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Summary. Recently Popa and Noiri [10] established some new characterizations and 
basic properties of a-continuous multifunctions. In this paper, we improve some of their 
results and examine further properties of a-continuous and a-irresolute multifunctions. We 
also make corrections to some theorems of Neubrunn [7]. 
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1. I N T R O D U C T I O N 

In 1965, Njastad [8] introduced a weak form of open sets called a-sets. Some kinds 

of generalized continuous functions were defined in terms of a-sets by several authors. 

For example, Maheshwari and Thakur [4] defined a function / : (X, T) —• (Y,U) to 

be a-irresolute if }~X(V) is an a-set for every a-set V of (Y,U). Mashhour et al [6] 

defined a function / : (X,T) -> (Y,U) to be a-continuous if f~x(V) is an a-set for 

every open set V of (Y,U). In 1986, Neubrunn [7] extended these concepts to multi-

functions. Recently Popa and Noiri [10] obtained several new characterizations and 

properties of a-continuous multifunctions. The purpose of this paper is to improve 

some results of [4] and [10], to exploit further properties of a-continuous and a-

irresolute multifunctions, and to make corrections to some theorems of Neubrunn [7], 

Throughout this paper, (X,T) and (Y,U) are always topological spaces. The 

closure (resp. interior) of a subset A in (X,T) is denoted by Cl(A) (resp. Int(A)). 

Then A is called a-open [8] if A C Int(Cl(Int(X))), and A is a-closed if X - A is a-

open. Note that a-closed sets are called coa-sets in [4]. Let Ta denote the family of all 

a-open subsets of (X, T). It was shown in [8] that Ta is a topology on X. Let a C1(A) 

(resp. a l n t ( A ) ) denote the closure (resp. interior) of A with respect to Ta- A subset 

U of (X, T) is called an a-neighborhood of a point x e X it there exists a V € Ta such 
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that x e V C U. By a multifunction F: (X,T) -» (Y,U), we mean a point-to-set 
correspondence from (X,T) into (Y,U), and we always assume that F(x) ^ 0 for 
all x e X. For each B CY, F+(B) = {x e X \ F(x) C B} and F - ( £ ) = {x e 
X | E(x) n B / 0 } . In particular, F-(j/) = {x 6 X | y G F(x)} for each point 
y eY. For each A c l , F(A) = \JxeAF(x). Then F is said to be a surjection 
if F(X) = y, or equivalently, if for each y e Y there exists an x e X such that 
y e F(x). Moreover F: (X,T) -» (YW) is called upper semicontinuous, abbreviated 
as u.s.c (resp. lower semicontinuous, abbreviated as l.s.c) if F+(V) (resp. F~(V)) 
is open in (X,T) for every open set V of (Y,U). The graph G(F) of F is defined 
by G(E) = {(x,y) \ x e X,y e F(x)}. We say that F has a closed (resp. a-closed) 
graph if G(F) is closed (resp. a-closed) in (X x K, T x U). The prap/t multifunction 
GF: (X, T) -^ (X xY,T xU) of F is defined by GF(x) = {z} x F(z) for each x e X. 
Other basic concepts and terminology about multifunctions are as in [2] and [3]. 

2. a-CONTINUOUS MULTIFUNCTIONS 

Following Neubrunn [7], we define the fundamental concepts. 

Definition 2.1. ([7]) A multifunction F : (X, T) -+ (Y,U) is called 
(a) upper a-continuous, abbreviated as u.a.c, if F: (X,Ta) - t (Y,U) is u.s.c, 
(b) lower a-continuous, abbreviated as l.a.c, if F: (X,Ta) -* (Y,U) is l.s.c. 

Now F : (X,T) -> (Y,U) is a-continuous if it is both u.a.c. and l.a.c 

The following characterizations of upper a-continuity and lower a-continuity are 
due to Popa and Noiri [10]. 

Theorem 2.2. ([10]) Let F: (X,T) ->• (Y,U) be a muitifunction. Then the 
following statements are equivalent. 
(a) F: (X,T) -> (Y,U) is u.a.c. 
(b) F+(V) e Ta for any V eU. 
(c) F~(V) is a-closed in (X, T) for any closed V of (Y,U). 
(d) For each point x e X and each neighborhood V of F(x), there exists an a-

neighborhood U of x such that F(U) C V. 
(e) aCl(E-(J3)) C F~(Cl(B)) for any BcY. 

Theorem 2.3. ([10]) Let F: (X,T) -> (Y,U) be a multifunction. Then the 
following statements are equivalent. 
(a) F: (X,T)-+ (Y,U) is l.a.c. 
(b) F-(V)eTaforanyVeU. 
(c) F+(V) is a-closed in (X,T) for any closed V of(Y,U). 
(d) a C1(F+(B)) C F+(C1(B)) for anyBcY. 
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(e) P ( a C l ( A ) ) C C1(F(A)) for any AcX. 

In our next result, we provide a simple and direct proof of Thee.am 3.9 of [10]. 

T h e o r e m 2 .4 . ([10]) A multifunction F: (X,T) ->• (Y,U) is l.a.c. if and only if 

its graph multifunction GF is l.a.c. 

P r o o f . Suppose that Gp is l.a.c. Then for any open subset V of (Y,U), 

F~(V) = GF(X x V) £ Ta. Hence F is l.a.c. Conversely, suppose that F is l.a.c. 

For each U € T and each V € U, we have GF(U x V) = U n F ~ ( V ) € Ta. Therefore 

GF is l.a.c. from Proposition 6.3.5 of [3]. • 

Definit ion 2 .5. A multifunction F: (X,T) -> (Y,U) is said to have a strongly a -

closed graph if for each pair (x,y) ^ G(F) there exist U € Ta and V eUa containing 

x and y respectively such that (U x V) ("I G(F) = 0. 

From this definition, we see that F: (X, T) -* (Y, U) has a strongly a-closed graph 

if and only if F: (X, Ta) -» (Y, Ua) has a closed graph. Moreover, if G(F) is strongly 

a-closed, then it is a-closed. The following example will show that the converse is 

not t rue in general. 

E x a m p l e 2.6. Let X be an infinite set, let xt € X (i = 1,2,3) be three different 

points and T = {G C X | Xi (f. G, i = 1,2,3} U {G C X | X - G is finite}. Then it is 

easy to verify that T is a topology on X and Ta = T. Choose an infinite subset P 

of X such that Xi £ P (i = 1,2,3) and X — P is also infinite. Define a multifunction 

F:(X,r)->(X,T)by 

Ifo.a*}, if z e X - P . 

The graph G(P) = P x {xux2} D (X ~ P) x {x2,x3} of F is a-closed, since 0 = 

Cl(Int(Cl(G(P)))) C G(P) . But for any two a-neighborhoods U and V of xu we 

have (U xV)n G(F) ^ 0. Therefore G(F) is not strongly a-closed. 

Recall that a subset A of a space (X, T) is called a -paracompact [1] if for every open 

cover V of A in (X, T) there exists a locally finite open cover W of A which refines 

V. Our next several results concern the relationship between upper a-continuity and 

strongly a-closed graphs. 

T h e o r e m 2.7. Let F: (X,T) -> (Y,U) be a u.a.c. multifunction from a space 

(X,T) into a Hausdorff space (Y,U). IfF(x)is a-paracompact for each x e X, then 

G(F) is strongly a-closed. 

P r o o f . Suppose that (x0,y0) i G(F). Then y0 $ F(x0). Since (Y,U) is a 

Hausdorff space, for each y £ F(x0) there exist open sets V(y) and W(y) containing 
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y and y0 respectively such that V(y)C\W(y) - 0- The family {V(y) \ y G F(x0)} is an 
open cover of F(x0). Thus, by a-paracompactness of F(x0), there is a locally finite 
open cover V = {Up | /? e 1} which refines {V(y) \ y 6 F(x0)}. Therefore there exists 
an open neighborhood W0 of y0 such that W0 intersects only finitely many members 
U01, Ufa, ..., Up„ of V. Choose 2/1,2/2, • • • ,Vn in F(x0) such that Lfo C V(y{) for 
each 1 < t ^ n, and set W = W0 n (flLi W(V»)) • Then VK is an open neighborhood 
of j/o such that W n (U,s€/ ^a) = 0- 0 y t h e uPPe r a-continuity of F, there is a 
U € Ta such that x0 & U C E+(Use/

 V?>)- : t follows that ( C / x ^ n G(F) = 0. 
Therefore G(E) is strongly a-closed. D 

Corollary 2.8. ([10]) IfF: (X, T) -> (Y, W) is a u.a.c. multifunction into a flaus-
dorff space (Y,U) such that F(x) is compact for each x e X, then the graph G(F) 
is a-closed. 

Theorem 2.9. Let F: (X,T) -¥ (Y,U) be a multifunction from a space (X,T) 
into an a-compact space (Y,U). IfG(F) is strongly a-closed, then F is u.a.c. 

Proof . Suppose that F is not u.a.c. By Theorem 2.2, there exists a nonempty 
closed subset C of (Y,U) such that F~(C) is not a-closed in (X,T). We may 
assume F~(C) # 0. Then there exists a point x0 e aCl(F~(C)) - F~(C). Hence 
for each point y g C, we have (x0,y) £ G(F). Since F has a strongly a-closed 
graph, there are a-open subsets U(y) and V(y) containing x0 and y respectively 
such that (U(y) x V(y)) n G(F) = 0. Then [Y - C) U {V(y) \ y 6 C} is an a-open 
cover of (YW), and thus it has a subcover {Y - C} U {V(Vi) \ Vi € C, 1 ^ i ^ n}. 
Let Lt = flLi (̂W*) a n d v = U"=i V (^ ) - I* i s e a sy <» verify that C C V and 
(Lt x V)nG(E) = 0. Since Lt is an a-neighborhood of so, LtnE-(C) # 0. It follows 
that 0 ^ (Lt x C) n G(F) C (Lt x V) n G(E). This is a contradiction. Hence the 
proof is completed. D 

Corollary 2.10. Let F: (X,T) -> (Y,W) be a multifunction into an a-compact 
Hausdorff space (Y,U) such that F(x) is a-closed for each x € X. Then F is u.a.c. 
if and only if it has a strongly a-closed graph. 

3. a-IRRESOLUTE MULTIFUNCTION 

In this section, we discuss some properties of upper (lower) a-irresolute multifunc-
tions and generalize the main results of [4] to multifunctions. 

Definition 3.1. ([7]) A multifunction F: (X,T) -4 (Y,U) is called 
(a) upper a-irresolute, abbreviated as u.a.i., if F: (X,Ta) —y (Y,Ua) is u.s.c, 
(b) lower a-irresolute, abbreviated as l.a.i., if F: (X, Ta) ~¥ (Y,Ua) is l.s.c. 

Now F: (X,T) -¥ (Y,U) is a-irresolute if it is both u.a.i. and l.a.i. 
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It follows from the definitions that a u.a.i. (resp. l.a.i.) multifunction is u . a . c 
(resp. l . a .c ) . In [4], the authors introduced the concept of a-Hausdorff spaces in 
order to ensure the graph of an a-irresolute function to be a-closed. It was shown 
by Reilly and Vamanamurthy [13] that a-Hausdorff spaces are precisely Hausdorff 
spaces. Therefore, as corollaries of Theorem 2.7, we have the following results. 

T h e o r e m 3.2 . LetF: (X,T) -> (Y,U) be a u.a.i. multifunction into a Hausdorff 

space (Y,U). If F(x) is a-paracompact for each x e X, then G(F) is strongly a-

closed. 

Corollary 3 .3 . ([4]) Iff:(X,T)-+ (Y,U) is an a-irresolute function and (Y,U) 
is a-Hausdorff, then G(f) is a-closed. 

Let A be a subset of a space (X,T). Then F: (X,T) ->• (A,TA) is called a 

retracting multifunction [16] if a; £ F(x) for each x £ A. By using the same technique 

as in the proof of Theorem 2.7, we can obtain the following results. 

T h e o r e m 3.4. Let F be a u.a.i. multifunction of a Hausdorff space (X,T) into 

itself. If F(x) is a-paracompact for each x £ X, then the set A = {x \ x e F(x)} is 

an a-closed subset. 

P r o o f . Let x0 e a C l ( A ) . Suppose that x0 <fr A, i.e. x0 (£ F(x0). Since (X,T) 

is Hausdorff, for each x € F(x0) there exist open sets U(x) and V(x) containing 

x0 and x respectively such that U(x) n V(x) = 0. Then {V(x) \ x £ F(x0)} is an 

open cover of F(x0). By the a-paracompactness of F(x0), {V(x) \ x £ F(x0)} has 

a locally finite open refinement W = {Wp \ /3 £ / } which covers F(x0). Therefore 

we can choose an open neighborhood Uo of x0 such that U0 intersects only finitely 

many members Wpx, W02, ..., W9n of W- Choose xi,x2, • • • ,xn in F(x0) such that 

W0i C V(Xi) for each 1 ^ i < n, and let U = U0 n (n , n
= 1 U(Xi)). Then U is an 

open neighborhood of x0 such that U n (\JpeI Wp) = 0. Since F is u.a.i., there is 

an a-neighborhood G of x0 such that F(G) C U,ae/ Wp. It follows that G n U is an 

a-neighborhood of x0 and satisfies (G n U) n A = 0. This contradicts the fact that 

x0eaC\(A). • 

Corollary 3 .5 . ([4]) Iff is an a-irresolute function ofan a-Hausdorff space (X, T) 

into itself, then the set A = {x \ x = f(x)} is an a-closed subset. 

Corollary 3 .6 . Let A be a subset of (X,T) and F: (X,T) ->• (A,TA) a u.a.i. 
retracting multifunction such that F(x) is a-paracompact for each x e A. If(X,T) 
is Hausdorff, then A is a-closed. 

C o r o l l a r y 3.7. ([4]) Let A be a subset of (X,T) and / : (X,T) -+ (A,TA) an 

a-irresolute retraction. If(X,T) is Hausdorff, then A is a-closed. 
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R e m a r k . Prom the proof of Theorem 3.4, it is easy to see that Theorem 3.4 

and Corollary 3.6 are still valid if the upper a-irresolution of F is replaced by upper 

a-continuity. 

In considering when a u.a.c. (resp. l.a.c.) multifunction is u.a.i. (resp. l.a.i.), 
Neubrunn [7] introduced the concepts of upper and lower somewhat openness. A 
multifunction F: (X,T) -» (Y,U) is said to be upper somewhat open if lnt(F(U)) 5^0 
for any open set U e T with F(U) £ 0. It is said to be lower somewhat open if 
for any subset U eT and V e U such that F(x) C\ V / 0 for any x e U, we have 
lnt(F(U) C\V) ^%. Neubrunn (Theorem 5, [7]) claimed to prove that a u.a.c. and 
upper almost open multifunction F: (X,T) —> (Y,U) is u.a.i. Unfortunately, this 
result is false as is shown in the following example. 

E x a m p l e 3.8. Let X = {a,b,c,d} and Y = {p,q,r}. Define a topology 

T = {9,X,{a},{b,c},{a,b,c}} on X and a topology U = {$,Y,{p}} on Y. A 

multifunction F: (X,T) -* (Y,U) is defined as follows: 

{ {p}, if x = a; 

Y, if x = b, or c; 

{p,q}, ilx = d. 

Then F is upper somewhat open and u.a.c. Since {p, q} is a-open in (Y,U) and 

F+({p,q}) = {a,d} is not a-open in (X, T), F is.not u.a.i. 

Neubrunn also claimed that there is no essential difference between the proofs of 

Theorem 6 and Theorem 5 of [7]. Since there is a gap in the proof of Theorem 5 of 

[7], we conclude this section by providing a complete proof to Theorem 6 of [7]. 

T h e o r e m 3.9. ([7]) Let F: (X,T) -> (Y,U) be a multifunction. If F is both 

l.a.c. and lower somewhat open, then F is l.a.i. 

P r o o f . Suppose that F is not l.a.i. Then there is a nonempty V eUa such 

that F~(V) $ Ta. We may assume F~(V) ± 0. Let U = Int(Cl(Int(V))). Since 

F is l . a . c , F-(U) e Ta. Then F~(V) C F~(U) C Int (Cl(Int (E - ( t / ) ) ) ) . It follows 

that F~(U) <£ Cl(Int(F"(V))) . Indeed, suppose this is not the case. Then F~(V) 

is a-open. Thus there exists a point p € F~(U) and an open neighborhood G of 

p such tha t G n In t (E _ (V) ) = 0. Since G n F~(U) is a nonempty a-open subset 

of (X,T), Int(G n F~(U)) + 0. Let W = Int(G n F~(U)). Clearly, W is open in 

(X,T) and W n In t (F~(V ) ) = 0. By the lower somewhat openness of F, we have 

0 ^ lnt(F(W) n U) = I n t ( E ( w ) ) n U, which implies that 0 ^ lnt(F(W) n V) C 

F(W) n Int(V) . Then W n F~(lnt(V)) ^ 0. By the lower a-continuity of F again, 

W n E"(Int(V)) is a nonempty a-open set. Hence 0 ^ Int(W n F~(Int(V ) ) ) C 

W n lnt(F~(V)). This contradicts the fact that W n lnt(F~(V)) = 0. D 

420 



4. M A P P I N G THEOREMS 

In this section, we will establish some mapping theorems by using the method of 
change of topology. A subset A of a space (X, T) is called a-compact if every a-open 
cover of A in (X, T) has a finite subcover. Hence the concept of an a-compact space 
in [5] can be restated as: A space X is a-compact if and only if X is an a-compact 
subset of itself. Prom the definition, a subset A of (X, T) is a-compact if and only 
if A is compact in (X,Ta). 

T h e o r e m 4 .1 . Let F: (X,T) -¥ (Y,U) be a u.a.c. multifunction such that F(x) 

is compact for each point x £ X . Then F(K) is compact for each a-compact subset 

Kof(X,T). 

P r o o f . It follows directly from Definition 2.1 (a) and Theorem 7.4.2 of [3]. D 

Corollary 4 .2. ([10]) LetF: (X,T) -* (Y,U) be a u.a.c. surjective multifunction 
such that F(x) is compact for each point x e X. If(X,T)is a-compact, then (Y,U) 
is compact. 

Theorem 4.3. LetF: (X,T) —> (Y,U) be a multifunction from a connected space 
(X,T) onto (Y,U) such that F(x) is connected for each point x e X . If F is either 
u.a.c. or l.a.c, then (Y,U) is connected. 

P r o o f . It follows from Theorem 2 of [11], Theorem 7.4.4 of [3], Theorem 2.2 
and Theorem 2.3. D 

Corollary 4 .4 . ([11]) If (X,T) is connected and / : (X,T) -+ (Y,U) is an a-
continuous surjection, then (Y, U) is connected. 

Recall that a space (X, T) is almost compact [14] if each open cover has a finite 
subfamily whose union is dense in (X,T). And (X, T) is called almost paracompact 
[15] if every open cover of (X, T) has a locally finite open refinement whose union is 
dense in (X,T). To obtain more mapping theorems, we first establish the following 
two lemmas. The proof of first lemma is not difficult, so we omit it. 

L e m m a 4.5 . (X, T) is almost compact if and only if (X, Ta) is almost compact. 

Lemma 4 .6. For a space (X, T), the following statements are equivalent. 

(a) (X, T) is almost paracompact. 
(b) Every open cover of (X,T) has a Ta-locally finite a-open refinement whose 

union is dense in (X,T). 

(c) Every open cover of (X, T) has a Ta-locally finite a-open one-to-one refinement 
whose union is dense in (X,T). 
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(d) Every a-open cover of (X,T) has a Ta-locally finite a-open refinement whose 

union is dense in (X,Ta). 

(e) (X,Ta) is almost paracompact. 

(f) Every a-open cover of(X, T) has a 7'-locally finite open refinement whose union 

is dense in (X,T). 

P r o o f , (a) => (b), (b) => (c), (d) => (e) and (f) => (a) are straightforward. 

(c) => (d): Suppose that {Up \ 0 G I) is an a-open cover of (X,T). Then 

{Int(C\(U0)) | 0 6 1} is an open cover of (X, T), thus it has a Ta-locally finite a-open 

one-to-one refinement {V0 | 0 6 1} such that X = Cl.(U,j6/>/s) = U<3e/c l(V/j)' 

Now let Wp = Up n Int(V» for each Pel. Then {W> | 0 e 1} is a T-locally finite 

a-open refinement of {Up \ 0 e 1} . For each 0 e I, it is easy to verify that 

a C\(Wp) = C\(Ug n Int(V») = C\(C\(U0) n Int(V^)) = Cl(Int(V») = C\{V0). 

Therefore X = (J0elaC\(W0) = aC\([J0el W0). 

(e) => (f): Let V = {V0 | 0 e 1} be an a-open cover of (X,T). Then there 

exists a Ta-locally finite a-open refinement W = {WO, | A e A} of V such that 

X = \JxeAaC\(Wx).
 T h e n \lat(W\) | A e A} is an open refinement of V. Since 

W is T-local ly finite, for each x e X there is an a-open set G containing x such 

that G intersects only finitely many members of W. Thus Int(Cl(Int(G))) is an open 

neighborhood of x and intersects only finitely many members of {Int(W;v) | A € A}, 

which says that {Int(WA) | A e A} is T-locally finite. For each A e A, aC\(W\) = 

Cl(Int(W\)), hence we have X = \JxeA Cl(M(Wx)) = CI ( U A e A I n t ( W A ) ) . There

fore {Int(W\) | A e A} is a T-locally finite open refinement of V and its union is 

dense in (X, T). So the proof is completed. D 

T h e o r e m 4 .7 . Let F: (X,T) -» (Y,U) be an a-continuous surjection such that 

F(x) is compact for each point x e X. If(X,T) is almost compact, then (Y,U) is 

almost compact. 

P r o o f . Let V = {V0 | 0 e 1} be an open cover of (Y,U). For each x e X, there 

exists a finite subset l(x) C I such that F(x) C \J{V0 \ 0 G I(x)} = V(x). Since 

F is u . a . c , there exists a U(x) e Ta containing x such that F(U(x)) C V(x). We 

obtain an a-open cover {U(x) \ x e X} of (X,T). By Lemma 4.5, there are finitely 

many points xi,x2,... ,xn of X such that X = \J™=1aC\(U(xt)). Since F is l . a . c , 

we have 

Y = F[{JaC\(U(XÍ))\ = U F(aC\(U(Xi))) C ( J C\(F(U(Xi))) 

c\Jcvy{Xi)) = \J U C1(^)-
i= i i = 1 / 3 e / ( x i ) 
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This shows that (Y,U) is almost compact. • 

Definition 4.8. A multifunction F: (X,T) -> (Y,U) is called a-open (resp. a-

closed) ifF(G) is a-open (resp. a-closed) in (Y,U) for each open (resp. closed) subset 

G of(X,T). 

The proof of the following lemma is straightforward, so we omit it. 

Lemma 4.9. Let F: (X,T) -* (Y,U) be a muitifunction. Then the following 

statements are equivalent. 

(a) F: (X,T) -> (Y,U) is a-closed. 

(b) For each U e T and B C Y with F~(B) C U, there exists a V e Ua such that 

BCV andF~(V) CU. 

(c) For eaci U e T and each point y e Y with F~(y) C U, there exists an a-

neighborhood Vofy such that F~(V) C U. 

(d) F: (X,T) -> (Y,Ua) is closed. 

T h e o r e m 4.10. LetF: (X, T) -*• (Y,U) be an a-continuous, a-open and a-cJosed 
surjection from an almost paracompact space (X,T) onto a space (Y,U) such that 
F(x) is a-paracompact for each x e X and F~(y) is compact for each y eY. Then 
(Y, U) is almost paracompact. 

P r o o f . Let {Up \ f3 6 / } be an open cover of (Y,U). Since F(x) is a-
paracompact for each x e X, there exists a W-locally finite open cover Vx of F(x) 
such that Vx refines {Up | P e I}. Then {F+(UV X ) | x e X) is an a-open cover 
of (X,T), thus it has a T-locally finite open refinement {Wx | A G A} such that 
X = U^eA C\(W\), following from Lemma 4.6. Hence for each A 6 A, there exists 
a n n e l such that F(W\) c | J V I V Let Q\ = {F(W\) n V | V € V,x} for each 
A e A, and Q = {G \ G e Q\ for some A e A}. It is easy to see that Q is an a-open 
refinement of {Up | /? € / } , since F is a-open. 

We now show that Q is Wa-locally finite. For each y eY and each x e F~(y), 
we can choose an open neighborhood Hx such that Hx intersects only finitely many 
members of {W\ \ A e A}. Since F~(y) is compact, there are finitely many points 
xl,x2,...,xn in F~(y) such that F~(y) C Uf=i H*i = H- T n e n H intersects 
only finitely many members of {W\ | A S A}, namely W\s, W\a,..., W\k. By the 
a-closedness of F and Lemma 4.9, there exists an a-open subset Q containing y 
such that F~(Q) C H. It follows that Q intersects at most finitely many members 
F(WXl),F(W\2),...,F(W\J of {F(W)\ | A e A}. On the other hand, VXA; is 
W-locally finite, thus we can choose an open neighborhood Q; of y such that Q ; 

intersects only finitely many members of V IA.. Then (f\i=1 Qi) n Q is an a-open set 
containing y and meeting at most finitely many members of Q. 
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Prom Theorem 2.3, we have F(C1(WA)) = F(aCl(W A ) ) C C1(F(WA)) for each 

A G A. Therefore 

Y = F( U CHWX)) C U C1(F(WA)) = U(C1(G) | G e G). 
^ A 6 A ' A€A 

By virtue of Lemma 4.6 (b), (Y,U) is almost paracompact. • 
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