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A NOTE ON INTEGRATION OF RATIONAL FUNCTIONS 

JAN MARIK, East Lansing 

(Received May 15, 1990) 

Summary. Let P and Q be polynomials in one variable with complex coefficients and let n 
be a natural number. Suppose that Q is not constant and has only simple roots. Then there is 
a rational function <p with <p' = P/Qn + * if and only if the Wronskian of the functions Q\ (Q 2 ) ' , . . . 
..., (Qn)', P is divisible by Q. 
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0. Introduction. Let / be a rational function of one variable. If we ask how to 
recognize whether / has a rational primitive, we may get various "reasonable" 
answers. Let us observe, first of all, that every such / can be expressed as P\Qm, 
where P and Q are polynomials, Q is not identically zero and has no multiple roots 
(which will be assumed throughout this introduction) and mis a natural number. 
We may even require P and Q to have coefficients in the smallest field 0 con­
taining the coefficients of the polynomials whose ratio is / . (It is possible to obtain 
P and Q by so called rational operations.) Then we can find polynomials A and B 
with coefficients in 9 such thatP/Q1" = (A/Qm-1)' + B/g.(Wemay proceed, e.g., 
as in the proof of Lemma 21.) It is obvious that / has a rational primitive if and 
only if B is divisible by Q. This argument in some sense solves our problem. 

Let us now compare the described procedure with the assertion (iv) on p. 19 
of Hardy's book [1]: 

P/62 has a rational primitive if and only if PQ" - P'Q' is divisible by Q. 
This assertion gives a very simple answer to the mentioned problem, if m — 2. 

For the case m = 3 it is not difficult to prove the following: 
P/Q3 has a rational primitive if and only if P(3g"2 - QQ") - SP'QQ" + P'Q2 

is divisible by Q. 
This being so, it will not surprise the reader that for every positive integer n we can 

find expressions V0,..., Vn such that P/Qn+1 has a rational primitive if and only 
if PV0 + P'Vi + ... + P{n)Vn is divisible by Q; Vj is the sum of terms of the form 

c(Qyi{Q")J2~-(&n+l)y»"9 
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where c is an integer and Ji,...Jn+x are nonnegative integers with j \ + ... + j n + 1 = 
= nand; + j t + 2/2 + ... + (n + l)jn+1 = 2w(sothatf +j2 + ... + njn+l = #i). 
We get these expressions, if we take in Theorem 22 for F the mapping 0 defined in 7. 

If we choose there F = A, where A is as in 14, we see that PJQn + 1 has a rational 
primitive if and only if the Wronskian of the functions Q'9(Q

2)', ...,(&*)', P is 
divisible by Q. This result is remarkable for its simplicity, but it is in some sense 
unpractical. The mentioned Wronskian has namely the form PW0 + P'W1 + ... 
... + P(n)Wn, where Wj are determinants whose direct computation is considerably 
more difficult than the computation of the expressions P}, if n > 1. However, it 
follows from 13 and 14 that 

/ n \ n - l 

Wj = Vj(Q'f2)X[k\. 
*=i 

1. Notation. Let P̂ be the set of all polynomials in one variable with coefficients 
in a given field of numbers. Throughout this note Q is a given element of ty. For 
/ , g e ty the symbol fog means the corresponding composite function (i.e. 
(/o g) (x) = f(g(x))). For any positive integers i, fc let aik, bik be polynomials defined 

as follows: If fc ^ i, let aik = fc!K ] Ql~k; if fc > i, let aik = 0. Further let blk = 

= 6(k); &,i=0, bitk+l = b'ik + Q'bt-u (* = 2,3 fc = 1,2,...). Obviously 
att = k!> *>.* = 0 for fc < i, bkk = (GO"-

2. Lemma. Let Ke% Then (K o Q)(k) = £ J . t (K(i) o Q) bjk (fc = 1, 2,...). 

Proof. This is obvious, if fc = 1. If the assertion holds for some fc, then 
(K o Sf+ 1 ) = E5-i (K0+1) o C) Q'bJk + Z?=1 (K

0) o Q) b'jk = (1C o Q) b'lk + 
+ TU (K™ o Q) (bt.lJk(? + b'u) + (K(*+1> o Q) Q'bkk = l)t\ (K<» o Q) bM+1. 

3. Conventions, notation. In what follows n is a nonnegative integer. For each 
y e % let (?(>>) = (y, / , . . . , y<">). For i = 1, 2,... let bt = (6,i,..., bi>n+1). 

Let g = gn be the set of all mappings F of 3̂ to P̂ for which there are 5 0 , . . . , Sn e ty 
such that 

(i) f(y) = tyU)Sj (yey). 
1 = 0 

Remark. It is easy to see that the polynomials Sj are uniquely determined by F. 
(We may, e.g., apply the relations 

F(yi) =
 :Zy(

i
J)Sj + i\Si O = 0,...,«), 

j=o 

where y((x) = xl.) Further it is clear that F(y) is the scalar product g(y) S, where 
s = (s0, •••> sn). 

4. Lemma. Let i be a natural number. Then 

<?((e')9 - i °ijbj • 

; = i 
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Proof. Set K(x) = x\ Clearly K<» o Q = atj for each 7 > 0. Let k be a natural 
number. By 2 we have (Ql){k) = £5«- fl*A*- S i n c e au = ° f o r I > * a n d fc1* = ° 
for 7 > fc, we have also (Q1)^ = J^ml aijbjk. Now we observe that Q((Qly) = 

= ((e%...J(e l)(n+1)). 
5. Lemma. Let Lbe a linear subspace of ty. Suppose that the following holds: 
(2) For each y e Land each z e ty we have yz e L. 
(3) If z e $ and zQ' e L, then zeL. 

Let F be given by (1) and let F((Q1)') e Lfor i = 1, ..., n. Then 
(4) F((Qn+1)') - ( n + 1)! (Qj^SneL. 

If, moreover, 
(5)F((6" + 1 )0eLor SneL, 

then Sj e Lfor 7 = 0,..., n. 

Proof. Set 5 = ( 5 0 , . . . , Sn). By 4 we have F((Q*)') = <K(G0') 5 = U - 1 fl'X6is) + 
+ i! (btS) (i = 1, . . . , n + 1). We see that bxSeL, by (2) we have b2_S e L, . . . , bnS e 
e L a n d F((Qw+1)0 - (n + 1)! (bn + lS) e L. Clearly 

M = (C')ISI-1+ Z 6 , ^ . 

Choosing i = n + 1 we get (4). Now it follows from (3) and (5) that Sn e L, 
Sn-i e L , . . . , 5 0 e L . 

6. Lemma. Let L be as in 5. Let aj9 flj e S$ (j = 0 , . . . , n), G(y) = ]Tj=o y0)ay, 
H(y) = Znj=oyU)Pj ( j e ? ) . Let G((Q ' )0eL, !!((&)') e L for i = l , . . . , n . Then 
(awH - &G) (>>) e L for each y e %. 

Proof. Set F = a„H - jSwG. Then we have (l) with S„ = 0. Clearly F((Q1)') e L 
for i = 1, . . . , n and, by 5, F(y) e Lfor each y e ̂ 3. 

7. Notation. Let v = (0, . . . ,0) (n + 1 terms). For each (n + 1) x (n + 1) -
matrix Z with rows z0 , . . . , zn let Z* be the matrix with rows v, z 0 , . . . , "„_!. For each 
fe ^ let F(f) be the matrix with entries eik9 where elk = Q for fc < i and eik = 

= (kJfik~l) for fc = i (i, fc = 0, . . . , n). Let I be the (n + 1) x (n + 1) identity 

matrix and let w be its last row. Further let 

M = n E(Q') - (E(Q))* + Q/* . 

Let m0, ..., mn be the rows of M. For each >l e P̂ let 4>(y) be the determinant with 
rows m0 , . . . , mn_u Q(y). 

8. Lemma. Let f,ge% Then Q(fg) = Q(f) E(g)9 Q(ffg) = Q(f) (E(g))* + 
+ f(w + 1)0vv; in particular, Q(f) = o(f)7* + f ( / , + 1'w. 

(The easy proof is omitted.) 
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"• Lemma. M is an upper triangular matrix with diagonal entries (n — fc) Qr 

(k = 0 , . . . , n); in particular, mn = v. 

Proof. Let H = E(Q) - QI. Then H = (hik) is an upper triangular matrix 
with hkk == 0 (fc = 0, ..., n) and hk.ltk = kQ' (fc = 1, ..., n). Obviously M = 
= n E(Q') — H* from which our assertion follows at once. 

10. Lemma. LetfeS$. Then <P(nfQ' -f'Q) = -Q$(f'). 

Proof. By 8 we have Q(nfQ' - f'Q) = n Q(f) E(Q') - o(f) (E(Q)f - f("+1)6w = 
= Q(f) M - Q(Q(f)I* + f(M+1)w) = o(f) M - Q Q(f). Since, by 9, we have mn = 
= v, Q(f) M i s a linear combination of the rows m 0 , . . . , mn_i. This easily implies 
our assertion. 

11. Lemma. We have $((Q1)') = Ofor i = 1, ..., n. If we define V} by 

(6) <P(y) = iy(j)Vj (ye<p) , 
• j = 0 

tfeen 

(7) Vn = n\(Qj. 

Proof. We may suppose that n > 0. If we choose f = 1 in 10, we get $(Q') = 0. 
Now, if i < n and ^((Q1)') = 0, we set f = Q' in 10 and we get <P((Qi+1)') = 
= [(i + l)/(n - /)] 0(nQ{Q' - fG i"1Q'6) = 0. It is obvious that Vn is a triangular 
determinant with diagonal entries (n — fc) Q' (fc = 0, . . . , n — 1). This completes the 
proof. 

12. Convention. In sections 13 and 14 we define mappings W and A. The reader can 
prove easily that theorems 13 and 14 hold, if n = 0 or Q' = 0. (If n = 0, then <P(y) = 
= <F(y) = A(y) = >;; if Q' = 0 and n > 0, then <*>(>>) = ^(j>) = A(y) = 0 (j; e <P).) 
Therefore in the corresponding proofs we will suppose that n > 0 and that Q is not 
constant. Then (3) holds with L = {0}. 

13. Theorem. For each y e ty /ef !F(j>) be t/ie determinant with rows b1? ..., b„, 
@(y) (see 3). Lef T, be defined by 

(8) fO0 = i>U)r;-
Then 

(9) !P((QT) = 0 for i « - l , . . . , » 

and 

(10) n! «P = ( Q ' ) ® * • 

Proof. The relation (9) follows from 4. It is easy to see that T„ is a triangular 
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determinant with diagonal entries Q' , . . . , (Q')n. Let (6) hold. By 11 and 6 with L = 
= {0} we have VnW = Tn<P. This combined with (7) yields (10). 

14. Theorem. For each y e ^ let A(y) be the Wronskian of the functions Q\ 
(Q2)\ -.., ( 6 % y. Let W be as in 13. Then A = V ]~l2=i fc!. 

Proof. Let A, B, C be matrices with entries aik, bik, (Q
lfk) (i, k = 1, . . . , n). By 4, 

where we take n - 1 instead of n, we have C = -4£. Let us define W} by yl(>>) = 
= XI=oy0)Wy and let (8) hold. Then det A = rifc=i *!,-det B -= Tn and Wn = 
= det C = det A det B. Clearly -4((Qf)') = ° f o r * = 1, ..., "• By (9) and 6 with 
L = {0} we have TnA = W^ which easily implies our assertion. 

15. Conventions, notation. In what follows we suppose that Q is a polynomial 
that is not identically zero and has no multiple roots (so that it is relatively prime 
to Q'). Iff, g e ty, then the relation f = g means that f — g = hQ for some h e *$. 
Let 33 = 33„ be the set of all mappings F e %n such that F((gf)') = 0 (i == 1,.. . , w). Let 
3B = 333n be the set of all mappings F e 33,, for which F((Qn+1)') is relatively prime 

toe-

16. Lemma. Let F e 33 and let (1) hold. Then F e 333 if and only if Sn is relatively 
prime to Q. 

Proof. We set L = {y e ^ ; y = 0} in 5 and apply (4). 

17. Theorem. The mappings 3>, W and A are elements Of3B. 

Proof. By (7) and 16 we have ^ e 333. Now we apply 13 and 14. 

18. Lemma. Let F e 33,fe <$. Then F(nfQ' - f'Q) = 0. 

Proof. Let (1) and (6) hold and let L = {y e <$; y = 0}. Set y= nfQ' -f'Q. 
By 6 and 10 we have Vn F(y) = Sn <P(y) = 0 and, by 11, Vn is relatively prime to Q* 
Thus F(y) = 0. 

19. Lemma. Let n > 0, Fe2B„. Set G(y) = F(yQ) - QF(y) (yefy. Then 

Proof. Let (1) hold. It is obvious that there are C, e P̂ such that G(y) = 
= Xi=o yU)Cy Since Cn = 5n<2 - QSH9 we have G e ^ . j . Now we observe that 
G((Q1)') = (ij(i + l))F((Qi+1)') for each positive integer i. 

20. Lemma. Let F e 33n, P e $ . Let P/G" + 1 have a rational primitive. Then 
F(P) = 0. 

Proof. It is well-known that there is anfe ^ such that P/G"+1 = (fjQ1)'; thus 
P = f'Q - nfQ'. By 18 we have F(P) = 0. 
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21. Lemma. Let FeSB,.. Let Pe% F(P) == 0. Then P/(2"+1 has a rational 
primitive. 

Proof. It is easy to see that the assertion holds, if n = 0. Now let fc be a natural 
number such that the assertion holds for n = fc - 1. Let F e 2Bfc, P e ^P, F(P) = 0. 
There are f,gety such that P = kfQ' - gQ. Set Pt == fcfg' - f'Q, P2 = / ' - #. 
Then P = Px + QP2. By 18 we have F(P1) s 0 so that F(QP2) = 0. Let G be as 
in 19. Then Ge3Bk_1 and G(P2) == 0 so that, by induction assumption, P2\Q

k has 
a rational primitive. Obviously PtlQ

k+1 = (-//Q*)' and P/Qfc+l = Pj/G*"1"1 + 
+ P2/6

k. Therefore the assertion holds also for n = fc. 

22. Theorem. Let P e <p, F e 2Bn. Then P/Q"* * has a rational primitive if and only 
if F(P) = 0. 

(This follows at once from 20 and 21.) 

Remark 1. It is very easy to construct the matrix M = (mik) by means of which 
the mapping <P has been defined. We have mik = PikQ

(h~i+1\ where fiGk = n and 

Pik = n ( . ) - (• __ 1 ) for i = 1, ..., fc (fc = 0, ..., n); in particular, pkh = n - fc. 

The numbers pik with 0 < i < fc can be obtained from the obvious relations Pr>s+1 = 

= Prs + Pr-i,s (l ^ r = s; s = 1,..., n - 1). Moreover pin ~ n r \ - ( " \ = 

« (i - l) W» - * + 1) - 0/' = (, " <) [(» - 0 (n + l)]/i = (" + ^(n - 0 
(i = 1,..., n). Thus, if n + 1 is a prime, the numbers jSln,..., /?„,. are its multiples. 
For example, if n = 4, $(y) is the determinant 

4ß' 4ß" 4ß'" 4ß<4> 4ß (5) 

0 Зß' 7ß" l lß '" 15ß<4> 
0 0 2ß' 9ß" 20ß'" 
0 0 0 ß' Юß" 
У / / ' /" y ( 4 ) 

Now let n be an arbitrary natural number. It follows from the definition of a de­
terminant that <P(y) is the sum of terms of the form 

(11) cQ(fco-0+l)g(fci-l+l) ^ Q(fc„-i-(n-l)+l) (fe„) 

where c is an integer, {fc0, kl9..., kn] = {0,1,..., n} and kt = i for i == 0,..., n. Let 
us write kn = I. Since £"=0 (fc/ - i) = 0, we have YA=O (fc/ - i + 1) + I - n + 1 = 
= Z?==o (fcj - i + 1) = n + 1 so that j + X"=o (fc/ - i + 1) = 2n. Hence (11) can 
now be expressed also in the form cyu\Q')Ji (Q")j2" (Q(n+1))Jn+l, where jr are 
nonnegative integers, j t + ... + jn + 1 = n and I + j t + 2j2 + ... + (n + l)I„+i = 
= 2n. We see that the expressions Vi defined by (6) have the form described in the 
introduction. 
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Remark 2. It is possible to view <P(y) as a polynomial in the variables y, y',..., y(n}, 
Q', Q"> ••, 6 ( r t + 1 ); the coefficients are integers that, by (10), are multiples of n\. 
As <P(Q') = 0, their sum is zero. 

Remark 3. Let A, B e P̂ and let B be a nonzero polynomial. Let D be a greatest 
common divisor of B and B', D e $ . We have B = QD, where Qe ^J, Q has no 
multiple roots and each root of B is also a root of Q. It is obvious that there is a non-
negative integer n not greater than the degree of D and aCe^S such that Qn = DC. 
Setting P = AC we have A/B = P/Q"+I and, combining theorems 22 and 17, we get 
necessary and sufficient conditions for A\B to have a rational primitive. 
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Souhrn 

POZNÁMKA K INTEGRACI RACIONÁLNÍCH FUNKCÍ 

JAN MAŘÍK 

Budte P, Q polynomy v jedné proměnné s komplexními koeficienty a bud n přirozené číslo. 
Nechť Q není konstantní a má jen jednoduché kořeny. Hlavní výsledek, který plyne z vět 17 
a 22, říká, že P/Qn + Í má racionální primitivní funkci pravé tehdy, když Wronského determinant 
funkcí Q\ (Q2y,..., (Qnyt P j e dělitelný polynomem Q. Přímému výpočtu tohoto determinantu 
lze se vyhnout, použijeme-li jednoduššího determinantu <P(P), definovaného v odst. 7, a vět 13 
a 14. 

Authoťs address: Michigan State University, Department of Mathematics, East Lansing, 
Michigan 48824. 
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