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A NOTE ON INTEGRATION OF RATIONAL FUNCTIONS

JaAN MARIK, East Lansing
(Received May 15, 1990)

Summary. Let P and Q be polynomials in one variable with complex coefficients and let n
be a natural number. Suppose that Q is not constant and has only simple roots. Then there is
a rational function ¢ with ¢’ = P/Q"*1! if and only if the Wronskian of the functions Q’, %, ...
..., (Q", Pis divisible by Q.
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0. Introduction. Let f be a rational function of one variable. If we ask how to
recognize whether f has a rational primitive, we may get various ‘‘reasonable”
answers. Let us observe, first of all, that every such f can be expressed as P/Q",
where P and Q are polynomials, Q is not identically zero and has no multiple roots
(which will be assumed throughout this introduction) and m is a natural number.
We may even require P and Q to have coefficients in the smallest field @ con-
taining the coefficients of the polynomials whose ratio is f. (It is possible to obtain
P and Q by so called rational operations.) Then we can find polynomials 4 and B
with coefficients in @ such that P/Q™ = (4/Q™" ') + B/Q.(We may proceed, e.g.,
as in the proof of Lemma 21.) It is obvious that f has a rational primitive if and
only if B is divisible by Q. This argument in some sense solves our problem.

Let us now compare the described procedure with the assertion (iv) on p. 19
of Hardy’s book [1]:

P/ Q? has a rational primitive if and only if PQ” — P'Q’ is divisible by Q.

This assertion gives a very simple answer to the mentioned problem, if m = 2.
For the case m = 3 it is not ¢ifficult to prove the following:

P|Q? has a rational primitive if and only if P(3Q"* — Q'Q") — 3P'Q’'Q" + P"Q"?
is divisible by Q. .

This being so, it will not surprise the reader that for every positive integer n we can
find expressions Vj, ..., ¥, such that P/Q"*! has a rational primitive if and only
if PVy + P'Vy + ... + P™V, s divisible by Q; V; is the sum of terms of the form

C(Q/)jl (Qn)jz... (Q(n+ l))inn ,
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where c is an integer and jy, ..., j, 4+, are nonnegative integers with j; + ... + jp41 =
=nandj +j; + 22+ ... + (1 + 1) j,4y = 2n(sothatj + j, + ... + nj,.y = n).
We get these expressions, if we take in Theorem 22 for F the mapping @ defined in 7.

If we choose there F = A, where A is as in 14, we see that P/Q"*! has a rational
primitive if and only if the Wronskian of the functions Q’,(Q%),...,(Q"’, P is
divisible by @. This result is remarkable for its simplicity, but it is in some sense
unpractical. The mentioned Wronskian has namely the form PW, + P'W, + ...
... + P™W,, where W; are determinants whose direct computation is considerably
more difficult than the computation of the expressions V;, if n > 1. However, it
follows from 13 and 14 that

n—1

W= v P Tlk.

1. Notation. Let P be the set of all polynomials in one variable with coefficients
in a given field of numbers. Throughout this note Q is a given element of *B. For
f,g€B the symbol fog means the corresponding composite function (i.e.
(f o 9) (x) = f(g(x))). For any positive integers i, k let a;, by be polynomials defined

as follows: If k < i, let a; = k!(,i Q'K if k > i, let ay = 0. Further let by, =

= Q(k); bil = 0, bi,k+1 = b;k + Q’bi—l,k (l = 2, 3, “eey k = 1, 2, ...). ObViously
a,‘k = k!, blk = 0 fOl‘ k < i, bkk = (Ql)k.
2. Lemma. Let K& B. Then (Ko Q)® =% _ (K¥ o Q)b (k= 1,2,...).

Proof. This is obvious, if k = 1. If the assertion holds for some k,then
(Ko Q%0 = 30y (KY*D 0 Q) @by + -1 (K9 0 Q) by = (Ko Q) by +
+ lef=2 (K(') ° Q) (bi—l,kQ, + b:k) + (K(k+l) ° Q) Q,bkk = ,;:i KU) ° Q) bj.k+1'

3. Conventions, notation. In what follows n is a nonnegative integer. For each

yePBleto(y) =y, ...y Fori=1,2..let b; = (byy,..., bypnsy)
Let § = &, be the set of all mappings F of B to P for which there are S, ..., S, € P
such that

(1) F(y) =é:oy‘f ’S; (ye®P).

Remark. It is easy to see that the polynomials S; are uniquely determined by F.
(We may, e.g., apply the relations

i-1
Fy) = Y yPs, +ils;, (i=0,...,n),
ji=0

where y,(x) = x'.) Further it is clear that F(y) is the scalar product ¢(y) S, where
S = (So, ooy Sll)'

4. Lemma. Let i be a natural number. Then

Q) = Laup,.



Proof. Set K(x) = x’. Clearly K&, Q = g, for each j > 0. Let k be a natural
number. By 2 we have (Q))* = ¥*_. a,b,. Since a;; = 0 for j > i and by, = 0
for j > k, we have also (@) = Yi-1a;by. Now we observe that ¢((Q')) =
= (@) (2)"*7).

5. Lemma. Let Lbe a linear subspace of . Suppose that the following holds:
(2) For each y € Land each z € B we have yz € L.
(3)IfzePand zQ' €L, then z e L.
Let F be given by (1) and let F((Q'))e Lfor i = 1,...,n. Then
(@) F(Q"1Y) — (n + (@) 5, e L.
If, moreover,
(5) F(@"*'Y)eLor S,eL,
then S;eL for j =0,...,n.
Proof. Set S = (Sy, ..., S,). By 4 we have F((Q')) = o((Q")) S = Yj21 aif(b;S) +
+i!(b;S)(i =1,...,n + 1). We see that b,S € L; by (2) we have b,SeL,...,b,Se
€ Land F(Q"*')) — (n + 1)!(b,+,S) € L. Clearly

n+1

biS = (Ql)i Si—l + 2 biij—l .
j=i+1

Choosing i = n + 1 we get (4). Now it follows from (3) and (5) that S,€eL,
S,-,€L,...,S,€eL.

6. Lemma. Let L be as in 5. Let a;, B;€ P (j =0,...,n), G(y) = Yj-0 ¥V,
H(y) = Y5-0 y¥B; (yeP). Let G(Q'))eL, H(Q'))eL for i =1,...,n. Then
(o, H — B,G)(y) e L for each y e P.

Proof. Set F = a,H — B,G. Then we have (1) with S, = 0. Clearly F((Q"))e L
fori =1,...,nand, by 5, F(y) € Lfor each y € B.

7. Notation. Let v = (0,...,0) (n + 1 terms). For each (n + 1) x (n + 1)-
matrix Z with rows z,, ..., z, let Z* be the matrix with rows v, z,, ..., z,_,. For each
f€P let E(f) be the matrix with entries e;, where e, = 0 for k < i and ey =

= (’:)f(""" for k2 i (i,k=0,...,n). Let I be the (n +1) x (n + 1) identity
matrix and let w be its last row. Further let
M = nE(Q) - (E(Q)* + QI*.

Let my, ..., m, be the rows of M. For each y € P let ¢(y) be the determinant with
TOWS My, ..., M,_y, o(¥).

8. Lemma. Let f,geP. Then o(fg) = o(f) E(g), o(f'g) = e(f) (E(g))* +
+ f®*Vgw; in particular, o(f') = o(f) I* + @ Vw.
(The easy proof is omitted.)
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9. Lemma, M is an upper triangular matrix with diagonal entries (n - k) 0
(k=o,.., n); in particular, m, = v.

Proof. Let H = E(Q) — QI. Then H = (hy) is an upper triangular matrix
with h, =0 (k=0,...,n) and h_,, =kQ (k=1,...,n). Obviously M =
= n E(Q') —~ H* from which our assertion follows at once.

10. Lemma. Let f e B. Then ®(nfQ' — f'Q) = — Q &(f").

Proof. By 8 we have o(nfQ" — f'Q) = no(f) E(Q") — o(f) (E(Q))* — f"*VQw =
= o(f) M = Q(e(f) I* + f"*Vw) = o(f) M — Q o(f’). Since, by 9, we have m, =
= v, o(f) M is a linear combination of the rows m, ..., m,_,. This easily implies
our assertion.

11. Lemma. We have ¢((Q')') = 0 for i = 1, ..., n. If we define V; by

© o)=Ly Gew),
then _
) V,=n!'(Q).

Proof. We may suppose that n > 0. If we choose f = 1in 10, we get ®(Q’) = 0.
Now, if i <n and ®((Q°)) =0, we set f = Q' in 10 and we get &((Q'*')) =
= [(i + D)(n — i)] ®(nQ'Q" — iQ'"'Q'Q) = 0. It is obvious that V, is a triangular
determinant with diagonal entries (n — k) Q' (k = 0, ..., n — 1). This completes the
proof.

12. Convention. In sections 13 and 14 we define mappings ¥ and A. The reader can
prove easily that theorems 13 and 14 hold, if n = O or Q' = 0. (If n = 0, then &(y) =
= ¥(y) = A(y) = y;if @' =0and n > 0, then &(y) = ¥(y) = A(y) = 0(y € B).)
Therefore in the corresponding proofs we will suppose that n > 0 and that Q is not
constant. Then (3) holds with L = {0}.

13. Theorem. For each y € B let ¥(y) be the determinant with rows by, ..., b,
o(y) (see 3). Let T; be defined by

® ) =3y

Then

9 Y(Q)Y)=0 for i=1,...,n
and

w0  we=-0Pe.

Proof. The relation (9) follows from 4. It is easy to see that T, is a triangular

408



determinant with diagonal entrics Q’, ..., (Q’)" Let (6) hold. By 11 and 6 with L =
= {0} we have V,¥ = T,®. This combined with (7) yields (10).

14. Theorem. For each y e B let A(y) be the Wronskian of the functions Q',
(0%,....,(Q"), y. Let ¥ be as in 13. Then A = ¥ [[;-, k!.

Proof. Let A, B, C be matrices with entries ay, by, (Q')% (i, k = 1, ..., n). By 4,
where we take n — 1 instead of n, we have C = AB. Let us define W; by A(y) =
=Y7-0 YW, and let (8) hold. Then det 4 = [[;-, k!, det B = T, and W, =
= det C = det A det B. Clearly A((Q)') =0 for i =1,...,n. By (9) and 6 with
L = {0} we have T,A = W,¥ which easily implies our assertion.

15. Conventions, notation. In what follows we suppose that Q is a polynomial
that is not identically zero and has no multiple roots (so that it is relatively prime
to Q'). It f, g € P, then the relation f = g means that f — g = hQ for some ke P.
Let B = B, be the set of all mappings F € §, such that F((Q")')=0(i=1,...,n). Let
W = W, be the set of all mappings F € B, for which F((Q"*')') is relatively prime
to Q.

16. Lemma. Let F € B and let (1) hold. Then F € W if and only if S, is relatively
prime to Q.

Proof. Weset L= {y € B; y = 0} in 5 and apply (4).
17. Theorem. The mappings ®, ¥ and A are elements of 1.
Proof. By (7) and 16 we have @ € 28. Now we apply 13 and 14.

18. Lemma. Let F € B, f€ B. Then F(nfQ' — f'Q) = 0.

Proof. Let (1) and (6) hold and let L= {y e P; y = 0}. Set y= nfQ’ — f'Q.
By 6 and 10 we have V, F(y) = S, ®(y) = 0 and, by 11, ¥, is relativcly prime to Q.
Thus F(p) = 0.

19. Lemma. Let n >0, Fe¥, Set G(y) = F(yQ; — QF(y) (y€P). Then
Ge,_,.

Proof. Let (1) hold. It is obvious that there arc C; e P such that G(y) =
=Y"_0yYC;. Since C, = 5,0 — QS,, we have Ge §,-;. Now we observe that
G((Q)) = (i/(i + 1)) F((Q@**')) for each positive integer i.

20. Lemma. Let Fe B,, Pe P. Let P/Q""! have a rational primitive. Then
F(P) = 0.

Proof. It is well-known that there is an f € P such that P/Q"*' = (f/Q")'; thus
P = f'Q — nfQ'. By 18 we have F(P) = 0.
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21. Lemma. Let Fe®, Let PeP, F(P) = 0. Then P/Q"*' has a rational
primitive.

Proof. It is easy to see that the assertion holds, if n = 0. Now let k be a natural
number such that the assertion holds for n = k — 1. Let Fe W,, Pe B, F(P) = 0.
There are f, g € P such that P = kfQ' — gQ. Set P, = kfQ' — f'Q, P, = f' — g.
Then P = P; + QP,. By 18 we have F(P,) = 0 so that F(QPZ) = 0. Let G be as
in 19. Then G € W, _,; and G(P,) = 0 so that, by induction assumption, P,/Q* has
a rational primitive. Obviously P,/Q**! = (—f/Q") and P/Q**! = P,[Q**! +
+ P,[Q". Therefore the assertion holds also for n = k.

22. Theorem. Let P € B, F € W,. Then P/ Q"*1 has a rational primitive if and only
if F(P) =0.
(This follows at once from 20 and 21.)

Remark 1. It is very easy to construct the matrix M = (m,) by means of which

the mapping @ has been defined. We have m,, = B, Q% "1, where B, = n and
k k

Bu = n(i> - (i _ 1) for i =1,..,k (k=0,...,n); in particular, B = n — k.

The numbers B with 0 < i < k can be obtained from the obvious relations f, ;. =

”(?)‘(if1)=
=(ifl)[n(n — i+ 1) = i) =(i " 1) [(n — i) (n +1)]/,-=<"“:1)(n—i)

(i =1,...,n). Thus, if n + 1 is a prime, the numbers B,, ..., B,, are its multiples.
For example, if n = 4, &(y) is the detcrminant

4Q 4Q" 4Q" 4Q®  4Q®
0 30 70" 110" 15Q0W
0 0 20 90" 20Q”
0O 0 O Qo 100"

’ " m 4)

y y y y y

i

= ﬂrs + ﬁr—l,s (1 é r é S, 8 = 1’ ces — 1) Moreovcer ﬂin

Now let n be an arbitrary natural number. It follows from the definition of a de-
terminant that @(y) is the sum of terms of the form

(11) c (ko-0+l)Q(k1—l+1) . Q(k"-l‘-(n_l)+l)y(k") ,

where c is an integer, {Ko, ky, ..., k,} = {0,1,...,n} and k; Z ifori =0,..., n. Let
us write k, = j. Since Y7-0 (k; — i) = 0, wehave Yo (ki =i+ 1) +j—n+1=
=Yio(ki—i+1)=n+1sothatj+ Yizo(k; — i+ 1) = 2n. Hence (11) can
now be expressed also in the form cyU(Q')' (Q")/* (Q"*V)"*!, where j, are
nonnegative integers, j; + ... + Jouq =nandj +j; + 2, + ... +(n+ 1) juuq =
= 2n. We see that the expressions V; defincd by (6) have the form described in the
intrcduction.
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Remark 2. It is possible to view &(y) as a polynomial in the variables y, y', ..., y™,

Q,0Q" ..., 0" Y; the coefficients are integers that, by (10), are multiples of n!.
As #(Q’') = 0, their sum is zero.

Remark 3. Let 4, Be B and let B be a nonzero polynomial. Let D be a greatest
common divisor of B and B’, D€ PB. We have B = QD, where Q€ B, Q has no
multiple roots and each root of B is also a root of Q. It is obvious that there is a non-
negative integer n not greater than the degree of D and a C € P such that Q" = DC.
Setting P = AC we have A/B = P/Q"*! and, combining theorems 22 and 17, we get
necessary and sufficient conditions for A/B to have a rational primitive.
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Souhrn

POZNAMKA K INTEGRACI RACIONALNICH FUNKCI{
JAN MaRik

Budte P, Q polynomy v jedné prom&nné s komplexnimi koeficienty a bud n pfirozené &islo.
Necht Q neni konstantni a mé jen jednoduché koteny. Hlavni vysledek, ktery plyne z v&t 17
a 22, rika, Ze P/Q"+ 1 ma4 racionalni primitivni funkci prav¥ tehdy, kdy% Wronského determinant
funkci Q’, (Q%), ..., (@™, P je dglitelny polynomem Q. P¥imému vypo&tu tohoto determinantu
1ze se vyhnout, pouZijeme-li jednodus¥iho determinantu &(P), definovaného v odst. 7, a vét 13
a 14,
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