Mathematica Bohemica

FrantiSek Tumajer
The fixed point theorem and the boundedness of solutions of differential equations

in the Banach space
Mathematica Bohemica, Vol. 118 (1993), No. 1, 1-9

Persistent URL: http://dml.cz/dmlcz/126016

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/126016
http://dml.cz

118 (1993) . MATHEMATICA BOHEMICA No.1,1-9

THE FIXED POINT THEOREM AND THE BOUNDEDNESS
OF SOLUTIONS OF DIFFERENTIAL EQUATIONS
IN THE BANACH SPACE
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(Received February 20, 1991)

Summary. The properties of solutions of the nonlinear differential equation ' = A(s)z +
f(s,z) in a Banach space and of the special case of the homogeneous linear differential
equation z’ = A(s)z are studied. Theorems and conditions guaranteeing boundedness of
the solution of the nonlinear equation are given on the assumption that the solutions of the
linear homogeneous equation have certain properties.
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Many problems related to the existence and unicity of solutions of differential
equations in a Banach space can be transferred to the problem of existence and
unicity of a fixed point of a certain mapping of the Banach space into itself. Among
various criteria of the existence and unicity of a fixed point of a mapping the principle
of contractive mappings can be considered as one of the simplest and simultaneously
the most important criteria.

If (B, ||.|]) is a Banach space then a mapping Z: B — B is called contractive if
and only if there exists a constant & € (0, 1) such that for any two points z,y € B
the inequality ||Zz — Zy|| < ||z — y|| holds. Each point z € B for which Zz =z is
called a fixed point of the mapping Z. For these points the so-called Banach Fixed
Point Theorem hold:

Every contractive mapping Z: B — B in a Banach space has exactly one fixed
point.



We shall use this theorem for determining the bounded solutions of a differential
equation

(1) ' = A(s)z + f(s,z)
in a Banach space (B, ||.]]), whose particular case is the equation
(2) ' = A(s)z.

The symbol z’' denotes the derivative dz/ds, A: B — B is a bounded linear
mapping continuous on the interval J = (0, +00), f: J x B — B is such a continuous
mapping that for any (so,z¢) € J x B there exists exactly one solution z: J — B
of the differential equation with the property that for each s € J we have 2'(s) =
A(s)z(s) + f(s,2(s)) and z(sp) = zo.

In the paper [1] it is proved that for any so € J there exists a bounded linear
mapping F(s): B — B for s € J, the so-called fundamental mapping of the equation
(2), and its inverse bounded mapping F~!(s): B — B such that F(so) is the identical
mapping I: B — B and for all s € J the following equalities hold:

F'(s) = A(s) o F(s),
2(s) = F@no+F@X/ )F(, z(1)) &t

We say that a solution z: J — B of the equation (1) is bounded if and only if there
exists a constant k > 0 such that for any s € J the inequality ||z(s)|| < k holds.

The set of all solutions of the equation (2) consists of two disjoint sets: of the
set M; of all bounded solutions and of the set M, of all unbounded solutions. The
set M; is non-empty, because the equation (2) has always the zero solution which is
bounded. Every linear combination of two bounded solutions of the equation (2) is
again a bounded solution of this equation. This implies that for each sy € J the set

(83)  Bi(so) = {zo € B: there exists a solution £ € M; for which z(s¢) = zo}

is a vector subspace of the space B.

Therefore there exists an algebraic projection P, of the space B onto the space
Bi(s0), i.e. a linear mapping P; : B — Bi(so) with the set of values P;(B) = Bi(so)
that P; o P, = P,. The mapping P2: B — B defined by
(4) . P=1-P

*

is also an algebraic projection with the set of values P2(B) which is called the direct
complement of the vector space Pi(B). In the case when the operators Py, P, are
continuous we call them projectors.
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Remark 1. If P;: B — B;(so)is a non-zero algebraic projection onto the space
Bi(s0), then the equation (2) has at least one non-zero bounded solution.

If the equation (2) has exactly one bounded solution, then there exists exactly
one projector Py: B — Bj(so) onto the space B;(so) and this projector is the zero
projector 0.

If we denote by h the derivative of the norm of the linear mapping by h(A) =
lim(||I + tA|| — 1)/t for t — 0+, where I: B — B is the identical mapping, then the
results of [2] imply the following propositions.

Proposition 2. If z is a solution of the equation (2) such that z(sp) = zo, then
for each s > sq we have

leallexp [~ [ h(=A(@)) do] < llz(o)l < lollexp [ [ h(A(@)) de],
. So So
whenever the integrals are defined.

Proposition 3. In the equation (2) let A(s) = A1+ A2(s), where A, is a constant
bounded linear mapping. If  is a solution of the equation (2) and z(so) = zo, then
the following implications hold:

(1) k(A1) =0, f;:oo h(Az(0)) do < 400 => the solution = is bounded;

(ii) h(41) < 0, [ h(Ax(0)) do < +oo = lim ||z(s)]| = 0;

(iii) —h(=41) > 0, = [+ h(~Az2(0)) do > ~00, 20 # 0 = _ lim_(lz(s)]] = +oo;

(iv) ~h(=41) =0, — ;:m h(—As(0)) do = 400, 2o # 0 = liT lz(s)]] = +o0.

$§—4+00

On the set C(sg) of all continuous bounded mappings g: J(so) = (o0, +o0) — B
let us define the norm |[|. f|c by

llglic = sup{llg(s)ll: s € J(s0)}-

Then the vector space C(so) with the norm ||.||c is a Banach space.
If Gi: B— B, G3: B — B are linear continuous operators for which

(5) Gi+Gy=1

holds and sq € J, J(s0) = (S0, +00), then the symbol G(so, G1) will denote the set
of all continuous mappings f: J x B — B having the following properties:

(1) For each f € G(s0,G1) there exists a constant k; > 0 such that for each
s € J(so) we have

j(6) /% ||F(s)oG1oF~1(t)||.||f(t,o)||dt+/+o° |F(s)oGa20F = (®)||-|I (¢, 0)|| d¢t < Ky
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where F is the fundamental mapping of the equation (2), F(so) = I and Gy, G2 are
operators from (5).

(ii) For each f € G(so,G1) there exists a constant Ly > 0, the so-called Lipschitz
constant, such that for all (s,z),(s,y) € J x B we have

() (s, 2) = £, 9l < Lylle - oll-

Theorem 4. If f € G(s0,G1) and there exists a constant k; > 0 such that
Lsky <1 and for each s € J(s0) we have

s +00
® [ IF@oGier vl [ IF@eGae F 0l < b,

then the equation (1) has at least one bounded solution z for which ||z||c < ks/(1 —
Lyky), where kg, Ly are constants from (6) and (7), respectively.

Proof. Ify€ (C(so),|l-llc), then for each u > s > s the conditions (6), (7),
(8) yield

/au F(s) 0 Gy o FH(0)f (£, (1)) &t < ["||F(s) o Gyo F7A (1) f(t, y(1)) | dt
< [T1F@) e Gro PO £ u0) - £t o) d
+ [(1F@ 0 Gao FON- I
< [T 1F@ 0 Gro PN lcdt + [ 1PE) 0 Gao FHON - IS
<lylleLypks + kg

This means that L+oo F(s)oGa0 F~1(t) f(t, y(t)) dt exists for each y € (C(so), ||- lIc)-

Differentiating we can verify that every solution z € (C(s0),||-|lc) of the integral

equation |
s . . +00

(9) =z(s) :/ F(s)oGio F~Y(t)f(t,z(t)) dt—/ F(s)oGao F1(t)f(t,z(t)) dt
So 3

is also a solution of the differential equation (1).

Now we shall prove that the equation (9) has a solution in the Banach space
(C(50),]l-llc) for each f € G(so,G1). For this purpose we define the continuous
mapping Z: C(sg) — B by .

3 +o00
(10) Z:p:/ F(s)oG1o F~1(t)f(¢, (1)) dt-—/ F(s)oGa0o F7(t)f(t, =(t)) dt.
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This and the conditions (6), (7), (8) imply the inequality
1Z=]| < / 1F(s) o Gyo F=H(t)|| - I£(t, 2(t)) = f(t,0)|| dt
400
+ [ IFG) 0 Gao PO (6 20) - 0,0l dt

+ [T 1F )0 Gy o P10 - £ o)l dt

So

+o00
+ / IF(s) o Gz 0 F=A(E) - [I£(2, o)l dt
< Lyllele | [ 1F() 0 Gy o P @)1
4o
+ [ 1FG) 0 Gao PO + by < Lyllalioh + by,
and this implies also

(11) 1Zz|lc < Lyllzllckr + ky.

This means that Zz € C(so) and the mapping Z maps the Banach space (C(so),
[l.llc) into itself. Now we shall show that Z is a contraction operator. If z,y €
(C(s0), - llc), then after simple arrangements we obtain

122 = 20l < [ 11P(9)0Gro P HOILlle(0) - (o)) de
+o00
+ [T IFG) 0 Gao FTONL o) - w0 a¢
< Lille = sl [ 1FG) 0 Gy o P (0
+o0o ’
+ [T 1RG0 Gao O] < Lykille - vle
and this implies also

I1Zz - Zyllc < Lykillz - wllc-

This and the inequality Lyk; < 1 imply that Z is a contraction operator on the
Banach space (C(so), |- |lc). From the Banach Fixed Point Theorem we can conclude
that the operator Z has exactly one fixed point z in the space (C(s0),|l-llc), i-e.
Zz = z, which is the required bounded solution of the differential equation (1).
The inequality (11) implies that the solution z satisfies ||x||c < Ly||z||ck1 + ky, i.e.
[|lzllc(1 = Lskq) < ks. Therefore ||z|lc < kj/(1 — Lyky), which was to be proved.

O
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Theorem 5. If there exists a constant ky > 0 such that
ay JIE@ e Fi ol sk
8o

for all s € J(80), then each f € G(s,0) all solutions of (1) are bounded.
Proof. Let the condition (12) be fulfilled. The equality

s s
[ roIrare = [ e riw e FOIFGI
So So
and the inequality (12) imply the inequality

IF) / CIF@Iat < / "IF(s) o PO - IF QN - IF @] dt
= / IF(s) o F-1 ()| dt < k.

Put r(s) = [, [[F($)||7'dt. Then #'(s) = ||F(s)||~* and the preceding inequality

implies
(13) r(s) < k17'(s)

for each s € J(s0). The inequality (13) implies that for s > so we have '(s)/r(s) >
1/k,; by integrating in the interval (o, s), to > so, we obtain the inequality

Inr@®));, > (s —to)/ky, e r(s) > r(to)exp(ki'(s — t0))
for each s > to. This and the inequality (13) imply the inequality
r(to) exp (k7" (s — to)) < k1r'(s) = kal[F(s)[| 7",
so that
P ()1} < kar~(to) exp(~ky (s — t0)) < kar™'(to) exp (k' (to — 50)) = k2

for each s € J(so0). This and the fact that every solution z of the differential equation
(1) is also a solution of the integral equation

z(s) = F(s)z(so) + /’ F(s)o F7Y(t)f(t,z(t)) dt



imply, by virtue of the conditions f € G(so,0), (7), the inequality

e < I - llelsoll + [ 1760 POl | 1(t2(0) = 7t 0)]
+ [(IFG) o PO 11 o)l
< kala(eo)l + ks + Ly [ I1F(s) o P00 o)

for each s € J(sp). If we apply Gronwall’s Lemma to the preceding inequality, for
all s € J(so) we obtain the inequality

2ol < kalla(eo)l + &y exp [2 [ 1P 0 PO ],

which due to the condition (12) means the boundedness of the solution z. O

Theorem 6. If there exists a constant k; > 0 such that Lyk; < 1 and

L
(19 / IF(s) o Fi(®)]|dt < by

for all s € J(so), then the equation (1) has exactly one bounded solution for each
f € G(SO) 0)'

Proof. Let the condition (14) be satisfied. Choose o € B, zo # 0, and put
v(s) = ||F(s)zo||. Then for each s € (s, u) we have

/u v(t) dtF(s)zo = /u v(t)F(s) o F~1(t) o F(t)zodt.

s

This implies the inequality

/ ) v(t) dt|| F(s)zo| < / “u(O)lIF(s) o FO)|- |F(t)zo|| dt
= / ’ IF(s)o F-A(0)l1dt < &y,

so that

v(s) /u v(t)dt < k.

This means that fs+°° v(t)dt < +o0o and liminfv(s) = 0 for s — +o0o. Hence
limsup ||F(s)zo|]| = 400 for s — 400 and for each zo € B, zo # o. This implies

T



that the equation (2) has exactly one bounded solution, namely the zero solution.
According to Remark 1 we have Gy = P, = O, G2 = P, = I. According to Theorem
4 the equation (1) has at least one bounded solution z;. It is easy to see that the
mapping y: J(sg) — B defined by

(15) W) =21(9)+ [ Fle)o PIOF (1 ma(0)

s

is a solution of the equation (2), because

Y(s) =zi(s) + F'(s)/ “Lt)f (2, z1(t)) dt — F(s) o F~1(s)f (s, z1(s))
= A(s)z1(s) + f(s,z1(s)) + A(s) 0 F(s)/ L) f(t, z1(t)) dt — f(s,z1(s))
= A(s)[z1(5) + / F(s) o P~ (0)f (t,21(1)) dt] = A()y(s).

From the equality (15) we obtain that for each s € J(sq) we have

I < er(o)l+ [ 17(6) 0 P Ol llax o)) d

+/’ 1F(s) o F (@)l - 1£(¢, )] dt
< llzalle + Lyllzillcky + &y

This means that y is a bounded solution of the equation (2) and therefore the map-
ping y is its zero solution. This implies that every bounded solution z of the differ-
ential equation (1) is also a solution of the integral equation

z(s) = -/soo F(s)o F7Y(t)f(t, z(t)) dt

and according to the Banach Fixed Point Theorem this equation has exactly one
solution. Thus the theorem is proved. a
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Souhrn

VETA O PEVNEM BODU A OMEZENOST RESEN{ DIFERENCIALN{CH
ROVNIC V BANACHOVE PROSTORU
FRANTISEK TUMAJER
V préci jsou studovdny vlastnosti feSeni nelinedrni diferencilni rovnice =’ = A(s)z +
f(s,z) v Banachové prostoru a jejiho specidlniho ptipadu linedrni homogenni diferencidln{
rovnice £’ = A(s)z. Jsou formuloviny véty a uvedeny podminky, které na zakladé uriitych

vlastnosti feseni linedrni homogenni rovnice zajisfuji omezenost feseni nelinedrni rovnice.
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