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HAMILTONIAN CONNECTEDNESS AND A MATCHING
IN POWERS OF CONNECTED GRAPHS

ELENA WISZTOVA, Zilina

(Received March 24, 1994)

Summary. In this paper the following results are proved:

1. Let Pp be a path with n vertices, where n > 5 and n # 7,8. Let M be a matching
in Pn. Then (Pp)* — M is hamiltonian-connected.

2. Let G be a connected graph of order p > 5, and let M be a matching in G. Then
G® — M is hamiltonian-connected.
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AMS classification: 05C70, 05C45

1. INTRODUCTION

By a graph we mean a finite undirected graph with no loops or multiple edges (a
graph in the sense of [1] and [2]). If G is a graph, then we denote by V(G), E(G) and
(G) the vertex set, the edge set and the diameter of G, respectively. The number
|V(G)| is called the order of G. If u,v,w € V(G), then the degree of u in G and the
distance between v and w in G will be denoted by deggu and dg (v, w), respectively.
If W C V(G), then we denote by (W)¢ the subgraph of G induced by W.

A path connecting vertices v and v in G is referred to as v — v path in G. We say
that a graph G is hamiltonian-connected if for every pair of distinct vertices u and
v of G, there exists a hamiltonian v — v path in G.

If a spanning subgraph F of G is a regular graph of degree one, then we say that
F is a 1-factor of G. A set M C E(G) is called a matching in G if no two edges
in M are incident with the same vertex. We denote by M(G) and H(G) the set of
matchings in G and the set of hamiltonian paths of G, respectively.
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For every integer n > 1, by the n-th power G™ of G we mean the graph with
V(G™) = V(Q) and

E(G™) = {w; u,v € V(G) and 1<dg(u,v)<n}

We now mention some results concerning hamiltonian properties of powers of con-
nected graphs.

Theorem A. [5] If G is a nontrivial connected graph, then G*® is hamiltonian-
connected.

Theorem B. [6] Let G be a connected graph of order p > 4 and let M
be a matching in G. Then there exists a hamiltonian cycle C of G* such that
EC)NM=0.

Theorem C. [3] Let G be a connected graph of order p > 4. Then for every
matching M in G* there exists a hamiltonian cycle C of G* such that E(C)NM = 0.

2. REsuLts
In the present paper we prove the following two theorems:

Theorem 1. Let P, be a path with n vertices, wheren > 5 andn # 7,8. Let M
be a matching in P,. Then (P,)* — M is hamiltonian-connected.

Theorem 2. Let G be a connected graph of order p > 5 and let M be a matching
in G. Then G® — M is hamiltonian-connected.

To prove Theorem 1 we will use two lemmas and five remarks. The following
lemma immediately follows from Theorem B.

Lemma 1. Let M be a matching in a complete graph K,,, where n > 5. Then
K, — M is hamiltonian-connected.

The following notation will be useful for us.
Let n > 1 be an integer, and let wy,...,w, be mutually distinct vertices. We
denote by A, the path with

V(4n) ={wr,..,wn} and E(4,)={wwi1;1<i<n~1}
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A permutation (ki,ks,..., k) of the set {1,2,...,n} with the property that
|k = kiya| < k for every i € {1,2,...,n — 1} determines the hamiltonian path
P € H((An)*) with E(P) = {wk, Wiy, Why Wy, - -, Wk, _,w, }. The path P is a
wg, — wk, path of (4,)* and also a wy, — wy, path of (4,)*.

Finally, we define

Ape = Ap — W Wy + Wn_ow, forn>3.
Remark 1. Let M be a matching in A4. Then there exist hamiltonian w; — w3,
we — w3 and wa — wy paths of (44)% — M.

Let T be a tree of order p = 4 which is not isomorphic to A4. Then T is isomorphic
t0 A4s. For the sake of simplicity we will assume that T' = A4,. Let M be a matching
in T. For every j, j € {1,3,4}, there exists a hamiltonian ws — w; path of T2 — M.

Remark 2. Let M be a matching in As. Clearly, (4s)? is the complete graph.
It follows from Lemma 1 that (As)* — M is hamiltonian-connected.

We define the following matchings in Aj :
My = {wiwz, wawy}, M= {wiws, wews}, Mz = {wyws, wews}.

For every matching M’ € M(As) there exists k € {1,2,3)} such that M’ C M.
The permutations

(1,3,5,4,2), (1,4,5,2,3), (1,3,2,5,4), (1,4,2,3,5), (2,4,1,3,5),
(3,1,4,2,5), (4,1,3,2,5) fork=1,
(1,4,3,5,2), (1,4,2,5,3), (1,3,5,2,4), (1,4,3,2,5), (2,4,1,3,5),
(3,1,4,2,5), (4,1,3,2,5) fork=2,
(1,4,3,5,2), (1,4,2,5,3), (1,3,5,2,4), (1,3,4,2,5), (2,1,4,3,5),
(3,4,1,2,5), (4,2,1,3,5) fork=3

of the set {1,2,3,4,5} determine in (A5)® — My the hamiltonian w; —w; and w; —ws
paths, where 1 <1< j < 5.

Hence for every i,j, i € {1,2,3,4} and j € {2,3,4,5} there exist hamiltonian
w; — ws and w; — w; paths of (45)® — M.

Remark 3. Let M be a matching in As. The permutations
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(1,4,6,3,5,2), (1,4,6,2,5,3), (1,3,5,2,6,4), (1,3,6,4,2,5), (1,3,5,2,4,6),
(2,5,1,4,6,3), (2,6,3,5,1,4), (2,6,4,1,3,5), (2,5,3,1,4,6), (3,6,2,5, 1,4),
(3,6,2,4,1,5), (3,5,1,4,2,6), (4,1,3,6,2,5), (4,1,3,5,2,6), (5,2,4,1,3,6)
of the set{1,...,6} determine the hamiltonian w; — w; paths of (A¢)* — M, where
1<i<j<6.
This means that (4g)* — M is hamiltonian-connected.

Remark 4. Let M be a matching in A7. The permutations

(1,4,6,3,7,5,2), (1,4,6,2,5,7,3), (1,3,7,5,2,6,4), (1,3,7,4,6,2,5),
(1,3,7,5,2,4,6), (1,3,6,4,2,5,7), (2,6,4,1,5,7,3), (2,6,3,7,5,1,4),
(2,6,4,1,3,7,5), (2,5,7,3,1,4,6), (2,6,4,1,3,5,7), (6,2,4,1,5,7,3)
(6,2,5,7,3,1,4), (6,2,4,1,3,7,5), (6,2,4,1,5,3,7), (7,5,1,4,2,6,3),
(7,5,2,6,3,1,4), (7,3,6,2,4,1,5) ’
of the set {1,...,7} determine the hamiltonian w; — w; paths of (A7)* — M, where
i€{1,2,6,7}, 7€ {1,2,...,7} and i # j.
The permutations
(3,6,2,7,5,14), (3.6.27.415), (4,1,3,6,2,7,5) of the set {1,2,...,7} determine the
hamiltonian w3 — w4, w3 — ws, wy — ws paths of (A7)% — M.

s

If M = {wiwa, wewr}, then there exist no hamiltonian ws — wy, w3 — Ws, Wg —Ws
paths of (47)* -~ M.

This means that (A47)> — M is hamiltonian-connected and for i € {1,2,6,7},
7 €{1,2,...,,7}, i # j there exist hamiltonian w; — w; paths of (47)* — M.

Remark 5. Let M be a matching in As.

1. We denote
M, = E(As —w1) N M.

Then M; € M(Ag — wy). It follows from Remark 4 that for every j, j €
{2,4,5,6,7,8}, there exists a hamiltonian ws — w; path P; € H((Ag — w1)* — M).
Then
P = P; + wyws is a hamiltonian w; — w; path of (4s)* — M,
P = P, + wyw; is a hamiltonian w1 — w; path of (As)* — M if j = 4.
Analogously we can show that for every j, j € {1,2,...,7}, there exists a hamil-
tonian wg — w; path of (4g)* — M.
2. We denote
My = E(Ag —w; —w2 —w3) N M.

Then M, € M(Ag — w, — wz — ws). It follows from Remark 2 that for every j,j €
{4,6,7,8}, there exists a hamiltonian ws —w; path P, € H((As—w1 ~wq—w3)* —M1).
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We put

P =P, +wsws + wgwy +wawz i wiwy ¢ M,
P = P + wsw) + wyws +wswz if wiwa € M.

Then P is a hamiltonian ws — w; path of (As)4 - M.
Further, we put

P =P +wjw, +wiws +wgwe if =4 and wows ¢ M,
P =P, +wjwz + wsw; +wywp if j=4 and wyws € M.

Then P is a hamiltonian ws — ws path of (4s)* — M.
The path
P =P +wsw +wws +wew; if j=4

is a hamiltonian w, — w3 path of (4g)* — M.

Analogously we can show that for every j, j € {1,2,...,6,8}, there exists a hamil-
tonian wy — w; path of (4g)* — M.

3. The permutations

(3,8,6,2,7,5,1,4), (3,8,6,2,7,4,1,5), (3,8,5,2,7,4,1,6),
(4,1,3,8,6,2,7,5), (4,1,3,8,5,7,2,6), (5,1,3,8,4,7,2,6)

of the set {1,...,8} determine the hamiltonian w; — w; paths of (As)® — M, where
3<i<jg6.

4. If M = {w1ws, waws, wsws, wrws}, then for 4, 7, 3 <i < j < 6 there exists no
hamiltonian w; — w; path of (4s)? — M.

This means that (4g)® — M is hamiltonian-connected and for ¢ € {1,2,7,8},
j€{1,2,...,8}, i # j there exists a hamiltonian w; — w; path of (As)* — M.

Lemma 2. Let n > 9, and let M be a matching in A,. Then (4.)* — M is
hamiltonian-connected.

Proof. We distinguish the following cases and subcases:
1. Let n =9. In (Ag)* — M we shall construct hamiltonian w; — w; paths, where
1 <1< j<9. Denote

Wi = {wi,...,ws}, Wa = {ws,...,we},
G1 = (Wi)a, and Gy = (Wh)4,.
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Moreover, denote by M; and M, the matchings with the properties
M € M(Gy), My € M(G,) and My UM, = M.

11.1€i<j<50r5<i<j<0.

We prove the proposition of Lemma 2 for the case 1 < < j < 5.
If5<i<j<9, then the proof is analogous.

It follows from Remark 2 that there exists a hamiltonian w; — w; path Pi €
H((G1)*~ M;) and a hamiltonian ws —we path P, € H((G)*— Ms). If w; = wy, then
according to Remark 2 there exists a hamiltonian w; —ws path P, € H((G1)? - M1)-
This implies that there exists 2 € V(G1) such that zws € E(P;) and z # w;.

Then d4,(z, ws) < 4. We put

P = (P, UP;) — zws + Tws.

Then P is a hamiltonian w; — w; path of (Ag)* — M.

12. 1€i<5and 5<j5<9.
According to Lemma, 1 there exists a hamiltonian w; — ws path P; € H((G1)* — M1)
and a hamiltonian ws — w; path P; € H((G2)* — M2). We put

P=PUP,

Then P is a hamiltonian w; — w; path of (4g)* — M.
From these two subcases it follows that (Ag)* — M is hamiltonian-connected.
2. Let n > 10. Assume that for every tree A,,, where 9 < m < n, it is proved
that (4,.)* — M* is hamiltonian-connected for any matching M* € M(An).
In (A,)* — M we shall construct hamiltonian w; — w; paths, where 1 <i < j < n.
21.1<i<j<bor(n—4)<i<j<n.
We prove the proposition of Lemma 2 for the case 1 <1< j < 5. If (n—4) i<
J < n, then the proof is analogous. Denote

Wy = {wy,...,ws}, Wo = {ws,..,wa},

Gy = (Wh)a, and G, = (Wa)a,.

Moreover, denote by M; and M, the matchings with the properties
M, € M(G,), Mz € M(G;) and My UM, =M.

It follows from the induction hypothesis and Remarks 3, 4, 5 that there exists
a hamiltonian ws — we path P» € H((G2)* — M2). It follows from Remark 2 that
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there exists a hamiltonian w; — w; path P € H((G1)* - M;) and if w; = ws,
then Py € H((G1)® — Mi). This implies that there exists x € V(Gi1) such that
zws € E(P) and z # wy. Then da, (z,ws) < 4 and

P =(PLUP,) - zws + Twe
is a hamiltonian w; — w; path of (4,)* — M.
22, 1€i<4 and 6<j<norb5<i<j<n—-4or5<i<n—5and
n—-3<j<n
2.2.1. There exists wi € V(A,) with the property
1) i<k<j and 5<k<n—4.

Denote

Wi = {wi,..,w}, Wy = {wi, wet1, .. wn},
Gy = (Wi)a, and Gz = (W2)a,.

Further, denote by M; and M, the matchings with the properties
M; € M(Gy), Mz € M(G;) and My UMs =M.

According to the induction hypothesis and Remarks 2, 3, 4, 5 there exists a
hamiltonian w; — wx path P, € H({G;)* — M1) and a hamiltonian wy — w; path
Py € H((G2)* — M3). Then

P=PUP,
is a hamiltonian w; — w; path of (A,)% - M.

2.2.2. There exists no wy; € V(A,) with the property (1). Then w;w; € E(4xn)
and 5 < ¢ < j < n—4. Hence w; = wiyg.

We denote by Gy or G the component of A,, — w;w;4) which contains w; or wiy1,
respectively. Further, we denote by M; and M, the matchings with the properties

M; € M(Gy), My € M(G2), My = MNE(Gy) and M, = M E(Gy).

It follows from the induction hypothesis and Remarks 2, 3, 4, 5 that there exists
a hamiltonian w;_; — w; path P € H((G1)* — M1) and a hamiltonian w4, — wi+2
path P, € H((G2)* — M5). Then

P =P UP, + Wit1Wis2

is a hamiltonian w; — w; path of (4,)! — M.
From this subcases it follows that (4,,)* — M is hamiltonian-connected. Thus the
proof of Lemma 2 is complete. a
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Theorem 1 immediately follows from Lemma 2 and Remarks 2 and 3.
To prove Theorem 2 we will use the previous lemmas and remarks as well as the
two following lemmas.

Lemma 3. Let T be a tree of order p > 5 and let M be a matching in T. Then
T3 — M is hamiltonian-connected. :
Proof. The cases when p € {5,6,7} follows immediately from Lemma 1 and
Remark 4.
Let p = 8. If T is isomorphic to Ag, or 6(T) < 5, then the proposition of Lemma
3 follows from Remark 5 and Lemma 1.
Denote

Ty = Ag., ‘
T = Ag — wrwg + wsws, .

T3 = Ag — wrws + waws,

T ={T1,T>, T3}

If T is not isomorphic to Ag and §(T) > 5, then T is isomorphic to one of the
elements of 7. For the sake of simplicity we shall assume that T € 7. Further, we
denote

Mo = E(T —ws) N M.

Then T — wg = A7 and My € M(A7). It follows from Remark 4 that there exists a
hamiltonian w; — w; path Py € H((A47)° — Mp), where 4,5 € {1,...,7},i # j. Since
|E(Po)| = 6, there exist integers k,1, k,I € {1,...,7},k # 1, such that wrw, € E(R)
and

k1¢{1,6} if T=T,

k1£5 if T=T,
kl#4 if T=Ts.

Then
P = Py — wyw; + wpwg + wiws is a hamiltonian w; — w; path of 7% — M, where
hie{l,.., 7,

P = Po+wjwsg is a hamiltonian w;—wg path of T®~ M if j = 3and i € {1,2,4,5,6,7},
P = Po + w;wg is a hamiltonian w3 — wg path of 7% — M if i =2 and j = 3.

This means that for p = 8 the statement of Lemma 3 is correct.

Let p > 9. Assume that for every tree T* of order p*, where 5 < p* < p, it is
proved that (7*)° — M* is hamiltonian-connected for any matching M* € M(T*).

312



If T is isomorphic to A, or if §(T) < 5, then the result follows from Lemma 2 or
Lemma 1. We shall assume that T is not isomorphic to A, and §(T) > 5.

Let z and y be arbitrary distinct vertices of 7. We shall construct a hamiltonian
z —y path P of TS — M.
We denote by t., t, the vertices of T with the following properties:

(1) tzty € E(T),

(2) tz,ty belong to the z — y path in T,

3) 0<dr(ts,z) < dr(ty,z).
Then T —t.t, has two components. We denote by T or T, the component of T —t.t,
which contains z, t; or y, ty, respectively. Further, we denote by M, and M, the
matching with the properties

M, € M(T,), My e M(T,), M, =MNE(T,) and M, =MnE(T,).
We define graphs 71 and T5:
Ty =T, and V(Tp) =V(Ty) U {t.}, E(T2) = E(T,) U {t.ty}.
Finally, we denote by M; and M, the matchings with the properties
My € M(Th), My € M(T3), M1 = M, and M, = M nE(Ty).

We distinguish the following cases and subcases:

1. There exist t,,t, € V(T') with the properties (1)-(3) such that |V (T;)| > 5 and
|V(Ty)| 2 5. Then |V(T1)| > 5 and |V(T2)| > 5.

1.1. Let t; # z. According to the induction hypothesis there exists a hamiltonian
x —t, path P € H((T1)° — M)) and a hamiltonian ¢, — y path P; € H((T2)® - My).
We put

P=PUP,.

1.2. Let t, = z. We denote by z; the vertex of T, with the property that
zz1 € E(T). If ty, =y, then we denote by y1 the vertex of T, with the property that
yy1 € E(T,). Then dr(z1,ty) = 2 and dr(z1,1) = 3. It follows from the induction
hypothesis that there exists a hamiltonian z — z; path P € H((T:)® — M) and a
hamiltonian path P, € H((Ty)® — M,). Let us suppose that

P is a hamiltonian ty — ¥ path if ¢, #y
P,is a hamiltonian y1 — ¥ path if ¢, =y.
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We put

P=PiUP+aity, if t,#y
P=PUP+xy, if t,=v.

2. For every two vertices ¢, t, with the properties (1)~(3) we have |V (T%)| < 5 or
[V(Ty)| < 5. We put t, = y. Without loss of generality we assume that |V (Ty)| < 5.
2.1. Let |[V(Ty)| = 1. Then V(Ty) = {y} and |[V(T.)| 2 8. There exists u € V(T5)
such that u # z,u # t; and 1 < dr(u,t;) € 2. Then 2 < dr(u,y) < 3. It
follows from the induction hypothesis that there exists a hamiltonian z — u path
Py € H((T:)® — M.). We put
P =P +uy.
2.2. Let [V(Ty)| = 4. According to Remark 1 there exists a hamiltonian y — v
path P, € H((Ty)® — M), where v € V(T,) and

dr{v,y) =1 if Ty is not isomorphic to Ay,

dr{v,y) =2 if Ty is isomorphic to A,4.

Since |V(Ty)| = 4 and p > 9, we have |[V(T%)| > 5. We denote by u the vertex with
the properties

ueV(T.), u#z and dr(u,y) <2
Then dp(u,v) < 4. It follows from the induction hypothesis that there exists a
hamiltonian z — u path P, € H((T})% — M.). We put

P =P UP+vu.

2.3. Let 1 < |V(Ty)| < 4. Let S1,...,5n be all components of T — ¢, which are
different from T,. We denote by Ly,..., Lm the matchings in Sy,..., S, such that
Li=MnE(S;) forj=1,...,m.

2.3.1. There exists 7, ¢ € {1,...,m} such that |[V(S;)] > 5.

Then there exist ui,uz € V(S;) such that u; # w2 # z, dr(u,t:) < 2,1 <
dr(ua,t;) < 3, and if z € V(S;), then dp(u1,t:) = 1. According to the induction
hypothesis there exists a hamiltonian path P; € H((S;)® — L:). Let us suppose that

P is a hamiltonian u; — up path if 2 & V(S;),
P, is a hamiltonian uy — z path if z € V(S;).

Denote
To=T-V(S:).
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Then Ty is a tree, [V (To)] > 3 and y € V(To). Further we denote by Mo the matching
in Tp such that Mo = M N E(To).

2.3.1.1. Let |V (To)| = 3. Then m =i = 1 and there exists v € V(7o) such that
V(To) = {tz,y,v} and E(Tp) = {t.y,yv}. l = € V(51), then & =t,. We put

P=P +uv+vr+uy if z€V(S),
P=P tupw+vte+ty if z€V(S)andt,yg M,
P=P +ugt, +tz,v4+vy if z€V(S)andt,ye M.

2.3.1.2. Let [V(Tp)| = 4. Assume that ¢ € V(S;). Then according to Remark 1
there exists a hamiltonian y — v path Py € H((To)® — My), where v € V(T0), v # ¥
and

dr(tz,v) =2 if degrt. =1,

dr(tz,v) =1 if degrt. =2.

Then dr(v,us) < 5. We put
P =P UP+ug.

Let z & V(S;). There exist vy,vy € V(To) such that v; # vz # t, # y. Then
V(To) = {ta, y,v1,v2}. We put

P =P +uvp +voy +ugvy + 3z if T =1, and E(Tp) = {zy,yv1,v1v2},

P=P +uv, +vu +01z+uy if «=t: and E(Tp) = {zy,yv1,yv2}
or if z=t, and E(Tp) = {zy,yv1, 702},

P=P +wy+ust, +t.01 +vz if z=v; and E(Tp) = {2ts, ty,yv1}

2.3.1.3. Let [V(To)| 2 5. Since |V(Ty)| < 5 or [V(Ty)] < 5 for every two vertices t., ty
of T with the properties (1)-(3), we have z & V(S;). It follows from the induction
hypothesis that there exists a hamiltonian = — y path P, € H((To)® — Mo). Since
[V (Ty)| < 4, there exists v € V(Tp) such that vy € E(P,) and dr(v,t:) < 4. We put

P=PUP, —yv+uv+usy if v#ts,
P=PUP,—yv+uw+wmy if v=ts.

2.3.2. For every i, 1 € {1,...,m} we have |V(Si)| < 5. Denote
To=T~V(T,), Mo=MnET)
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Then |V (Ty)| > 5, Mo € M(Tp), € V(Ty) and for every i, i € {1,...,m}, we have
V(8;) C V(Tp). There exists v € V(Tp) such that v # = and 1 < dr(v, =) < 2. It
follows from the induction hypothesis that there exists a hamiltonian & —v path P €
H((To)® — My). Since |V (Ty)| € {2,3} and §(T) > 5, there exists k, k € {1,-...,m},
such that Sj is isomorphic to one of the elements of A, where

A = {A3, Ay, Ags}.
For the sake of simplicity we shall assume that Sx € A. Then
V(S:) = {w1,...,wn}, wheren ¢ {3,4},
dr(w;,t:) = j, foreveryj, j € {1,2,3},
dr(wa,t;) =4 if Si=As and dr(wsts)=3 if Sk=As.
Let a2 and a3 be distinct vertices of Ty such that ayws, azws € E(Fo). If Sy = Aq,
then there exists h, h € {2,3}, such that ar # ws. Then dr(an,t;) < 3. The
component 7Y is isomorphic to one of the elements of B, where
B = {Az, A3, As. }.
We denote the vertices of Ty by t1,...,t. (n € {2,3}) so that
dr(tjtz) =35 if je{1,2},
dr(tstz) =3 if Tyis isomorphic to As,
dr(tstz) =2 if T is isomorphic to As..
Then ¢ =y, dr(an,t2) < 5, dp(ws, t2) = 4, dr(ws, t2) = 5 and dr(v,t3) < 5. We
put
P =Py —apwn + vy +anty + wata if Ty is isomorphic to As,
P = Py — apwn + vtz + t3y + antz + wpty if Ty is isomorphic to Az,
P =Py — apwn + vy + anta + tats + tawy  if Ty is isomorphic to As..
We can see that in each subcase P is the hamiltonian z ~ y path of 7% — M. Thus

the proof of Lemma 3 is complete. m]

Lemma 4. ([4] p.63) Let G be a connected graph and let L be a subgraph of G
which contains no cycle. Then there exists a spanning tree T' of G such that L is a
subgraph of T.

Proof of Theorem 2. Let G be a graph satisfying the conditions of Theorem 2
and let M be an arbitrary matching in G. As follows from Lemma 4, there exists
a spanning tree T of G such that M is a matching in 7. According to Lemma 3,
T% — M is hamiltonian-connected. Thus G® — M is also hamiltonian-connected. [
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Remark 6. Let n > 1 be an integer, and let G be the tree of order p = 4n + 4
which is given in Fig. 1. Let

M = {unuiz, uizuig; 1 <@ < n}pU {2y, waws}

be a matching in G. Then there exists no hamiltonian z — y path of G* — M.

This means that the value 5 of the power in Theorem 2 is the best possible.

Fig. 1
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