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INERTIAL LAW OF QUADRATIC FORMS ON MODULES 

OVER PLURAL ALGEBRA 

MAREK JUKL, Olomouc 

(Received December 28, 1993) 

Summary. Quadratic forms on a free finite-dimensional module are investigated. It is 
shown that the inertial law can be suitably generalized provided the vector space is replaced 
by a free finite-dimensional module over a certain linear algebra over R (real plural algebra) 
introduced in [1]. 
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I. INTRODUCTION 

Defin i t ion 1.1. The real plural algebra of order m is every linear algebra A on 

R having as a vector space over R a basis 

{l ,?) ,??2 , . . . , )?"1"1}, w i t h ? 7 m = 0 . 

Definit ion 1.2. The system of projections A —• R is a system of mappings pk • 

A onto R, defined for k = 0, . . . , m — 1, as follows: 

m - l 

V / ? e A , / 3 = V j 6 ^ ; Pk(P)d=!bk. 
t=0 

To make the paper selfcontained we present several propositions proved in [1]. 

P r o p o s i t i o n 1.3. A is a local ring with the maximal ideal r/A. The ideals i)JA, 

1 ^ j ^ m, are all ideals of A. 
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Proposi t ion 1.4. The ring A is isomorphic to the factor ring of polynomials 

R[x]/(xm)-

A g r e e m e n t 1.5. Throughout the paper we denote by A the R-algebra in­

troduced in this section. The capital M always denotes the free finite-dimensional 

module over the algebra A. 

Proposi t ion 1.6. Let {E\,... ,En} be a (linearly independent) system of gener­

ators of a module M . IfUt,...,Uk are linearly independent elements from M then 

(1) k^n, 

(2) After a suitable renumbering of the elements Ei,...,En, {Ui,...,Uk, 

Ek+i,. • •, En} will be a (linearly independent) set of generators of M. 

Propos i t ion 1.7. Let S = {Ei, ...,En} be a basis of the A-module M . Let us 

define a system P0, ..., Pm-i of vector spaces over R: 

Pj = [viE1,...,n
jEn], 0 < j < m - l . 

If we view M as an R-vector space, then the following statements are valid: 

( I ) M = e'p,-, 
3=0 

(2) VX € M 3\(X0,..., X m _ i ) eP0
n;X = * £ rfXj. 

3=0 

T h e o r e m 1.8. If ip: M. -> A is a linear form such that (Imtp \ nA) _̂ 0 then 

there exists exactly one free (n — l)-dimensional submodule JY of M such that 

Jf = Kervp. 

II . BILINEAR FORMS ON MODULES OVER THE ALGEBRA A 

The relations between bilinear forms, their projections and bilinear forms P2, -> R 

from Proposition II.5 are similar to those between analogous objects in the case 

of linear forms described in [1]. Thus the proofs of Propositions II.1-II.6 will be 

omitted. 

Propos i t ion II. 1 . Let «_ : M 2 —> A be a bilinear form. Then there exists exactly 

one system of bilinear forms $ 0 , • •., $ m - i : M 2 -> R such that 

m-l 

j=0 
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Defin i t ion II .2. The bilinear forms $ 0 , • • •, $ m - i : M 2 -> R from Proposition 

II.1 will be called projections o / $ ($j is the j-th projection). 

Propos i t ion II .3 . If $ 0 , • • •, * m - i : M 2 -» R are biJinear forms then the map-
m - l 

ping $ = 53 $jrf is a bilinear form M 2 -> A if and onJy ifVX, Y e M : 

( l ) $ o ( » ? X , y ) = 0 , 

(2) $k(nX,Y) = * f c _i (X, Y), 1 < k < m - 1, 

( 3 ) $ 0 ( X , n y ) = 0 , 

(4) * f c ( X , n y ) = $ * - i ( X , IT), 1 < fc < m - 1. 

Propos i t ion II .4 . Let $o, •••, $ m - i : M 2 -> R be a system of bilinear forms 
m - l m - 1 

such that 53 -^nJ is a biJinear form M 2 -> A. Then VX, Y € M , X = 53 r^X,-, 
j=o j=o 

K = E " f c n , Yk, Xj e P0 we have 

k 1 

*k(X,Y) = J2Y,**-i(x»'YJ-h)> 0< fc<m- l . 
j = 0 h=0 

Propos i t ion I I . 5 . Let $ : M 2 -> A be a biJinear form, let $ 0 , • • •, $ m - i be a 

system of its projections. Then there exists exactly one system of bilinear forms 

F0,..., F m _ i : P 2 ->• R such that VX, Y e M , X = " £ n^'X,-, K = *53 n * ^ , X,-, 
j = 0 fc=0 

Yk e Po the foJJowing relation is true: 

k j 

(*) $fc(x,y) = ^yjF,_ j (x / l ,y ,_ , ) , o < / v < m - i . 
j = 0 h=0 

P r o p o s i t i o n I I .6. Let {E,}™^1 be a system of bilinear forms P2, -> R and Jet 

j**,}™^1 be the system of bilinear forms M 2 -> R defined as follows: VX, Y e M , 

x = m53Vx,-,y = m53Vyfc; 
i =0 fc=o 

fc i 

(**) $k(X,Y) = ^2YlFK-j(x»>YJ-»)> 0 < * < m - l . 
j = 0 /i=0 

Then the mapping $ = 53 $*"' ' is a bilinear form M 2 -4 A determined uniqueJy 
fc=0 

by the system {Fj}. 
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Definition II.7. A bilinear form $ : M 2 -4 A is called a bilinear form of order 

k (0 s: k s. m) if 

(1) V(X,y ) 6 M 2 ; *(__,y) 6 ^ A , 

(2) 3(U, V) e M 2 ; *(£/, V) $ nk+1 A. 

In the special case k = 0 the bilinear form is called the epiform. 

Propos i t ion II .8. I/<_ is a bilinear form of order k then there exists at least one 

epiform A such that 

$ = »7*A. 

P r o o f . Let $ be a bilinear form of order k. Hence we have 

(*) * 0 = * i = . . . = - „_ i -=0A3(t/*,V) e M 2 ; * 4 ( £ t , V ) - - 0 . 

Let us denote $* = $«. + . . . + 77m_* :~1|_ ,
m-i- Then $ = 77*$*, though generally 

$* is not a bilinear form M -> A. According to Proposition II.5 there is a uniquely 

determined system [Fj] of bilinear forms P2, -> R fulfilling II.5.(*) for the bilinear 

form $ . Since II.8.(*) is true we have from II.5.(+): 

(**) Eo = Ei = • • • = E*-i = 0. 

Let us define a system {.ffjJyLo of bilinear forms P2, -» R as follows. Let 

(***) H0 = Fk, _ / i = E „ + i , . . . , _ T m _ f c _ i = Em_i 

and let bilinear forms Hm_k, ..., __",__ 1 be chosen arbitrarily. 

With respect to Proposition II.6 for the system {H0,.. • ,Hm-k-i,Hm-k,..., 

E-i-i} we have the system {A^} of bilinear forms M 2 -> R given by 

* 3 

Ak(X,Y) = J2Y, Bk-j(Xk,Yj-k), 0 s$ k < m- 1, 
3=0 h=0 

m - l 
for which A defined by A = £ Aj7jJ' is a bilinear form M 2 -4 A. For r ^ k we get 

. = 0 

[using (**), (***)]: vx, y e M, x = E V * . , v = E V ^ * ; 
j = 0 fc=0 

r 3 r-k 3 

*r{X,Y) = ^J2Fr.j(Xh,Yj.h) = £ £Fr_i(X*,y/_fc) 
j = 0 h=o j = 0 fc=0 

r-fc . 

= _C _L ff(r-*)-i(Xfe, y,--k) = Ar_fe, fc <C r «: m - k - 1, 
jssO fc=0 

i.e. Ao = *„ ,Ai = $fc+i , . . . ,Am_/i_i = $ m _ i . Clearly ^ A = <_ and since 3(f, V) e 

M 2 . $fc(t/, V) = A0(U, V) 5_ 0, A is an epiform. D 
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A g r e e m e n t II.9. In what follows 2 $ denotes the quadratic form determined 

by the symmetric bilinear form $ . 

Propos i t ion 11.10. Let 2 $ be a quadratic form on the module M . Then there 

exists a polar basis ofM with respect to 2 $ . 

P r o o f by induction for n = dim M . 

1. The proposition is clear for n = 1. 

2. Let Proposition 11.10 be true for all (n - l)-dimensional A-modules, n >. 2. 

(a) Let * be a symmetric epiform, i.e. 3({7, V) e M 2 ; $([ / , V) is a unit. Then 

there exists Y G M such that 2 $ ( y ) is a unit. Indeed, in the opposite case, we 

should have *({/ , V) = \\^(U + V) - 2$(U) - 2$(V)] e nA for any (U, V) e M 2 , 

a contradiction. Thus the linear form f(X) = $(X, Y) is an epiform M -> A. 

According to Theorem 1.8 the kernel of $ is the free (n — l)-dimensional module JY', 

i.e. V w e M j H ' e / f t $(W,Y) = 0. Due to the induction hypothesis we get that 

jY has a polar basis \U\,..., Un-\} of the quadratic form 2$ljY. 

Since 2<3>(K) is a unit we may easily see that {U\,... , J7 n _ 1 , y} is a linearly inde­

pendent system. 

Putt ing Un = Y, we obtain a polar basis {Ui,..., Un-i,Un} of M (according to 

Proposition 1.6). 

(b) Let $ be a bilinear form of order k (^ 0). According to Proposition II.8 there 

exists a bilinear epiform * with $ = nfc\P. By (a) we can construct a polar basis for 

the form * , i.e. [Ui,..., Un] = M and for i ^ j , j ^ n we have *( l / ; , fJj) = 0, hence 

§(Ui,Uj) = nk^(Ui,Uj) = 0 . D 

Def in i t ion 11 .11 . A polar basis {U\, ••., Un} of a quadratic form on the module 

M is called the normal polar basis if for every i, 1 ^ i ^ n, there exists k, 0 < k ^ m, 

such that 

»_(U.) = ±17*. 

T h e o r e m 11.12. Let a quadratic form 2 $ on the A-moduie M be given. Then 

there exists a normal polar basis of M with respect to 2 $ . 

P r o o f . Let 23> be a quadratic form M -> A and let {U\,..., Un} be its polar 

basis. Putt ing 7; = 2$(Ui), 1 ^ i ^ n, we can write every 7; in the form 7; = 

±nfcW£,, where £; is a unit for which po(£i) > 0. By Proposition 1.4 in [1] we have 

a unit a ; such that a? = eit Vi, 1 < i ^ n. Let us put W; = £-U{ for every i. Then 

we obtain 2$(Wi) = i n ^ ' , Vi, 1 < i < n. Evidently, $(Wi, Wj) = 0 for i jt j and 

the system of vectors {Wi} is linearly independent (since a; are units). D 
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I I I . INERTIAL LAWS OF QUADRATIC FORMS ON A - M O D U L E S M 

Defini t ion 111.1. Let 2 $ be a quadratic form on M and let ^ = {C t i , . . . , t-tn} 

be its normal polar basis. Putting 7; = 2<J>(t/i), 1 < i ^ n, we define a system of sets 

as follows: 

/ t = { ! ' eN(n) ;7 i = i n ' } , 0 ^ k < m. 

If we denote 7rjt = caxd(J'k), 0 ^ k ^ m, then 

€h( 2#,_' ) = (7ro,...,7rOT) 

is called the characteristic of the quadratic form 23> w'i/i respect to the basis %. 

Defini t ion I I I . 2 . For any quadratic form 2 $ on M , let us denote by ~¥® the 

set {Y e M ; r ? f c $ ( X , y ) = 0 , V I e M } , 0 < K m . 

The following lemma is evident: 

L e m m a I II .3. If0// is a basis ofM and 2 $ is a quadratic form, then 

rfc* = {y e M ; n
fc*(c/,y) = o,vrj e _'}, o ̂  k ^ m. 

Propos i t ion III.4. Let 2 $ be a quadratic form on M and let °l/ be its normal 

polar basis. Then Y* is a submodule of M and as an R-vector space it has the 

dimension 
m-k-l m 

djmrfc*= VJ (k + j)nj+m J2 *h 
j=0 j=m-k 

where (n0,...,irm) = £h( 2 $ ,<^) . 

P r o o f . rfc* is clearly a submodule of M . Let & = {Uu..., Un) and let us 

consider a Y e M , y = f ) C*o»- Putting 7, = 2*(t-ti), i e N(n), we obtain: 
i= l 

F e r t * » V i , l < i ^ n ; n f e*(tti, Y) = 0 <=> Vi, 1 < i < n; 17-7,^ = 0. According to 

Definition III.l we get that Y e V* if and only if the following conditions are valid: 

(0) 

(1) 

Ы 

(m-k-l) 

(m-k) 

= УmV +УаV 
„ ™_fc_i , 

i e J^O => C 

i 6 A =*" C 

6 ^ => C 

e J ^ - f c - i => Ci = i/io" + • • • + yim-^rT' 
k 

6 ( J ^ m - a => Ci - A . where all Sto -

г - f c + 1 + - - . + t o - i П 

+ УikVm~1 

+ Уiк+j-ïVr O^j ^ m - k - l 
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Let us construct the following system of submodules in yk: 

y* - [ Y 6 M ; Y 6 if /\Y = £ C.tf.}, 0 ^ j ^ m. 

The condition (0) implies that | J {nm-kUi,..., T / " 1 - 1 ^ } is an R-basis of yk%, there-

fore dimR yk0 = ix0k. Analogously, conditions (j) imply that dimR yk* = nj(k + j), 

O ^ j ^ m — k — 1, and the condition (m — k) implies that dimR yk- = 7r.,m, 

m - k ^ j ^ m . Evidently, yk* = © 1$. Thus we have 

dl
R

mr^ = £ d l
R

m ^ = £ (* + ->J + ™ £ "3-
j = 0 3=0 j=m-fc 

T h e o r e m I I I . 5 . Let a quadratic form 2 $ on M be given. Iffy, y are arbitrary 

normal polar bases of the form 2 $ , then 

eh(2*,^) = £h(2*,r). 

P r o o f . Let € h ( 2 $ , W) = ( T T 0 , . . . , jrTO)• Then Proposition III.4 implies 

m-k m 
di

R
mr* = £^( f c+^+ £ ^m' 

j = 0 j = m - l ! + l 

m-k m 

dim rfc* , = £ (wj(k + j) - TTJ) + £ rtjm. 

Consequently, we have dimR yk* - dimR if-1 = £ vi-
3=0 

m-k 
Let C h ( 2 * , y ) = (u0,...,vm). Then we obtain dimR r * - dimR yk*_, = £ ffc, 

n=0 

i . e . m E Tj = m E "h-
j = 0 /i=0 

Putt ing fc = m, m — 1 , . . . , 0, we get 

m - l m - 1 

TO = " 0 , TO + Tl = ^0 + ^ 1 , • • • , £ Tj + 7Tm = £ Vh + Vm, 
3=0 h=0 

which successively yields jr0 = Mo, * . s f i , • •-, «"„, = um. D 

261 



Definition III.6. Let 2 _• be a quadratic form on M and let % = {Uu..., Un} 

be its normal polar basis. Putting 7; = 2 _•([/,-), i e N(n), we define a system of sets 

as follows: 

Pk = {ieN(n); fi=vk}, 

Nk = {i £ H(n) i 7 . = - i?*} , 0 < k < m - 1. 

If we denote pj, = cardpt , n* = cardNk, 0 <: k < m — 1, then 

# ( 2 * , * ) = (Po, • • • , p m - i , n 0 , . . . , n m _ i ) 

is called the plural signature of the quadratic form 2$ with respect to the basis <&. 

T h e o r e m III .7. Let a quadratic form 2 $ on M be given. Iffy, V are arbitrary-

normal polar bases of the form 2 $ , then 

<g(2<$>,W) = <g<2<T>,y). 

P r o o f . Let <% = {Ui,...,Um}, X e M , X = f^^Ui, arbitrary. Then (ac-

i=\ 
cording to Definition III.6) we get 

2*(*) = £ 7 ^ = £ ( £ f . V - £ ? , V 
i = l h=0 M6P|, i£Nh 

If£» = l r W . t h e n 
3=0 

MX) = £ ( £ ^ W + * + * - £ xijXikvi+k+h) 
h=0 ^j+k=0 j+k=0 

m - 1 , \ 

= £ £ *«*«*- £ *w*-.)«r-

Denoting 

2 $ s = V J x y _ f t - V J ay! -* , O ^ s ^ m - 1 

j+fc=s-/ i y+*=s-A 
0</.<s 0<h<s 
iePj, • ' £ % 



we obtain quadratic forms M -> R such that 2$ = __ $sr;s. 
s=0 

Let us consider X e ^ - s - This is equivalent to the following relations for {^ij} 
n m-1 

[X = J_ ZtUi, & = J_ Xijrf, see the proof of Proposition III.4, Jh = Ph U JVh]: 
i=l j=0 

(0) i e J^o => _ i 0 = . . . = Xis-i = 0 

(1) i € J*i =*•»«) = ••• = Zis-2 = 0 

(ft) i € A =*• «io = . . . = Xis-h-i = 0 , 0 ^ h ^ s - 1; 

(s - 1) i e J ^ - i =*• a;i0 = 0 

(s) i e ( J c/ r => £y are arbitrary. 

If we put 2Es = 2 * s / ^ - s > 0 < s < m - 1, then conditions (0), . . . , (s - 1) imply 

2Es = V J xfo + V^ XijXik - V J a;?0 - J Z -^i*** 
/i=s j+k=s-h /i=s j+fc=s-/i 
ieP, 0<h<s ieJV, 0<h<s 

ieP„ iew,, 

=>• 2Es = V J x?0 - V J xfo, 0 ^ s ^ m - 1. 
iePs i€N, 

Since every 2ES is a real quadratic form on the vector space f*_s, (p s ,n s) is its 

signature. This implies the invariance of the plural signature of the form $ . • 
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