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Summary. The influence of Jan Marik in the field of non absolute integration is described 
in the plane of Czech mathematics. A short historical account on the development of 
integration theory in the Czech region is presented in this connection together with the 
recent Riemann sum approach to the general Perron integral. 
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From the viewpoint of the theory of integration, our century can be called with

out any exaggeration the Lebesgue century. The first announcement that a new 

integral, which is stronger than the Riemann integral, was created, appeared in 1901 

in Comptes Rendus in an article by H. Lebesgue and in a more detailed form later 

in 1902 in Lebesgue's dissertation Integrate, Longeur, Aire (Ann. di Matem. (3), 7, 

231-359). In 1904 Lebesgue wrote the book Lecons sur ['integration et la recherche 

des fonctions primitives, Gauthier-Villars, Paris, 1904, which appeared in the second 

edition in 1928. 

The Lebesgue integral presented indisputable advances in comparison with the 

Riemann integral. 

a) For a function f: [a, b] -> R to be integrabie in the sense of Lebesgue, this 

function need not be continuous at any point of the interval [a, b]. 

A function / : [a, b] -> R which is integrabie in the sense of Riemann is necessarily 

continuous almost everywhere in the interval [a, ft]. 

b ) If fn: [a, b] -+ R is a sequence of functions integrabie in the Lebesgue sense, 

which converges pointwise to a function f: [a, b] -+ R and | / n | ^ g, where g: 

A lecture presented on November 13, 1995 at a meeting commemorating the 75th birthday 
of the late Prof. Jan Mafik. 
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[a, b] -+ U is integrable in the Lebesgue sense, then f: [a, b] -» R is Lebesgue h 
tegrable and 

J / = nlim J /„ 

holds. 

c) If a function F has a bounded derivative F' in the interval [a,b], then tl 
function F' is integrable in the Lebesgue sense in [a, b] and 

[ F' = F(x) - F(а) 

holds for every x € [a, b]. 

Slightly different is the following proposition. 

d) If the function F is continuous in the interval [a, b] and is differentiable to F 
in [a, b] everywhere except a countable set, and if F' is Lebesgue integrable, then 

[ F' = F(x) - F(а) 

holds for every x £ [a, b]. 

In the last proposition d) the requirement that F' has to be Lebesgue integrabl 
is somewhat surprising. But this requirement cannot be omitted there. 

Indeed, if we set 

F(x) =x2sm(-^\ 0 < i r < . l , F(0) = 0, 

we get a function which has a derivative 

F'(x) = — - c o s ( - ^ ) + 2 x s i n ( ^ ) =f(x) + g(x), 0 < x <. 1, E'(0) = 0 

at all points of the interval [0,1]. 
It is not difficult to check that the function F is not absolutely continuous in th« 

interval [0,1] and therefore the function F' cannot be integrable in the Lebesgue 
sense in [0,1]. 

Nevertheless, the function F' possesses in the interval [0,1] the Newton integra 
and we have 

(N) í F' = F(l) - F(0) = 0. 
Jo 
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Looking closely at the function F ' , we establish easily that the summand 

g(x) = 2x sin (^), 0 < x <. 1, g(0) = 0 

is Lebesgue integrable and that the problems with integrability are caused by the 

function 

f(x) = — - c o s ( 4 ) , 0 < ! < _ ! , / ( 0 ) = 0 , 

ГI/I 
Jo 

because 

This classical example shows that the Lebesgue integral is generally not qualified 

to reconstruct a function if the derivative of this function is known, i.e. the relation 

J* F' = F(x) - F(a) 

need not hold for every x £ [a, b] even in the case when the finite derivative F' exists 

everywhere in the interval [a, b]. 

Moreover, it can be seen from this example that although for every e e (0,1] the 

Lebesgue integral 

J F = F ( l ) - F(e) = -F(e) 

exists and also the proper limit 

liin / F = - lim F(є) = 0 

exists, the Lebesgue integral / F ' does not exist, i.e., for the Lebesgue integral the 
Jo 

so called Hake Theorem is not valid. 

These drawbacks of the Lebesgue integral—which is very powerful in other 

respects—led immediately after Lebesgue's work at the beginning of the century to 

attempts to create an integration theory in which a proposition of type d) would 

hold without the assumption of integrability of the function F ' . In other words, an 

integration theory was needed in the frame of which the integrability of a derivative 

would be ensured provided this derivative exists in some reasonable sense. 

A theory satisfying this desire was developed in 1912 by A. Denjoy. This was the 

Denjoy total produced by a relatively complicated process based on the use of trans-

finite numbers. Shortly after this A. Luzin connected the new Denjoy integration 

with the concept of generalized absolute continuity (ACGt). The result was the 

following proposition: 
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A function f: [a, b] —¥ R is integrable in the sense of Denjoy if there is an ACGt 

function F: [a, b] -¥ R such that F' = f almost everywhere in [a,b]. 

This corresponds to the following known assertion for the Lebesgue integral: 

A function f: [a, b] —¥ U is integrable in the Lebesgue sense if there is an abso
lutely continuous function (an AC function) F: [a,b] -¥ R such that F' = f almost 
everywhere in [a,b]. 

Let us shortly follow the development of the modern views of the concept of the 
integral in Bohemia in the 20th century. 

Modern integration theory in this geographical region goes back to Professor Karel 
Petr who wrote a textbook Integral Calculus (Pocet integralni). Riemann's approach 
to integration is presented there in full extent and precisely without mentioning 
Lebesgue integration. The first edition of this voluminous, book appeared in 1915 
and the second in 1931. 

The new 1931 edition of Petr's book was thoroughly revised and considerably 
extended. An appendix Introduction into the theory of sets was written by Vojtech 
Jarnik. 

Petr's exposition was based on the Newton and Riemann concepts of integration, 
and it has to be noted that it contains a good deal of art of calculation techniques 
and even numerical methods. This was a strong and rich part of K. Petr's mathemat
ical knowledge. In the appendix to Petr's book Prof. V. Jarnik mentions the work 
of H. Lebesgue, E. Kamke, L. Schlesinger and A. Plesner, Ch. de la Vallee-Poussin de
voted to the Lebesgue theory of integral and he notes that this theory is not included 
in the appendix. In a certain sense the second edition of Petr's book was the reason 
for the long delay of presenting Lebesgue's theory in a Czech book. 

In the year 1936 Eduard Cech published the book Point Sets. Part one (Bodove 
mnoziny. Cast prvni) with an appendix On derivation numbers of real functions 
(O derivovanych cislech funkci jedne promenne) again written by V. Jarnik. The 
fourth chapter of Cech's Point Sets has the title Measure and integral and is very 
extensive, representing approximately one half of the whole book, i.e. 220 pages. 

The chapter on integration in Cech's book is the first Czech presentation of the 
theory of the Lebesgue integral in the form of a book. Namely, in Point Sets Cech 
presents a very profound exposition of the theory. Let us mention shortly some of the 
topics: algebras of sets, cr-algebras, Borel sets, additive and a-additive set functions, 
general theory of measure, general theory of integral (measurable functions, Fubini's 
theorem, the special case of the Lebesgue measure), set functions of bounded varia
tion (Vitali's covering, derivatives of set functions, metric density), point functions 
of bounded variation, the Stieltjes integral. 

Cech's chapter on integration is a detailed and comprehensive explanation of the 
theory of the integral. The calculus part of integration is missing there: these things 
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which are so important for students were available at that time in the book of Karel 

Petr. In the preface to his Point Sets E. Cech mentioned that he was influenced and 

inspired by the French version of the book of Stanislaw Saks Theorie de Vintegrale. 

The approach used in the text of Cech gives a clear evidence of this fact. 

Saks' book on integration theory played a very important and decisive role in the 

thirties not only within the theory of integral, but also in the theory of real functions 

in general. 

Professor V. Jarnik was also influenced by the book of S. Saks and Saks mentioned 

this in the preface to the English translation of the book from 1937 in connection 

with some inaccuracies in the French version which had been detected and corrected 

by V. Jarnik. 

Professor V. Jarnik evidently had for a long time the intention of writing a book 

on integral calculus based on the Lebesgue integral. He began to prepare such a 

text during the World War II. His book Integral Calculus II (Integralni pocet II) 

was published in 1955. (Earlier he published Integral Calculus I (Integralni pocet I) 

which was based on the Riemann integral and was essentially shorter than Petr 's 

book.) V. Jarnik himself characterizes his book as follows: . . . this book, even if it 

is based on the modern concept of integral, is rather an "Integral Calculus" than a 

"Theory of integration". Concerning the more general theoretical approach, Jarnik 

refers the reader to Cech's Point Sets. This statement of Jarnik is very modest, his 

Integral Calculus II is both theoretical and calculational. And this makes the book 

very instructive and useful for students. Nowadays this book of V. Jarnik is more 

than forty years old and in spite of that it has not been replaced by another Czech 

book of equal importance. 

In the above part we overjumped in time the description how the views of inte

gration developed in our country. Soon after WW II a group of mathematicians was 

growing up, their density among the population of postwar students and postgrad

uates being unusually high. In the field of integration theory Jan Mafik was one 

of them. After he ended his graduate studies in Mathematics, he became assistent 

at the Technical University in Prague and evidently had contact with students in 

the course of which he encountered rather unsatisfactory approaches to integration 

theory. In the year 1952 J. Mafik published in Casopis pro pestovdni matematiky (77 

(1952)) a long paper divided into three parts Foundations of the theory of integral in 

Euclidean spaces (Zaklady theorie integralu v Euklidovych prostorech). The paper 

consists of 107 pages and is also very comprehensive. It was published before the 

appearence of the above mentioned book of V. Jarnik. Jarnik mentions in the preface 

to his book on the Lebesgue integral the existence of Mafik's article. (Let us note 

that before this paper in 1951 Mafik published in Casopis pro pestovani matematiky 

another Czech paper The Lebesgue integral in abstract spaces (Casopis Pest. Mat. 76 

(1951)). 

373 



Marik's big work Foundations of the theory of integral in Euclidean spaces is of ed

ucational character. The presentation is independent of other sources, selfcontained, 

accessible to a medium educated and patient mathematician. All the necessary 

concepts are contained in the article with the necessary careful and economized ex

planation. Especially the introductory part is educating the reader, all the known 

integration theories are assessed, both their advantages and disadvantages being 

pointed out. 

Let us present some of Marik's ideas from the introduction to the paper: 

We will mostly consider the Perron integral; why we will not start "as usual" with 

the Riemann integral? This has sufficiently serious reasons. The Riemann integral 

possesses some merits; its definition—especially in the one dimensional case—is sim

ple and sufficiently "instructive"; in the more dimensional case it is a well fitted tool 

for introducing some physical quantities . . . 

Further, it can be said that the majority of functions for which we do "calculations" 

have a proper or improper integral. 

However, this is probably the end of the list of good properties of the Riemann 

Further Mafik says: 

By having pronounced a certain definition (e.g. the definition of the Riemann 

integral) in fact nothing is done; merely some notation is introduced. To have a 

theory of integral which "is of any use", the theory has to provide not only definitions, 

but above all theorems; especially theorems helping in really calculating or at least 

estimating the value of the integral in individual cases. Of course we would be glad if 

the theorems were as general as possible, if their formulation was not too complicated 

and, last but not least, it should be also taken into account whether it is possible to 

deduce them in a simple and relatively elementary way. 

This quotation in fact describes the program of Marik's work. 

Mafik is also very critical in the case of the Lebesgue integral: 

The theory is lucid and definitive; it is its advantage that it can be used in abstract 

spaces in which there has been nothing heard even of topology. 

However, it is quite credible that using such a too general approach we cannot get 

sufficiently deep into what we need in the case of Euclidean spaces. 

The main defect of the Lebesgue integral is that it covers only absolutely convergent 

integrals; hence the Lebesgue integral is a generalization neither of the improper Rie

mann integral nor the Newton integral. (For example the derivative of the function 

x2 s i n ( l / s 2 ) completed at the point zero by the corresponding limit does not possess 

the Lebesgue integral over the interval (—1,1) though it has the improper Riemann 

integral as well as the Newton integral over this interval.) This example shows also 

that for the Lebesgue integral the following theorem does not hold: 
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If the (Perron) integral of the function f exists over every interval (a,b - e), where s is 

an arbitrary positive number less than b — a, and if the proper limit lim fa f(x) dx 

exists, then also the integral fa f(x) dx exists and is equal to this limit. 

(Nowadays this theorem is called Hake's theorem and Mafik is mentioning at this 

place the known deficiency of the Lebesgue integral which we have already mentioned 

above.) 

It can be presumed that especially for beginners the Perron theory of integral is 

more suited than the Lebesgue theory. Indeed, the Perron theory of integral can 

be constructed in such a manner that we work only with the concepts of the limit 

of a sequence and of the more dimensional interval; it is not necessary to speak 

simultaneously about measure or topology. The proofs of theorems look also more 

natural than in Lebesgue's theory and they are usually much simpler. 

The relation between the Perron and Lebesgue integral is simple. 

A function f possesses the Lebesgue integral in an interval K, if and only if both 

the functions f and \f\ possess the Perron integral. 

Mafik constructs the integral step by step without skipping anything necessary 

for his reasoning. Let us recall shortly his way to the definition: 

He is working in an m-dimensional interval K with functions of an interval. The 

function F is in the interval K superadditive (subadditive), if it is defined on the set 

of all intervals I C K and if 

F(I) + F(J) < F(I + J) 

(F(I) + F(J) > F(I + J)) 

holds provided the sum on the left hand side makes sense and I + J C K. I and J 

are nonoverlapping intervals (i.e. their interiors are disjoint) and I + J means tha t 

I + J is also an interval. (Note that + is used here for the union of sets.) 

If F and G are functions in the interval K, G is finite and x € K then the upper 

derivative of the function F with respect to the function G at the point x with respect 

to the interval K is denoted by F(G, x, K) and means the supremum of the set of all 

t e Ei of the form (we use here the symbols used by J. Mafik; let us mention only 

that E* means "the set Ei (= R) enlarged by the elements oo and —oo", for E\ the 

symbol R* will be used in the sequel) 

t = l im(E ( / n ) : G(In)), 

while the lower derivative of the function F with respect to the function G at the point 

x with respect to the interval K is denoted by F_(G, x, K) and means the infimum of 

the set of all t € Ej" of the form 

t = hm(F(In):G(In)), 
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where the limits are taken for In -• x, In C K and In -¥ x, which means that In is 
a sequence of intervals with x 6 I.., n = 1,2,... and d(In) -» 0, where d(I) denotes 
the length of the largest edge of the interval / . 

N o t e . When defining the upper derivative F(G, x, K) of the function F with 
respect to the function G at the point x with respect to the interval K and the lower 
derivative F(G,x,K) of the function F with respect to the function G at the point 
x with respect to the interval K we have in fact to do with the supremum and the 
infimum of the set of numbers 

S(x) = {te U*;t = lim(F(In):G(In))}, 

where lim(F(7n) : G(In)) has the meaning stated above. 

Assume that B(x, S) = {y e Rm; \\y - x\\ < 5} is the ball in Rm'with its center at 
the point x € Rm and radius S > 0. 

Denote by S(x) the set of all t e R* such that for every £ > 0 there is a S(x) > 0 
such that 

I HI) I m-v*. 
provided / C Rm is an interval, x £ / c B(x,S(x)) with the usual convention in the 
case when t = co or t = -co, i.e. £U( > - in the former case and S U < - ; in the 

G(J) e G(/) e 

latter. 
By the Bolzano-Weierstrass Theorem it is easy to see that 

S(x) = S(x). 

Let us follow further how Mafik proceeds with the definition of the integral: 
Let G be a finite, nonnegative additive function in an interval K; let / be a point 

function in K. 
M is called a majorant of the function f with respect to the function G in the 

interval K, if 
a) M is in K superadditive, 
b) -co + M(G,x,K) >- f(x) for every x e K. 
Similarly, m is a minorant of the function f with respect to the function G in the 

interval K if (—m) is a majorant to (—/), i.e. if 
a') m is in K subadditive, 
b') oo ^ m(G,x,K) < f(x) for every x e K. 

The upper (Perron-Stieltjes) integral of the function f with respect to the function 
G in the interval K is 

/ /dG = infM(Л-), 
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where the infimum is taken over all majorants M of the function / . 
The lower (Perron-Stieltjes) integral of the function f with respect to the function 

G in the interval K is 

- / ( - / ) dG, 

or in other words 

/ fdG = snpm(K), 

where the supremum is taken over all minorants m of the function / . 
Using these definitions of the upper and lower integrals Marik presents the follow

ing definition. 

Definition 1. We say that the function f has an integral (or that the integral 
of the function f exists) with respect to the function G in the interval K, if 

/ / * - / / d G e E ! 

holds. 

In this case we write 

JfdG = JfdG = JfdG 

and denote by 3̂ = ^(G,K) the set of all such functions. 
The approach used by Mafik for defining the Perron-Stieltjes integral over more 

dimensional intervals can be found already (in the situation when the function G has 
the meaning of the volume) in the paper of H. Bauer: Der Perronsche Integralbegriff 
und seine Beziehung zum Lebesgueschen (Monatshefte Math. Phys. 26) from 1915. 

Further Mafik introduces the following notation: 
% = <$o(G,K) is the set of all bounded functions in ^5; 
VpA is the set of all functions / 6 %S for which also | / | e <P; 
^R is the set of functions for which 

IfdG = I fdG 

holds, where the values — oo or oo are also allowed. 
He shows that 

/ 6 «P=> / + , / _ , | / | €<P-
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and that we have 

<Po C <#A C <P C <PK. 

In the subsequent parts of the article Mafik investigates relations of the integral 

introduced by him to other types of integrals (Riemann-Stieltjes, Newton, etc.) and 

he derives theorems which are important for calculating the integral (the integration 

by parts theorem for the case when K is a one dimensional interval, the change of 

variables theorem for functions belonging to ^ A , • • • )• Mafik completes his program 

and shows that simple notions allow to construct an integral which has sufficiently 

nice properties, and also that his construction involves all known and commonly used 

integrals. 

The idea tha t . . . especially for beginners the Perron theory of integral is more 

suited than the Lebesgue theory ... was practically never realized by Mafik in a 

separate text for students. In the years 1960-61 he published two volumes of a 

university text Integral Calculus I, II together with I. Cerny. This text was mainly 

devoted to an alternative presentation (in comparison with the older Czech textbook 

Integral Calculus II by Vojtech Jarnik) of the construction of the Lebesgue integral 

in the first part and to some problems concerning fc-dimensional integrals in m-

dimensional spaces in the second volume. Nevertheless in the second volume of this 

university text the Perron integral appears in a relatively simple form, which serves 

to deduce a strong version of the Gauss theorem in the textbook. In the sixties 

J. Mafik wrote papers A non-absolutely convergent integral in Em and the theorem 

of Gauss (Czechoslovak Math. J. 15 (90), 1965, 253-260) and On representations 

of some Perron integrable functions (Czechoslovak Math. J. 19 (94), 1969, 745-

749) on nonabsolutely convergent integrals and related questions jointly with Karel 

Kartak. At this point also the paper On a generalization of the Lebesgue integral in 

Em (Czechoslovak Math. J. 15 (90), 1965) written together with Jifi Matyska and 

Continuous additive mappings (Czechoslovak Math. J. 15 (90), 1965) with Jaroslav 

Holec should be mentioned. Almost at the same time Jan Mafik published the 

paper Extensions of additive mappings (Czechoslovak Math. J. 15 (90), 1965) where 

a method is described which allows to extend the Lebesgue integral. This series of 

Mafik's papers is connected with his former work The surface integral (Czechoslovak 

Math. J. 6 (81), 1956). 

At this place also his work on the generalized integral and trigonometric series 

should be mentioned. This is a carefully written text for university students, which 

was prepared during Mafik's exile in the USA and which came to us in the form 

of a copy of his handwritten manuscript. At the beginning of this text the Perron 

integral over one dimensional intervals is described in full detail. 
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Let us add a simple consideration to the topics presented above. Take into account 

Mafik's Definition 1 of the integral f f dG € R and functions / for which / € <p = 

V(G,K). 
By Definition 1 we have 

f fdG = sup m(K) = inf M(K), 

where the supremum is taken over all minorants m of the function / and the infimum 

over all majorants M of the function / . By the Theorem on the Supremum (Infimum) 

we know that for every e > 0 there exists a minorant m* and a majorant M* to the 

function / such that 

(*) M*(K)-e< J fdG <m*(K) + s. 

Since m* is a minorant to the function / , we know that m* is subadditive in K and 

that 

oo 7̂  m*(G, x, K) ^ f(x) for every x e K 

holds. 

Taking into account the above Note, we obtain that the upper derivative 

m*(G,x,K) is the supremum of the set of all t 6 R* such that for every e > 0 

there is a S(x) > 0 such that if / C Rm is an interval, x G / C B(x,S(x)), then 

|m*(7) I ^ 

But this means by the definition of the supremum that for given i 6 K and e > 0 

there exists a <5(a;) > 0 such that if x e / C J3(aj, J(x)) then also 

l£21-e<m^(G,x,K)^f(x), 

or, in other words, the inequality 

(**) m * ( / ) - £ G ( / ) < / ( x ) G ( / ) 

holds. For the majorant M* we get analogously the inequality 

f(x)G(I)<M*(I)+eG(I) 
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provided x € / C B(x, 5(x)). 

Assume now for a moment that there is a finite system of intervals 

Ji,Ja,...,JkCK 

such that 

K - J\ + J2 + ••• + Jk, 
and points xt 6 K, i » 1,2,.., ,k such that Xi € Ji C B(xt,5(xi))- Then, because 
G is finite and additive, m* is subadditive and (**) holds tor as, € Ji, i = 1,2,..., k, 
we get 

k k 

m*(K) <. J2mtW < £ [/(*<)<?(J,) + sG(J.}] 
i = l i = l 

= £/(s,)G(J,) + eG(JO, 
t = i 

By virtue of the inequality (*), we obtain from this relation the inequality 

k 

/ / dG < m* (K) + e < V_] f(Xi)G(Ji) + £G(/iT) + s 
/ . i = i 

= ^/(a ; i)G(J i)+e[G( JK) + l]. 
t = i 

Working in a similar way with the majorant, we arrive at the inequality 

£ / ( s . ) G ( J . ) - e [ G ( I O + l ] < / / d G , 
t.1 jt. 

which together with the previous one gives 

i * r 
(* * *) £ /(*,)G(J<) - / / dG < e[G(JC) + lj. 

M J
K 

The inequality (***), together with the fact that e > 0 can be taken arbitrarily small, 
means that the value of the integral / f AG as it was defined by J. Mafik can be ap-

K 

proximated by a Riemann (-Stieltjes) type integral sum of the form Yli=i f(xi)G(Ji). 
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This reasoning depends of course on the fact whether for the positive function 

S(x), which comes from the definition of the upper derivative of the function TO* and 

the lower derivative of the function M*, there really exists a finite system of intervals 

J i, Ji, - • • , Jfc C K 

such that 

K = J j + J2 + . . . + Jk, 

and points x{ E K, i = 1,2,.. .,k such that xt e Jt C B(xi,S(xi)). 

This problem is answered in the affirmative by the so called Cousin Lemma, which 

states that for an arbitrary function S(x) > 0 given on the interval K there is a finite 

system of "point-interval" couples (x, J) which has the properties required above. 

After this consideration we introduce the following definition: 

Definit ion 2. The function / has an integral with respect to the function G in 

the interval K if there exists I € U such that for every e > 0 there is a function S: 

K -> (0, +oo) such that 
k 

|£/(z4)GU)-/|<s 
i= l 

holds for every finite system of intervals 

JltJ2,...,JkCK, 

for which 

K = J i + J2 + . . . + Jk, 

where xt e Ji C B(xi,5(Xi)) for i = 1 ,2, . . . ,k. 

We denote the set of all such functions by ^ = R(G, K) and the number / by 

JfdG. 
K 

The function S: K -> (0, +oo) is called a gauge on K and the system {(xi,Ji),i = 

1,2,..., k} with the properties described in the definition is called a partition of the 

interval K, which is S-fine with respect to the gauge S. 

This definition of the Stieltjes integral belongs to Jaroslav Kurzweil, who presented 

a similar definition in the year 1957 in his paper Generalized ordinary differential 

equations and continuous dependence on a parameter (Czechoslovak Math. J. 7(82), 

1957). 

It is remarkable that the following statement is true: 
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P r o p o s i t i o n . The function f has an integral with respect to the function G 

in the interval K in Mafik's sense if and only if it has the integral in the sense of 

Kurzweil. In such a case the two integrals have the same value, i.e. the equality 

<P = £ 

holds. 

Let us go back for a moment to Mafik's assessment of the Riemann integral. 

He stated . . . its definition—especially in the one dimensional case—is simple and 

sufficiently "instructive"; in the more dimensional case it is a well fitted tool for 

introducing some physical quantities ... Evidently the "instructiveness" has to be 

understood in the way that the Riemann integral sum closely approximates, under 

the supposition that the partition is sufficiently fine, e.g. the area which is expressed 

by the integral, or that it describes in a transparent way the physical quantity which 

is to be determined. 

Proposition stated above shows that the integral which was presented by Mafik in 

his work from 1952 can be introduced via Riemann-Stieltjes integral sums and that it 

has therefore also one of the few advantages of the Riemann integral which had been 

pointed out by Mafik. Moreover, we can follow Mafik's steps of criticism and claim 

that for introducing the Perron integral by Definition 2 much less sophisticated tools 

are needed in comparison with those used by Mafik (it is not necessary to present 

upper and lower derivatives, we need not worry about majorants and minorants, 

suprema and infima, etc.). 

At this stage we have to close the eulogy of the Perron concept of integration. 

It has to be said that among other it is very discomfortable when integrating over 

moredimensional domains especially from the point of view of transformations (this 

concerns the Change of Variables Theorem). Mafik did not mention this defect of 

the theory although in his lectures at Charles University in Prague he presented 

many times an example of a function which is integrable in the Perron sense over 

a twodimensional interval but after a simple transformation it loses the property of 

integr ability. 

Comparing Kurzweil's definition of the Perron integral with the definition of the 

Riemann integral, we almost cannot recognize the difference although we get the 

nonabsolutely convergent Perron integral which includes the Riemann, Newton and 

also the Lebesgue integral. The essence of this matter is in the concept how the 

fineness of a partition has to be understood. We are working with partitions of 

an interval K which are (5-fine with respect to a gauge 5 which is represented by 

a positive function on K. In the case of the Riemann integral this gauge is also a 

positive function but this function is required to be constant. 

382 



The integral given by Definition 2 is nowadays called the Kurzweil-Henstock in

tegral. The name of the Northern Ireland's mathematician Ralph Henstock appears 

in this connection because he discovered in 1960 the same kind of integral indepen

dently of the work of J. Kurzweil. R. Henstock himself says that the first time he 

heard about Kurzweil's work was in 1963, when he was informed about this fact in 

a letter from K. Kartak. 

This independence of discoveries is not a great surprise. The new theory of in

tegral presented in the work of J. Kurzweil in 1957 was not the aim of the paper, 

it was in fact a tool for explaining some convergence effects in the theory of ordi

nary differential equations and for introducing the concept of generalized differential 

equations. Generalized differential equations complete in some sense the family of 

ordinary differential equations with respect to topologies given by continuous de

pendence theorems with the weakest possible assumptions on the convergence of the 

right hand sides. Papers of this kind are usually not followed carefully by specialists 

in integration theory, since they do not expect important new relevant results in 

papers of this kind. And a specialist in integration theory would probably not search 

for an essentially new definition of the Perron integral in a paper on continuous 

dependence theorems for ordinary differential equations. 

J. Kurzweil himself was devoted to problems in the theory of differential equations 

and he did not paid too much attention to the development of his new integral at the 

time. He got interested in integration theory again in the seventies, and this period 

ended by his German book Nichtabsolut konvergente Integrate, published in 1980 by 

Teubner in Leipzig. 

In 1981 in the Czechoslovak Math. Journal J. Mawhin published the paper Gen

eralized multiple Perron integrals and the Green-Goursat theorem for vector fields. 

In the paper J. Mawhin showed a more dimensional analog of the theorem on the 

integral of a derivative under relatively weak conditions. His integral had some un

pleasant properties which a proper integral should not have (Mawhin's integral is 

not additive with respect to intervals). 

This was the starting moment for another period of investigation of the integral 

over more dimensional sets. The main point consists in modifying the definitions in 

such a way that the resulting integral have the possibly best properties. In particular, 

validity of the Divergence Theorem and the Change of Variables Theorem are the 

main requirements on a new theory. The work in this direction continued in the 

Czech Republic up to now and in this way we also can feel the influence of Jan 

Mafik's ideas on present Czech mathematics. 
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