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Summary. The properties of solutions of the nonlinear differential equation x' = A(s)x + 
f(s, x) in a Banach space and of the special case of the homogeneous linear differential 
equation x = A(s)x are studied. Theorems and conditions guaranteeing boundedness of 
the solution of the nonlinear equation are given on the assumption that the solutions of the 
linear homogeneous equation have certain properties. 
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Many problems related to the existence and unicity of solutions of differential 
equations in a Banach space can be transferred to the problem of existence and 
unicity of a fixed point of a certain mapping of the Banach space into itself. Among 
various criteria of the existence and unicity of a fixed point of a mapping the principle 
of contractive mappings can be considered as one of the simplest and simultaneously 
the most important criteria. 

If (Bf ||. ||) is a Banach space then a mapping Z: B —• B is called contractive if 
and only if there exists a constant k 6 (0,1) such that for any two points x,y 6 B 
the inequality \\Zx — Zy\\ ^ k\\x - y\\ holds. Each point x £ B for which Zx = x is 
called a fixed point of the mapping Z, For these points the so-called Banach Fixed 
Point Theorem hold: 

Every contractive mapping Z: B —> B in a Banach space has exactly one fixed 
point. 

1 



We shall use this theorem for determining the bounded solutions of a differential 
equation 

(1) x' = A(s)x + f(s,x) 

in a Banach space (B, ||. | |), whose particular case is the equation 

(2) x' = A(s)x. 

The symbol x' denotes the derivative ds/ds, A: B —• B is a bounded linear 
mapping continuous on the interval J = (0, -foo), / : J x B —» B is such a continuous 
mapping that for any (Bo.#o) 6 J x B there exists exactly one solution x: J —+ B 

of the differential equation with the property that for each s G J we have x'(s) = 
A(s)x(s) + / (« , x(s)) and x(s0) = x0. 

In the paper [1] it is proved that for any SQ E J there exists a bounded linear 
mapping F(s): B —+ .9 for s G J, the so-called fundamental mapping of the equation 
(2), and its inverse bounded mapping F_1(B): B -+ B such that F(so) is the identical 
mapping I: B —* B and for all s G J the following equalities hold: 

F'(s) = A(s)oF(s)i 

x(s) = F(s)x0 + F(s) f F~l(t)f(t, x(t)) dt. 

We say that a solution x: J —• B of the equation (1) is bounded if and only if there 
exists a constant k > 0 such that for any s G J the inequality ||x(s)|| ^ k holds. 

The set of all solutions of the equation (2) consists of two disjoint sets: of the 
set M\ of all bounded solutions and of the set M2 of all unbounded solutions. The 
set M\ is non-empty, because the equation (2) has always the zero solution which is 
bounded. Every linear combination of two bounded solutions of the equation (2) is 
again a bounded solution of this equation. This implies that for each SQ G J the set 

(3) B\(SQ) = {XQ G B: there exists a solution x G M\ for which x(so) = xo} 

is a vector subspace of the space 6 . 
Therefore there exists an algebraic projection P\ of the space B onto the space 

B\(SQ), i.e. a linear mapping P\: B -+ B\(SQ) with the set of values P\(B) = B\(so) 

that Pi o P\ = P\. The mapping P 2 : B -> B defined by 

(4) . ft = / - P i 

is also an algebraic projection with the set of values P2(B) which is called the direct 

complement of the vector space P\(B). In the case when the operators Pi , P2 are 

continuous we call them projectors. 



R e m a r k 1. If P\: B —* B\ (SQ) is a non-zero algebraic projection onto the space 
B\(SQ), then the equation (2) has at least one non-zero bounded solution. 

If the equation (2) has exactly one bounded solution, then there exists exactly 

one projector P\: B —+ B\(SQ) onto the space B\(SQ) and this projector is the zero 

projector 0. 

If we denote by h the derivative of the norm of the linear mapping by h(A) = 

lim(||I + tA\\ — l)/t for t —» 0+, where I: B —• B is the identical mapping, then the 

results of [2] imply the following propositions. 

Proposition 2. If x is a solution of the equation (2) such that X(SQ) = XQ, then 

for each s ^ SQ we have 

( H I exp [- J' h{-A{a)) d<x] «C ||*(«)|| ^ | |z0 | | exp [J' h{A{cr)) d<r], 

whenever the integrals are defined. 

Proposition 3. In the equation (2) let A(s) = A\ +A2(s), where A\ is a constant 

bounded linear mapping. If x is a solution of the equation (2) and X(SQ) = XQ, then 

the following implications hold: 

(i) h(A\) = 0, / + ° ° h(A2(a)) da < +oo =-> the solution x is bounded; 

(ii) h(A\) < 0, / + 0 0 h(A2(a)) da < +oo =• ^ Urn̂  \\x(s)\\ = 0; 

(iii) - h ( - - 4 i ) > 0, - / * ° ° h(-A2(a)) da > - co , xQ £ o => ^ Hm \\x(s)\\ = +oo; 

(iv) -A(- i4 i ) = 0, - f+°° h(-A2(a)) da =+oo, xQ ^ o => j im ||a?(*)|| = +oo. 

On the set C(SQ) of all continuous bounded mappings g: J(SQ) = (so,+co) —• B 

let us define the norm ||. \\c by 

l l t l | |c=8up{| | f f(«) | | :«€J(«o)}. 

Then the vector space C(SQ) with the norm ||. \\c is a Banach space. 

If G\: B —> £?, G2 : B —• 5 are linear continuous operators for which 

(5) G i + G 2 = / 

holds and sQ £ J, J(so) = (so,+oo), then the symbol G(SQ,G\) will denote the set 
of all continuous mappings / : J x B —> B having the following properties: 

(i) For each f E G($o,Gi) there exists a constant kf > 0 such that for each 

s G J(SQ) we have 

^ II^WoGioF-^OIMI/íť,o) | | dt+j | |F(S)oG 2oF- 1(<)l |- | l/(<,o)| | d< ^ k •f 
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where F is the fundamental mapping of the equation (2), F(so) = I and Gi, G2 are 
operators from (5). 

(ii) For each f € G(s0i G\) there exists a constant Lf > 0, the so-called Lipschitz 
constanty such that for all (s, x)t(s,y) 6 J x B we have 

(7) | | / 0 ,* ) - /0 , i / ) IK I</ l l* -y | | -

Theorem 4. If / E G(«o,Gi) and there exists a constant k\ > 0 sucii that 
Lfk\ < 1 and for each s £ J(«o) vve have 

/

s /*+oo 

||F(s) o Gi o F-'WII <« + / \\F(s) o G2 o F~\t)\\ dt ^ kx, 
then the equation (1) has at /east one bounded solution x for which \\x\\c $ &//(l"" 
Lfk\), where kf, Lf are constants from (6) and (7), respectively. 

Proof. ' If y & (C(SQ), ||- ||c)> then for each u > s ^ SQ the conditions (6), (7), 
(8) yield 

II f F(s) o G2 o F'l(t)f(t, y(t)) dt\\ <$ f ||F(5) o G2 o .F^O/fr2/(0) || dt 
"Js " Js 

f ||F(s) o G2 o F-^OH • \\f{t, y(t)) - f{t, o)|| d< 

^ U | | F0 )oG 2 oF- 1 (0 l l - | | / ( ' , " ) l | d t 

^ J" \\F(s) o G2 o F'WWLfWyUcdt + j f \\F(s) o G2 o F^OII • ll/C °)ll ^ 

^McLfh + kf. 

This means that /.+°° F(s)oG2oF-1(t)f(t, y(t)) dt exists for each y € (C(s0), ||. | | c ) . 
Differentiating we can verify that every solution x € (G(s0), ||. ||c) of the integral 
equation • 

rs f+oo 
(9)x(s)= F(s)oG1oF-\t)f(t,x(t))dt- F(s)oG2oF-1(t)f(t,x(t))dt 

JSQ JS 

is also a solution of the differential equation (1). 
Now we shall prove that the equation (9) has a solution in the Banach space 

(C(s0),||.||c) for each / € G(s0,G\). For this purpose we define the continuous 
mapping Z: C(sQ) —* B by * 

fS f+oo 

(lO)Zx= F0)oC7i<>-*'-1(0/(«.*(0)^-/ F(s)oG2oF~1(t)f(t,x(t))dt. 
J s0 Js 
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This and the conditions (6), (7), (8) imply the inequality 

| |Z« | | ^ / ' \\F(s) o G, o F-l(t)\\ • \\f(t, x(t)) - f(t, o)\\ dt 
J*0 0 

/

+oo 
\\F(S) o G 2 o F-l{t)\\ • \\f(t, x(t)) - f(t, o)| | dť 

+ r | |F( S )oG 1 oF- 1 (0| | | |/(<,o) | |d< 
J*o 

/

+oo 
\\F(s)oG2oF-\t)\\.\\f(t,o)\\At 

^Lj\\x\\c{J\\F(s)oGloF-\t)\\At 

/

+oo 
\\F(s) o G 2 o F~\t)\\ d.j + kj ^ LjWxWch + kj, 

and this implies also 

(11) l lzzllc^ Lj\\x\\ckx +kj. 

This means that Zx G C(so) and the mapping Z maps the Banach space (C($o), 
||. | |c) into itself. Now we shall show that Z is a contraction operator. If x>y £ 

(C(Bo), II- | |c) , then after simple arrangements we obtain 

\\Zx - Zy\\ ^ f \\F(s) o Gx o F-\t)\\L,\\x(t) - y(t)\\ dt 
J«0 

/

+oo 
\\F(s)oG2oF-1(t)\\Lj\\x(t)-y(t)\\dt 

^Lj\\x-y\\c\r\\F(s)oG1oF-i(t)\\dt 
J«0 

/

+oo 
\\F(s)oG2oF-1(t)\\dt] ^LjkxWx-yWc 

and this implies also 

WZx-ZyWc^Lfk.Wx-yWc. 

This and the inequality Lfk\ < 1 imply that Z is a contraction operator on the 

Banach space (C(so), ||- ||c) • From the Banach Fixed Point Theorem we can conclude 

that the operator Z has exactly one fixed point x in the space (C(so), ||. | |c) , i.e. 

Zx = x, which is the required bounded solution of the differential equation (1). 

The inequality (11) implies that the solution x satisfies ||-c||c ^ AflMlcfc- + ^/» *e* 

||.r||c(l — Lfk\) ^ kf. Therefore ||x||c ^ &//(! — Lfk\), which was to be proved. 

• 



Theorem 5. If there exists a constant k\ > 0 such that 

(12) f'\\F(s)oF-1(t)\\dt^kl 
J SQ 

for all s £ J(so)> then each f £ G(so,0) all solutions of (I) are bounded. 

Proof . Let the condition (12) be fulfilled. The equality 

f \\F(t)\\~1dtF(s) = f F(s) o F~l(t) o F(t)\\F(t)\\~ldt 
JsQ JS0 

and the inequality (12) imply the inequality 

\\F{»)\\ / ' \\F(t)\r ldt < f \\F{s) o F~\t)\\ • \\F(t)\\ • \\F(t)\\~'dt 
J*0 J*0 

= f\\F(s)oF-\i)\\dt^kl. 
J SQ 

Put r(s) = HQ\\F(t)\\-lAt. Then r'(s) = HFOOH"1 and the preceding inequality 
implies 

(13) r(s) ^ kxr'(s) 

for each s £ J (so). The inequality (13) implies that for 5 > s0 we have r'(s)/r(s) > 
l/ki; by integrating in the interval {to,s)y to > so, we obtain the inequality 

pnr(0K„ £ (« - *o)A1> i.e. r(s) > r ^ e x p ^ f 1 ^ - 20)) 

for each s ^ to. This and the inequality (13) imply the inequality 

r ^ e x p ^ v * - t0)) ^ kxr'(s) = *i | |F(s) | r \ 

so that 

\\F(s)\\ ^ kir-l(t0)exp(-kl\s -10)) ^ k^^ex^^to - *o)) = k2 

for each s £ J (so). This and the fact that every solution x of the differential equation 
(1) is also a solution of the integral equation 

x(s) = F(s)x(s0) + f F(s) o F~\t)f(t, x(t)) dt 
J SQ 



imply, by virtue of the conditions / G G($o.O), (7), the inequality 

11*0011 < \\F(s)\\ • \\x(s0)\\ + / ' \\F(s) o F-»(0II • ||/(*.*<*)) " /(*, o)\\ dt 
J«0 

• TllFto o F-^OH •!!/(., o)|| d. 
J So 

k2\\x(s0)\\ + kf + Lf f \\F(s) o F-^OH • ||*(0ll d* 
J«0 

+ 

for each s G J(s0). If we apply Gronwall's Lemma to the preceding inequality, for 

all s G J(s0) we obtain the inequality 

||z(«)|| ^ h\\x(s0)\\ + k} exp [L, / ' ||F(«) O F ^ O I I <«], 
J«0 

which due to the condition (12) means the boundedness of the solution x. • 

Theorem 6. If there exists a constant k\ > 0 such that Ljk\ < 1 and 

/

+oo 
\\F(s)oF-1(t)\\dt^kl 

for all s G J(s0), then the equation (1) has exactly one bounded solution for each 
/ G G ( 5 0 , 0 ) . 

P r o o f . Let the condition (14) be satisfied. Choose x0 G B, x0 £ o, and put 

v(s) = (IF(s)aroll"1. Then for each s G (so,u) we have 

/ v(t)dtF(s)x0= [ v(t)F(s)oF-l(t)oF(t)x0dt. 

This implies the inequality 

f v(t) d«||F(«)-.o|| ^ f v(t)\\F(s) o F-Ht)\\ • \\F(t)x0\\ dt 

= f\\F(s)oF-\t)\\dt^kl, 

so that 

v~l(s) I v(t)dt O i . 

This means that fs °° v(t)dt < +oo and liminft/($) = 0 for s —* +oo. Hence 

limsup||F(s)x0 | | = +oo for s —> +oo and for each xo E S, XQ ^ o. This implies 



that the equation (2) has exactly one bounded solution, namely the zero solution. 

According to Remark 1 we have G\ --? Pi = O, G2 = -°2 = I- According to Theorem 
4 the equation (1) has at least one bounded solution x\. It is easy to see that the 
mapping y: J(so) —> B defined by 

/

oo 

F(s)oF-l(t)f(t)X\(t))dt 

is a solution of the equation (2), because 

/

oo 

F-l(t)f{t, *.(*)) dt - F(s) o F~l(s)f(s, Xl(s)) 

/

OO 

F-1(t)f(t,xl(t))dt-f(s,xl(s)) 

= A(s) [*!(«) + j°° F(s) o F-Wfit, Xl(t)) dt] = A(s)y(s). 

From the equality (15) we obtain that for each s G J(so) we have 

/

oo 

\\F(s)oF-i(t)\\Lj\\x1(t)\\dt 

/

OO 

ll-FWoF-^oil-ll/^.o)!!* 

^Ikillc + i/lkillcti + t/. 

This means that y is a bounded solution of the equation (2) and therefore the map­
ping y is its zero solution. This implies that every bounded solution x of the differ­
ential equation (1) is also a solution of the integral equation 

/

oo 

F(s)oF-1(t)f(t,x(t))dt> 

and according to the Banach Fixed Point Theorem this equation has exactly one 
solution. Thus the theorem is proved. • 
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S o u h r n 

VĚTA O PEVNÉM BODU A OMEZENOST ŘEŠENÍ DIFERENCIÁLNÍCH 

ROVNIC V BANACHOVÉ PROSTORU 

FRANTIŠEK TUMAJER 

V práci jsou studovány vlastnosti řešení nelineární diferenciální rovnice xf = A(s)x -f 
/(s, x) v Banachově prostoru a jejího speciálního případu lineární homogenní diferenciální 
rovnice x = A(s)x. Jsou formulovány věty a uvedeny podmínky, které na základě určitých 
vlastností řešení lineární homogenní rovnice zajišťují omezenost řešení nelineární rovnice. 
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