if WJ = w&, 

then Pi e H ( ( G i ) 3 - Mi ) . This implies that there exists x € V(Gi) such that 

iiu5 e E(Pi) a n d xj=w\. Then dA„(x,we) < 4 and 

P = (Pi U P2) - xw5 + xw6 

is a hamiltonian wt - Wj path of (A n ) 4 - M. 

2.2. 1 <. i <. 4 and 6 <. j <. n or 5 <. i < j <. n - 4 or 5 <. i <. n - 5 and 

n — 3 $ j• <. n. 

2.2.1. There exists u>* 6 V(^n) with the property 

(1) i<k<j and 5 <. fc <. n - 4. 

Denote 

W. = {_•!,...,«;„}, W2 = {u) fc,u)/c+i,...,u)n}, 

G_ = <W.).4« and G2 = (W2)An. 

Further, denote by Mi and M2 the matchings with the properties 

Mi £ .M(Gi) , M2 e M(G2) and M , U M 2 = M. 

According to the induction hypothesis and Remarks 2, 3, 4, 5 there exists a 

hamiltonian w, - Wk path Pi e /H((Gi)4 — Mi) and a hamiltonian Wk - Wj path 

P 2 - W((G2)4 - M 2) . Then 

P = Pi U P2 

is a hamiltonian u>; - u>j path of (An)
4 - M. 

2.2.2. There exists no wk G V(An) with the property (1). Then UJ.W,- G _J(-U) 

and 5 < . i < j < . r a — 4. Hence u), = wi+i. 

We denote by Gi or G2 the component of An - WiWi+i which contains ui; or t~,+ii 

respectively. Further, we denote by Mj and M2 the matchings with the properties 

Mi e M(Gi), M2 e X(G2), Mx = M n P(Gi) and M2 = M n E(G2). 

It follows from the induction hypothesis and Remarks 2, 3, 4, 5 that there exists 

a hamiltonian u);_i - w{ path Pi 6 %((Gi) 4 - Mi) and a hamiltonian UJ;+I - u>;+2 

path P 2 £ W((G2)4 - M 2 ) . Then 

P = Pi U P 2 + u>;+iU;;+2 

is a hamiltonian Wi - _>, path of (A n ) 4 - M. 

From this subcases it follows that (A n ) 4 - M is hamiltonian-connected. Thus the 

proof of Lemma 2 is complete. • 
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Theorem 1 immediately follows from Lemma 2 and Remarks 2 and 3. 
To prove Theorem 2 we will use the previous lemmas and remarks as well as the 

two following lemmas. 

Lemma 3. Let T be a tree of order p >- 5 and let M be a matching in T. Then 
T5 — M is hamiltonian-connected. 

Proof . The cases when p e {5,6,7} follows immediately from Lemma 1 and 
Remark 4. 

Let p = 8. If T is isomorphic to As, or 5(T) ^ 5, then the proposition of Lemma 
3 follows from Remark 5 and Lemma 1. 
Denote 

Ti=ASt, 

T2 = As - w7wg + wsws, 

T3 = As - w7w3 + W4WS, 

T = {TUT2,T3}. 

If T is not isomorphic to As and S(T) > 5, then T is isomorphic to one of the 
elements of T. For the sake of simplicity we shall assume that T e T. Further, we 
denote 

M0 = E(T - ws) n M. 

Then T - w8 = A7 and M0 e M(A7). It follows from Remark 4 that there exists a 
hamiltonian wt - Wj path P0 e H((A7)

S - M0), where i,j e {1, . . -,7},i ^ j . Since 
\E(P0)\ = 6 , there exist integers k,l, k,l e {1, . . .,7}, k # /, such that wkwt e E(P0) 
and 

k, ^ { 1 , 6 } if T = TX, 

k,l^^> if T = T2, 

k,l^4 if T = T3. 

Then 
P = P0 — WkWi + WkWg + wiWg is a hamiltonian Wi — Wj path of T5 — M, where 
i,je{i,...,7}, 
P = Po+WjWg is a hamiltonian Wi—ws path of T5-M if j = 3andi e {1,2,4,5,6,7}, 
P = Po + WiW8 is a hamiltonian w3 — it)8 path of T5 — M if i = 2 and j = 3. 

This means that for p = 8 the statement of Lemma 3 is correct. 
Let p >• 9. Assume that for every tree T* of order p*, where 5 ^ p* < p, it is 

proved that (T*)5 - Af* is hamiltonian-connected for any matching M* e M(T*). 

312 



If T is isomorphic to Ap, or if S(T) ^ 5, then the result follows from Lemma 2 or 

Lemma 1. We shall assume that T is not isomorphic to Ap and S(T) > 5. 

Let x and y be arbitrary distinct vertices of T. We shall construct a hamiltonian 

x-y path P o f T 5 - M . 

We denote by tx, ty the vertices of T with the following properties: 

(1) tttyeE(T), 

(2) tx,ty belong to the x — y path in T, 

(3) 0<_dT(tx,x)<dT(ty,x). 

Then T — txty has two components. We denote by Tx or Ty the component of T — txty 

which contains x, tx or y, t^, respectively. Further, we denote by Mx and My the 

matching with the properties 

Mx e M(TX), My e M(Ty), MX=MC\ E(TX) and My = M r\ E(Ty). 

We define graphs Ti and T2: 

Ti = Tx and V(T2) = V(Ty) u {tx}, E(T2) = E(Ty) U {txty}. 

Finally, we denote by Mi and M2 the matchings with the properties 

Mi e M(T\), M2 e M(T2), MX=MX and M2 = M n E(T2). 

We distinguish the following cases and subcases: 

1. There exist tx,ty e V(T) with the properties ( l)-(3) such that \V(TX)\ >- 5 and 

\V(Ty)\ ^ 5. Then \V(TX)\ >- 5 and |V(T2) | > 5. 

1.1. Let tx ^ x. According to the induction hypothesis there exists a hamiltonian 

x - tx path Pi e W((Ti)5 - Mi) and a hamiltonian tx - y path P2 6 U((T2f - M2). 

We put 

P = P i U P 2 . 

1.2. Let tx = x. We denote by x\ the vertex of Tx with the property that 

xx\ £ E(TX). If ty = y, then we denote by JA the vertex of Ty with the property that 

2/j/i e E(Ty). Then dT(x\,ty) = 2 and dT(xi,yi) = 3. It follows from the induction 

hypothesis that there exists a hamiltonian x - x\ path P : e 7i((Tx)
5 - Mx) and a 

hamiltonian path P 2 e U((Tyf - M„). Let us suppose that 

P 2 is a hamiltonian ty - y path if ty ^ y 

P2 is a hamiltonian y\ - y path if ty = y. 
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We put 

P = P i U P 2 + z i t ! , if ty^y 

P = P1UP2+x1y1 if ty=y. 

2. For every two vertices tx, ty with the properties ( l)-(3) we have |V(TX)| < 5 or 

\V(Ty)\ < 5. We put ty = y. Without loss of generality we assume that |V(T„)| < 5. 

2.1. Let |V(T„)| = 1. Then V(Ty) = {y} and |V(TX)| ^ 8. There exists u 6 V(TX) 

such that u # x,u ^ tx and 1 <. dT(u,tx) <. 2. Then 2 <. dT(u,y) <. 3. It 

follows from the induction hypothesis that there exists a hamiltonian x - u path 

Pi G H((TX)5 - M x ) . We put 

P = Pi + uy. 

2.2. Let |V(Ty) | = 4. According to Remark 1 there exists a hamiltonian y - v 

path P 2 £ H((T„)5 - My), where v 6 V(Ty) and 

dr(v,y) = 1 if T„ is not isomorphic to A4, 

dT(v,y) = 2 if Ty is isomorphic to A4. 

Since |V(T„)| = 4 and p ^ 9, we have |V(Tx) | ^ 5. We denote by u the vertex with 

the properties 

u e V ( T x ) , ujtx and dT(u,y) <_2. 

Then <.+(u,u) ^ 4. It follows from the induction hypothesis that there exists a 

hamiltonian x - u path Pr e H((Txf - Mx). We put 

P = Pi U P 2 + vu. 

2.3. Let 1 < |V(T„)| < 4. Let Sx,...,Sm be all components of T - tx which are 

different from Ty. We denote by L\,..., Lm the matchings in S\,...,Sm such that 

Lj = Mn E(Sj) for j = 1 , . . . , m. 

2.3.1. There exists i, i e { 1 , . . . ,m} such that |V(5i) | ^ 5. 

Then there exist « i , u 2 G V(5 ; ) such that «i ^ u2 ^ x, dT(ui,tx) <. 2, 1 < 

dT(v<2,tx) <. 3, and if x g V(Si), then d r ( " i . t x ) = 1- According to the induction 

hypothesis there exists a hamiltonian path Pi G W((Si)5 - Li). Let us suppose that 

Pi is a hamiltonian «! - u2 path if xgV(Si), 

Pi is a hamiltonian u2 - x path if x e V(5 ; ) . 

Denote 
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Then T0 is a tree, |V(T0)| 3= 3 and y 6 V(T0). Further we denote by M0 the matching 

in T0 such that Mo = Mn.E(To)-

2.3.1.1. Let |V(To)| = 3. Then m = i = 1 and there exists v 6 V(T0) such that 

y(T0) = {«*,?/,„} and E(T0) = {txy,yv}. If x <? V(Si), then x = tx. We put 

P = Pi +uiw + w + u2y if xgV(Si), 

P = Pi + u2v + vtx + txy if xeV(Si) and txy& M, 

P = Pi + u2tx + txv + vy if 1 6 V(Sj) a n d * x y € A/. 

2.3.1.2. Let |V(T0)| = 4. Assume that x € V(S;). Then according to Remark 1 

there exists a hamiltonian y - v path P2 e W((T0)3 - M0), where « e V(2o), V -fc y 

and 

dr(«x,f) = 2 if degToix = l, 

dT(tx,v) = \ if degToix = 2. 

Then dT(v,u2) ^ 5. We put 

P = Pi U P2 + u2v. 

Let x £ V(Si). There exist 1,1,oj 6 V(T0) such that uj + v2 ^ tx / y. Then 

y(T0) = {*«,»,«i,V2}. We put 

P = p x +uiv2 + v2y + u2vi +vix if a; = tx and JE(T0) = {xy,yvi,viv2}, 

P = Pi + uiv2 + v2Vi + vix + u2y if a; = tx and £(T0) = {xj/,yui,uw2} 

or if x = tx and E(T0) = {xy,yvi,xv2}, 

P = Pi + uiy + u2tx + txvi + vix if x = i)2 and S(T0) = {icx,tx?/,!/i;i}. 

2.3.1.3. Let |V(T0)| ^ 5. Since |V(TX)| < 5 or \V(Ty)\ < 5 for every two vertices tx, ty 

of T with the properties (l)-(3), we have x & V(S{). It follows from the induction 

hypothesis that there exists a hamiltonian x — y path P2 € ^((To)5 - M0). Since 

|V(T„)| < 4, there exists v € V(T0) such that uy e E(P2) and dr(«. '*) < 4. We put 

P = Pj UP 2 - y v + uiv + u2y if u ^ t x , 

P = Pi UP 2 - j/u + u2i) + uij/ if v = tx. 

2.3.2. For every i, i € { 1 , . . .,m) we have |V(S,)| < 5. Denote 

T0=T-V(Ty), M0 = MnE(T0). 
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Then |V (T 0 ) | > 5, M0 e M(T0), x e V(T0) and for every i, i e {1 , . • .,m}, we have 

V(Si) C V(T0). There exists v e V(T0) such that v ^ x and 1 sg dT(v,t*) < 2. It 

follows from the induction hypothesis that there exists a hamiltonian x _ v path P0 G 

W ( ( T o ) 5 - M 0 ) . Since \V(Ty)\ G {2,3} and S(T) > 5, there exists k, ke { l , - - - , m } , 

such that Sk is isomorphic to one of the elements of A, where 

A=M3,A4,A4.}-

For the sake of simplicity we shall assume that Sk e A. Then 

V(Sk) = {w1,...,wn}, where n £ {3,4}, 

dT(wj,tx) = j , for every j , j e {1,2,3}, 

dT(w4,tx)=4 if Sk = A4 and dT(w4,tx) = 3 if Sk = A4,-

Let a2 and 03 be distinct vertices of T0 such that a2w2, a3w3 e E(P0). If Sk = A4, 

then there exists h, h e {2,3}, such that ah 5̂  w4. Then dT(ah,tx) < 3. The 

component Ty is isomorphic to one of the elements of B, where 

B = {A2,A3,A3.}. 

We denote the vertices of Ty by h,..., tn (n G {2,3}) so that 

dT(tjtx)=j if j e { l , 2 } , 

c M M x ) = 3 if Ty is isomorphic to A3, 

rfr(*3*x) = 2 if Ty is isomorphic to A3,. 

Then ti = y, dT(ah,t2) ^ 5, dr(w2, t 2 ) = 4, aV(w3,t2) = 5 and d r (u , t3 ) ^ 5. We 

put 

P = P0 — ahWh + vy + aht2 + Wht2 if Ty is isomorphic to A2, 

P = P0 — a/,tu/, + vt3 + t3y + aht2 + wht2 if Ty is isomorphic to A3, 

P = P0 - ahWh + vy + aht2 + t2t3 + t3Wh if Ty is isomorphic to A3*. 

We can see that in each subcase P is the hamiltonian x - y path of T 5 - M . Thus 

the proof of Lemma 3 is complete. D 

L e m m a 4. ([4] p.63) Let G be a connected graph and let L be a subgraph of G 

which contains no cycle. Then there exists a spanning tree T of G such that L is a 

subgraph ofT. 

P r o o f of Theorem 2. Let G be a graph satisfying the conditions of Theorem 2 

and let M be an arbitrary matching in G. As follows from Lemma 4, there exists 

a spanning tree T of G such that M is a matching in T. According to Lemma 3, 

T 5 — M is hamiltonian-connected. Thus G5 - M is also hamiltonian-connected. D 



R e m a r k 6 . Let n ^ 1 be an integer, and let G be the tree of order p = 4n + 4 

which is given in Fig. 1. Let 

M = { " i i " i 2 , " i 3 " i 4 ; 1 ^ i ^ n } U {xy,w3Wi} 

be a matching in G. Then there exists no hamiltonian x - y path of G 4 — M. 

This means that the value 5 of the power in Theorem 2 is the best possible. 
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