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SOLUTION SEMIGROUP AND INVARIANT MANIFOLDS 

FOR FUNCTIONAL EQUATIONS WITH INFINITE DELAY 

HANA PETZELTOVA, Praha 

(Received December 27, 1991) 

Summary. It is proved that parabolic equations with infinite delay generate Co-semigroup 
on the space of initial conditions, such that local stable and unstable manifolds can be 
constructed for a fully nonlinear problems with help of usual methods of the theory of 
parabolic equations. 
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INTRODUCTION 

The aim of this paper is to prove the existence of a resolvent operator for the 
parabolic equation with infinite delay, such that solutions, given by this resolvent, 
define a Co-semigroup with the properties, which enable to construct stable and 
unstable manifolds for the fully nonlinear problem 

(0.1) ii(t) = Au(t) + Lut + g(u(t), tit), 

(0.2) u(0) = z, uo = y>, 

where ut denotes a shift of the function u: ut(r) = u(t + r) for r < 0, A is a generator 
of an analytic semigroup in a Banach space X and L is a continuous linear operator 
from an appropriate function space Y into X. The example of the operator L we 
have in mind is the integral operator 

(0.3) Lut = / k(s)(A + bl)u(t - s) ds 
Jo 
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and the nonlinearity g can take the following form: 

(0.4) g(u(t), ut) = / f(u(t - *), Au(t - s)) dfi(s) 
Jo 

with f(0) = 0, 0 / (0 ) = 0, dfi(s) = fci(s)ds-f 6Q(S), where fc, fci are suitable functions 
and 60 is the Dirac function concentrated at 0. This type of equations arise e.g in 
investigation a heat conduction in materials with memory. 

Solvability on the real line and asymptotic behaviour of the solution of the linear 
equation (0.1) with a more special operator L were treated in [2], [7]. (L was of the 
form (0.3) with the additional requirement on the Laplace transform of the kernel 
k to be extendible to certain sector in the complex plane). The existence of stable, 
unstable and center manifolds for semilinear problem (0.1), (0.2) was proved in [8]. 
In a fully nonlinear case, linearized stability and unstability and the existence of a 
local center manifold for parabolic equation was shown in [1]. In the present paper, 
some of these results are generalized to the equation with infinite delay. In this case, 
a variation of parameters formula with the analytic semigroup eAt is not available. 

The difficulties connecting with the fully nonlinear character of the equation were 
in [1] overcome by replacing the space X by an interpolation space between D(A) 
and X. These spaces and the maximal regularity properties for the linear parabolic 
problems were treated in [11]. Here, we make use of these spaces to prove the 
existence and the maximal regularity property of a resolvent operator, which satisfies 
the equation 

R(t) = AR(t) + LRt, R(0) = 7, R0 = 0. 

The operators R(t) do not form a semigroup. However, we shall prove that the 
operators S(t): (x,y?) —* (u(t),ut), where u is a solution of the equation u(t) = 
Au(t) + Lut, (0.2), given with help of the resolvent ft, form a C0-semigroup on a 
certain subspace o f X x V . The equation (0.1) is then replaced by the equation 

z(t) = Bz(t) + h(z(t)), z(t) = (u(t), ^ ) , h(z(t)) = (g(u(t), ut), 0) 

and B is the generator of the semigroup 5. Due to the special form of the semigroup 
S, estimates for projections and convolutions of S similar to those for analytic semi
groups are proved. These estimates, which are not generally valid for Co-semigroups 
enable us to construct stable and unstable manifolds in the usual way. The existence 
of a center manifold will be proved in a forthcoming paper. 

The result is applied to the integrodifferential equation which can describe the heat 
conduction in materials with fading memory, there is a lot of papers describing the 
asymptotic behaviour of solutions of such equations, see e.g. [5] and references given 
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there. The authors worked mostly in L,2-spa>ces with some positivity or monotonicity 
assumptions on the kernels, which are not necessery here, so our result does not seem 
to be contained in these papers. 

1. NOTATIONS AND PRELIMINARIES 

Let A be the generator of an analytic semigroup eAt in a Banach space X. We 
introduce the interpolation spaces between D(A) and X. Let || • || denote the norm 
in the space X, u>Q = {sup Re A, A € <?(A)}. For w0 < 0, a G (0,1) we set 

DA(at oo) = {x e X, \x\a = sup^1"* || AeA*x \\< co}, 

DA(a + l,oo) = {x € D(A)tAx € DA(atoo)}> 

For wo > Owe set DA(atoo) = ^ A - ^ O O * ' 0 0 ) ' DA(a+l,oo) = D^_2u>0(a:+->00)-
The closure of D(y4) in DA(a,oo) in the norm 

IMU = IMI + M« 

will be denoted by Xa. It can be shown, (see [11]), that 

r = { i G X ; Urn t}~aAeA*x = 0}. 
C-o+ 

We denote by Xa+l the closed subspace of DA(a + l,oo): 

A'a + l = {* € F>(-4); Ax € Xa}, IMI«+i = M a 

lt is shown in [11] that there are constants M > 0, w > u>0, such that the following 

estimates hold: 

M 
(1.1) mx,A)\\L{x)^^—^ fora l lA€C, ReA> W , 

(1.2) \\AR(\,A)\\L(X)$M, ReA>o>, 

(1.3) l l e ^ x ) ^ M^, t>0, 

(1.4) l l^ ' IL(*) ^ 7 ^ ' <>0 ' 
M 

(1-5) ||.4e^u|U(x.,x) ^ 7 1 ^ . <> 0, 

(1.6) i G X " ^ lim He4'* - *IU = 0, 
v ' t-o+" 
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where X is any of the spaces X, Xa
 t X

a + 1 , <* e (0,1) and R(X,A) = (A - A)'1. 
Let R+ = [0,+oo), R- = (-00,0]. For t) e R w e denote by Ct?(R+,K) (or 

C,-(R-,K)) the set of all / : [0,+oo) -> K, (or (-oo,0],K) such that * — e*f/(0 
(or t —• e - , ? t / (0) i s continuous and bounded. These spaces are endowed with the 
norms: 

N/llcn(R+>x) = sup ||e"V(0llx 

| | / | |C ) i ( ,_ j X . )=sup| |e-"/(0llx 

The following lemma is proved in [1], 

Lemma 1. Let A satisfy (1.1)-(1.3), h G Cn(R
+,Xa) for 17 < -w, Jb e 

Cn(R~,Xaj for i)>u.Ifwe set 

(1.7) «(<)= / e4('-'>yi(s)ds, t^O, 
Jo 

(1.8) «(.)= / e ^ ' - ' ^ s j d s , <^0 , 
J-OO 

then u E C„(R+,Ka+1), t; G C^R^X 0 * 1 ) . 

Let 7 > 0. Denote by Ya the space of all functions <p: (—oo,0) —• Xa which are 
strongly measurable and 

(1.9) My* = sup*1""* / \\eirAeA(<p(T)\\dT < +00, 
C>o J-00 

/

o 
||e^Me*V(r)||dr = 0 

with the norm 
| H | r „ = / ° e^ |Mr) | | d r + Mr« . 

J —OO 

Let Ya+X = {<p, (r — i4y>(r)) € Ya) and for some a € (0,1) let 

(1.11) L be a continuous linear operator from Ya+l into Xa. 

In the sequel we shall need some informations about the operator L(\), which is 
defined by: 

(1.12) L(\): Xa+l->Xa, L(\)x = L(T-*eXTx). 
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Then L(\) is a continuous linear operator from Ka+1 into Xa for Re A > — 7 and 

II^A)x||0̂  J^L||x||0+1. 

Moreover, throughout the paper we shall suppose that 

(1.13) ||L(A)rt(AM)IU(X«) ^ ^ ~ ^ , R e A > - 7 , /? > 0. 

R e m a r k . The operator L given by 

Lip— \ e~y9A<p(-s) ds 
Jo 

can serve as a simple example satisfying the assumption (113) with (3 = 1. 

Now, we can define the operator 

(1.14) D(\) = (\-A-L(\))~l 

which plays the same role in construction of a resolvent operator R(t) for the equation 

(1.15) u(t) = Au(t) + Lut 

as the resolvent R(\, A) for the semigroup eAt. 

For A such that Re A > —7, |A| large enough, we have the expression 

00 

(1.16) D(\) = R(\, A) + R(\, A) £(L(A)tf(A, A))n 

n = l 

so that we have estimates similar to (1.1), (1.2): 

(1.17) | |o(A)|U ( x«) < - £ , \\AD(\)\\HX*) ^ C, |A| > Ro, ReA > - 7 . 

Due to the continuity of £>(A), the last inequality holds for all A € C such that 
dist(A,r) ^ e, where E = {A € C; D(A) g L ( K a , K a + 1 ) } . From now on we shall 
denote by C any constant. 
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2. CONSTRUCTION AND ESTIMATES OF THE RESOLVENT OPERATOR 

We will construct the resolvent operator R(t) in such a way, that the Laplace 
transform of R will be D(X). To this end we will write D(A) as a sum: 

(2.1) .0(A) = /?(A, A) + R(X, A)L(X)R(X} A) + ... + D(X)(L(X)R(X, A))n. 

Let g is the domain of analyticity of the function .D(A) which has its values in 
L(X°,Xa+l). Then 

(2.2) Rn(t)*= I ,OCeXtD(X)(L(X)R(X,A))nxdX 
Js—ioo 

is the inverse Laplace transform of the last term in (2.1) provided that 

(2.3) np > 1, 6 > sup{ReA, A g g). 

From (2.2) we obtain the estimates: 

(2.4) ||/MO*IUi ^ Ce"||*||0, ||fln(.>||« < Cê lWU, t > 0. 

In the same way as in [10] we can prove that the inverse Laplace transform of 
R(X, A)(L(X)R(X, A))k is a convolution (f * g = /J f(t - s)g(s) As) 

(2.5) Bk = eA*Hk, 

where 

( fO, f o r r ^ - . \ 
(2.6) Hi(t)x = L\T->{ 

V [ e ^ ' + ^ x , f o r - . < r < 0 1 

(2.7) Hn+ix = Hi*Hnx, xeXa. 

Now, we can set 
П - 1 

(2.8) R(t) = eAt + ] T Bk(t) + Rn(t), t > 0. 
fc=i 

Proposition 1. Let (1.1)-(1.6), (1.11), (1.13), (1.17) be fulfilled. Let x € Xa. 
Then R(t)x 6 Xa+1 for t > 0, R is differentia We on (0, +oo) and there is K > 0 
such that 

(2.9) \\AR(t)x\\a + \\R(t)x\\a <. ye^'llxlU, t > 0, 
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where d > max(£, -57), with 6 given in (2.3). Moreover, ifx G X a + 1 , then R(*)x € 
C(R+,Xa+l)nCl(R+,Xa) and 

(2.10) IWO'lUi + ll*(0«IU ^ #fe*||«||a+1, I ̂  0. 

P r o o f . First, let us suppose that (1.1)—(1.4) hold with u = - 7 . Then it is 
sufficient to prove the estimate (2.9) for Bk only. The first and the last terms in 
(2.8) have been estimated in (1.4) and (2.4) respectively. 

Let us estimate H\(t)x for x £ Xa. According to (2.6), it means to estimate the 
ya + 1-norm of the function fa, where 

/ 0, for r Ç -t 

* ( T ) a i •*<«+*>,, for-Kr-< 0 

Making use of (1.3), (1,5) we get 

/

0 ft 

e>T\\Afa(r)\\dr= / e-^He^^^e^^xHd* 
• oo Jo 

< cf e-y'S^ (j^y~l ||*||ad. < ce-^||x|U, 

|V.|y«+> = s u p í 1 - ° / | | e»MVty(T) | |dr 
e>o J-00 

^supí1-" / He-^MW^-^Hd* 
C>o Jo 

= supí 1 " 0 / ' | |e-T řMe i l«+ <-)/ 2 i4e i 4«+ '-)/ 2»| |d« 
č>o Jo 

< m i p ^ - C e - ^ / 2 . / (í + ť - «)-a +«d«||*||a < Ce-T«/2||*||a. €>o Jo C>0 

Next, we have to prove that 

lim £'-" / ||в-»MVЧ(r)||dr = 0. 
f—*0+ J—00 
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Let us choose e > 0. Then there is 6\ > 0 such that H^e^H < *o-i/(--<») for 

s < 6\ and M given in (1.4). Then for f < 6\ we get: 

e1- /' |е-7М2ел ( <-'+«).-||ав< 

Now we choose £ < 6\ such that ^,-a'||.4ei4^z|| < ^ - whenever £ < 6. Then 

*1-° / ' " ^ H e ^ M V C - ^ x l l d ^ / < " ' , e - ^ ( . - - ) - 1 . - - ^ - d , < i 
Jo Jo -5 2 

As Hi(0 — L\l>t and H* = //*-i * Hi, we get the estimate: 

(2.12) ||II*(0IU(X«) < o.'-'e-^l2. 

To prove the continuity of Hi, let us consider the difference tf>t+h — ^ . 

| | ^ t + f c - ^ i | | y + » 

^ / ||e'>Tyle^t+T>(e>l,l-/)-r||dr+ / ||e7Me^t+/ l+r)z|| dr 
J-t J-t-/» 

+ sup^- a f / ||e^M V<<+T+< V * - 7)*|| dr + / ||e7M V<*+A+r+0*|| dr] . 
e>o LJ-t J-<-/» J 

In the first and the third terms we make use of (1.6), the second term we estimate 
with help of (1.5). The last term we estimate for small £ < 6 in the same way as in 
(2.11) and then we realize that sup£ j-a /*(* + 0~2+od*Mla -> 0 for h -* 0. 

Using the same procedure as above and making use of Lemma 1, we obtain the 
estimate for Bk = eA * H*: 

(2.13) ||ft(0*ll-+i < c.t-1e-7'/2||i-||a. 

If A has its spectrum also on the right of the line Re A = —7, we take A = A — a/, 
L(X) = L(A) + a/ so that A fulfills the estimates (1.1)-(1.4) with w = -7 . Then 

D(X) = (A - A - Z(A))-1 = R(X} A) + afl(A, A)2 + #(A, i)L(A).ft(A, i ) 

+ fl(A, -4)((L(A) + a/)fi(A, A))2 + . . . + D(A)(Z(A)rt(A, i ) ) n 

and 
n - l 

/?(<) = e * + ateAi + ] T £*(<) + Bn(t) + /^(O-
*=i 

182 



Here I?*, Rn correspond to Bk, Rn respectively (see (2.5), (2.2)) with A replaced by 

A and Bn is the inverse Laplace transform of the remaining terms. These terms are 
analytic in Re A > —7 and have sufficient decay so that the inverse Laplace transform 
exists and the estimate 

(2.14) \\Bn(l)x\\a+l^Ce-^2\\x\\a 

holds. Further, 

\\L(X)R(X,A)x\\Q $ \\L(X)R(X,A)x\\a + a\\R(XlA)x\\a ^ ^-£-^\\x\\Q, 

for Re A > 7, which implies that the estimate (2.4) remains valid with Rn instead 
of Rn. Now, (1.4) and (2.11) with A, Bk instead of A> £**, (2.4) with Rn instead of 
Rn and (2.12) give the estimate of ||-4ft(f)#||a- The same estimate for the derivative 
R(t) we get analogously if we realize that Hk G C(R+, Xa) and then 

Bк(t)x = HкЏ)x + / AeA^-'^Hк{s)xds. 
Jo 

The estimate (2.10) follows immediately from (1.3), (2.4), (2.13). D 

The following lemma is similar to the Lemma 1. 

Lemma 2. Let the assumptions of the Proposition 1 hold. Let h £ Ct)(R*\Xa) 

with ?j < min (^7, —6), ife 6 C^(Q, Xa) with ft > max ( — ^7, S). Set 

(2.1b) u(t) = f R(t- s)h(s)ds, * £ 0, 
Jo 

(2.16) v(t) = / R(t - s)k(s) ds, t $ 0. 
J—00 

Then u € C,,(R+, Xa+l) n CJ,(R+,Xa), v € C,(R~, Xa+l) n C,}(R-,Xa) and 

(2.17) sup||e**«(0IU +sup||e» (a(0l| .+i ^ Ci(i|)>up||e,'1fc(0||«, 
t>0 t^o t^o 

(2.18) sup||e-"<tHOII« + s u p | | e - ^ t ; ( 0 | U i ^ C2(/i)sup||c-' , lt(0IU. 
t^o t<0 t^o 

P r o o f . The proof is similar to that of the Proposition 1. Again, Lemma 1 and 
the estimates (2.4), (2.14) prove the assertion for two parts of R. Now, using (2.12) 
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and arguing as before we prove that 

He*' / B fc(.-s)ft(s)d«| = [ / / ' e"<t~t'>eA^-'-^Ht((r)e'>'h(s)d(TdsJli 

$ sup*1"0 / / '\\A2eAl*—°+Vei(t->)Hk(<r)e'>,h(s)\\dads 
(>o Jo Jo 

^Cs»r?-° f f " i1'*-" + *)'2+°e-y^^^-'e-f^-'Ucrds 
£>o Jo Jo V 2 / 

x sup||e^A(s)||a ^ Csup||e^A(<)||a. 

The derivative ii(t) exists in Ar and u(t) = h(t) + JQ R(t — s)h(s)ds. Again, decom
posing R in three terms we get the rest of the estimate (2.17). The proof of (2.18) 
is analogous. 

In the following, we shall define R(t) by (2.8) for t ̂  0, R(t) = 0 for t < 0. Then 
we can define R%: (—oo, 0) —* L(Xa)i R*(T)X = R(t + T)X. Similarly as above we can 
prove that Rtx € Ka+1 provided that x G Xa and 

(2.19) ||fttx||ya+i ^ Ce^||ar||a, ||ft(ar[|r«+t — 0 for t -> 0. 

The decomposition (2.1) with n = 1 yields that R satisfies the equation 

R(t)x = eAtx + I e^'-^LRsxds, x E Xa> t> 0 
Jo 

and Proposition 1 now implies that 

(2.20) R(t)x = AR(t)x + LRtx, x € X", t> 0, (x e Ka+1, < ^ 0). 

. a 
Now, a solution of a nonhomogeneous linear initial-value problem can be given 

with help of R. 

Lemma 3. Let x 6 Ka+1, <p € Ka+1, A 6 C„(R+,Xa) with r\ < mhi(±yy-6). 
Let us define <p(t) = 0 for t^ 0. TAen the problem 

(2.21) 6(0 = Au(t) + Lut + h(t) t > 0, 

(2.22) ti(0) = z, U(T) = <P(T) forr<0 

has a unique solution u E C„(R+, Ka+1) n C^(R+, Ka) given by 

(2.23) u(0 = R(t)x + [ R(t- s)(L<ps + h(s)) ds. 
Jo 
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P r o o f . The only thing to be proved is that the function /(«) = l>f» belongs to 

Cn(R+, Xa) for <p€Ya+1. 

\\cps\\Y«+>= í SeiT\\cp(s + T)\\dT + SupSl-a Í f | Í c T M V ^ ( a + r)||d7 
J-oo f > 0 J-oo 

= / e^T~a)| |^(r)| |dr-r-sup^-a / \\e^T'8)A2eA^(T)\\dT 
J-oo C>0 J-oo 

Č>0 

(2.24) 
= / e - 'n^vT^HUT-r 

č> 
= e-^|M|y.+.. 

The continuity of / can be proved in a similar way as the continuity of H\ 

r-t-h 

^ - 1 / \<Pt+h-<pt\Y~+i = s u p ^ M / e-*T\\A*eA*<p(t + h + T)-<p(t + T)\\dT 
£ > 0 LJ-oo 

+ f eiT\\A2eAt<p(t+T)\\dT] = max( sup (.. .),sup(...)). 
J-t-/i j o < e < ^ &* 

First, we choose 8 so that the first supremum is sufficiently small and then we find 
h to make the second one small enough. The assertion now follows easily. • 

3. SOLUTION SEMIGROUP 

The solution of the problem (2.21), (2.22) is given with help of the resolvent 
operator R(t), which has most of the properties of the analytic semigroup e A t , but 
the operators R(t)} t ^ 0 do not form a semigroup. However, if we define the operator 
S(t): (Xj <p) —> (u(t), Ut), where u is a solution of the problem with h = 0, we get a 
semigroup on the space Za = Xa x Y a + 1 : 

to n <sm(x\ - (R(t)x + foR(t-s)Lv$ds\ 
(3.1) S ( l H J " U + *« + ^ f t - ^ M ^ ' 

Proposition 2. Let S(t) be defined by (3.1) for t > 0. Then {S(t)} is a Co-
semigroup of linear operators in the space Za = Xa x Ya+l. Its generator B is 
given by: 

(3.2) D(B) = {(x,<p) eZa,xe Xa+\ <p € Ya+\ limy>(r) = x}, 

<;)<AT)-" 
A € C is in Q(B), the resolvent set of B iff Re A > - 7 and D(\) eL(Xa, Xa+1). 
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P r o o f . The semigroup property and the continuity of 5 follow from its defini
tion, (2.8), (2.19) and the continuity of t —• <pt. Let A be defined by the right hand 
side of (3.2) and let (x,(p) € A. Then according to Lemma 3 

u(t) = R(t)x + J R(t- s)L<psds 
Jo 

is a strict solution of the equation (2.19) with h = 0. It follows that 

u{0) = Ax + L<p, —ut\t=o(r) = <p(T), r < 0 

* - - * * > • - ( ; ) - ( * ; * ) • 

On the other hand, let (x, <p) € D(B). Then there are A £ g(B)y (t/, ip) E Xa x Y a + \ 
such that (x,<p) = (A — B)"1(y)tp). A direct computation yields the expression for 
(\-B)-1,\€Q(B): 

(3.4)(A-*);'(j) 
_ / D(A)(y + L(0 - /,0 e*(»-')^(«r) d<r)) \ 
~ V r -> e*To(A)(y + L(0 - /,° e^-*)^* - ) dtr)) + /T° e M ' - * ) ^ ) d<- 1 

As £>(A): X a — Xa+l, we get « € X a + 1 . Further ^ ( T ) = A^(T) - V(T), y?(0) = 
x =*• (.-,y>) € A. D 

The assertion about the spectrum of the operator B follows easily from the ex
pression (3.4). 

Now, if we denote z(t) = (u(t), u.), then the problem (2.21), (2.22) can be rewritten 
in the following form: 

(3.5) i(t) = Bz(t)+(h^), *(0)--(*)• 

In the sequel we shall suppose that 

(3.6) <r(B) HiR = 0, sup Re a" (B) < Ai < 0 < A2 < inf Re<r+(B), 

where <r~(B) (<r+(B)) denote the corresponding parts of <r(B) with negative (posi
tive) real parts. 

We shall denote by P + the projection operator 

(3.7) P+ = ±JrR(\,B)d\, 
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where T is a suitable path around the bounded set <r+(B) with Rez > A2 for z G T. 
Further, let P~ = / - P+, Z~ = P~(Za), Z+ = P+(Za), 

(3.8) 5+(<) = - ir f extR(X,B)dX, t€H, S~(t) = S(t) ~ S+(t), * £ 0. 
2TCI Jp 

From this expression we get the following estimate of the operator S+(t): 

(3.9) ||5+(0IU(z-,D(B)) ^ Cex>\ t ^ 0. 

To get the estimate for the operator S"(t) we need the decomposition of D(X). 

As we have seen in the proof of Proposition 1, we can assume, without loss of 
generality, that Re<r(A) < —7. Then in the decomposition (2.1) of -0(A) all terms 
but the last one are analytic in the halfplane Re A > —7. Let us define 

(3.10) Rn(X) = D(X)(L(X)R(X,A))n, 

(3.11) R+(t)x = / eA<D(A)xdA = / extRn(X)xdX, 

(3.12) R~(t) = R(t)-R+(t) for .GR. 

It means that R~(t) = -R+(t) for i < 0 and 

k=i • / A > - ' 

л - - rAi+ioo 
R~(t) = eAt + Y] Bfc(ť) + / ел'Я„(А) dA for ť >. 0. 

Then (1.3), (1.4) with u = - 7 , (2.4), (2.17) with 6 = Xi, (2.9), (3.10)-(3.12) yield 
the estimates 

(3.13) \\R-(t)x\\a+1 < j e - a < | | x | | a for t> 0, a < min (±7, -A.)> 

(3.14) \\R-(t)x\\a+l < oe-<"||x||or+1, <>.0, 

(3.15) \\R-(r)x\\a+1 < Ce A ' T | |x | | a , r < 0, 

(3.16) | |ftrz| |y„+i <. ce-0<||x||a t >. 0. 

For A > —7 we denote by <P\ the function 

f0 
ФÄ(Г) = У ЄЛ(T-"V(<Г) d<7 = y Є* Vr(<) dť. 

Then ||<&||y«+i ^ ^+R7lll¥'l|ye"+> an<> w e 8e* t n e following formula for the operator 
S~(t) = S(t)-S+(t), t>-0 : 

«>(;)=US) • 
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where 

n - l pt n"~- j ya+ioo 

y(i) = /?-(<).- + / ftf*<«-> + V Bk(t - «)]Lv».d» + ^ / eA«Rft(A)L$AdA, 
v JO *^1 .la-ioo 

-frm(T) = /*(' + T) f o r - ^ r < 0 

\ fr(t + r)* + <p(t + T) - 2ij /re
A<,+T>/?n(A)I*AdA for r < - . 

-v 
With help of this expression, (2.24), (3.13)-(3.16) we get the estimate of S"(t): 

(3.17) \\S-(t)\\L{2)^Ce-at, *J>0, 

where Z is any of the spaces .Z01, Zt . 

z = {z = (*,y>)eza;.-eA'a+1, B m ^ r j s * } , 
(3.18) T^0_ 

||*H.? = NI«+i + IM|y-+«. 

It is easily seen from (3.4), (3.8) that 

<-) Ml)<T) **-<)<*'£')• 
Next, in the same way as in Lemma 2 we prove that 

(3.20) s«p Be" / 5T(« - 5) f A ( 5 ) ) dJI ^ C(i|)sup (|e^M0IU, 
«>0 H Jo \ U / HZ t ^ 0 

(3.21) sup j e - ^ f S~(t - B) f * ( 5 ) ) d J ^ C(/i)sup ||e~<"fc(0|U, 
t^o H J.oo \ 0 / Hz t^0 

provided that r / < o ^ > - o , / i 6 Cr?(R+,Xa), it e C^(R-,Xa). 
Now we can,prove the existence of a stable and unstable manifolds for the equation 

(3.22) i(t) = Bz(t) + (ff(Z
0

(<))) , *(0) = z0, 

(3.23) seC 1 (z, AT0), </(0) = 0, Dg(0) = 0. 

Theorem. Assume that A is a generator of an analytic semigroup in X, L satisfies 
(1.11), (1.13) and (3.6), (3.23) hold. Then there exists r > 0 and two differentiate 
functions 

h: B(0,r)cZ~C\Z -* Z, 

k:B(0,r)cZ+ -^Z, 

188 



such that, setting 

sr = {h(0;C€B(o,r)cz-nz), 
*=W);(6B(0,r)Cn 

we obtain the following conclusions: 

(i) &(<&) is tangent to Z~(Z+) at the origin. 
(ii) For any z0 £ S^(zo € Of) there is a mild solution z of the equation (3.22) 

which satisfies the initial condition z(0) = ZQ. This solution is defined on R+(R~) 
and lim z(t) = 0 ( lim z(t) = 0) 

t—+00 v ' vt->-oo v ' ' 

(iii) The trajectory of a solution z belongs to S?(9/) provided that z(0) £ S? 

(z(0) e U),]\z(p)\\z k small enough. 
P r o o f . Consider the operator II given by 

(3.24) 

n<c,*)(.) = z(0-s-(0C-/V( . - s ) ( ^ 5 ) ) ) ds+J"s+(t-8) ( f f ( f ) } ) ds 

It follows from the definition, the estimates of 5 + , 5*" and (3.23) that this operator 
maps a neighbourhood of zero in the space (ZCiZ~) x C^(R+,Z) into Cf?(R+,.Z), it 
is continuously differentiate in both variables, 11(0,0) = 0, 02-2(0,0) = id. Using 
the Implicite Function Theorem we get the existence of r > 0, r\ > 0 such that 
for each C € B(r}Z H Z~)(B(r,X) = {x € X; \\x\\x < r}) there is a unique 
z(C) € B(r\tCq(R+,Z)) with U(Cfz(Q) = 0 and z is continuously differentiate 
with respect to C-

Now we can define the function h: h(Q = 2(C)(0). The set 5? is a graph of a map 

$ : $(C) = - / 0 ° ° S + ( _ , ) ( ^ ^ ) ds for C 6 B(r,Zf\Z"). As *(0) = 0, we get 

the assertion (i). 

For ZQ £ y we have a function z G C-,(R+,.Z), such that U(P'zoyZ) = 0. Ac

cording to (3.24) P+z(0) = - / 0 ° ° 5 + ( - s ) ( ^ 5 ) ) ) ds and 

,<„ . s - i t ) P - « + / s-{, -.) (•«•») - r *+« -., ('«•») 
(») - 5(0 (P-« - f *•<-., («*»)) 'jf «. -.) (««'») 

= S(0*„+/'s<<-,)('«*») 

which proves (ii). 

189 



Let z0 € ST, to > 0, z(P~Zo) be a solution of (3.22) given by (3.24). As the 
equation is autonomous, the function u(t) = z(P~- zo){t + *o) is also a solution of 
(3.22). Then 

u(t) = [5"(0 + S+(t))u(0) + J\sr(t - s) + S+(< - •)] (^(tl
Q

(5))) As. 

Multiplying by S+(-t) and limiting for t —» oo we get 

F+«(0) = - | o ° ° 5 + ( S ) ( ! ' ( t ' o < s ) ) ) d S 

and in the same way as in (3.25) we obtain n(P~ti(0),u) = 0. It follows that 
t*(0) = z(t0) £ S? provided that \\z0\\z is so small that ||F-ti(0)||z < r. 

In the similar way, by solving the equation 

(3.26) ,(«) = S+(0< + j f S+(t - . ) (9{ZlS))) dS + £ S~(t - s) ( * « > ) d. 

in a neighbourhood of zero in Z + x C^(R", Z)> we obtain a backward solution which 
tends exponentially to zero when t —> —oo. D 

R e m a r k . For the original problem (0.1), (0.2) we get the following assertions: 
(i) For any (xy<p) e S? the solution of (0.1), (0.2) exists in the large. It belongs 

to C f ) ( R + , X a + 1 ) n ^ ( R + , X a ) with |Kti(0IU+i ^ n . Conversely, if (x,<p) is such 
that | |P-(* ,p) | |z ^ r, u(.,(x}<p)) G C^R*,*"* 1) and ||e"ti(0ll«+i ^ rx for t > 0, 
then (x ,y>)E^. 

{ii) Any (x, <p) e <% satisfies the equation (0.1) for t < 0. 

4. EXAMPLE 

Consider the problem 

(4.1) 
ú(t, x) = Ati(í,x) + bu(t,x) + / fci(s)(Au(í - s,x) + cu(t - s, x)) ds 

Jo 

+ f(u(t, x), At/(*, x)) + / k2(s)h(u(t - *, x), Au(* - 5, x)) ds, 
Jo 

ti(ť, x) = 0 for x€ÖQ, *<ER, 

u(0,x)=-tio(«)for x € í 2 , 

ti(r, x) =- y?(r,x) for r < 0, x E ft. 
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We suppose that SI is a bounded open set in Rn with » smooth boundary, / , h are 
smooth functions vanishing at zero together with their first derivatives, 

(4.2) \h(p,q)\^C(\p\+\q\) for p,q€H, 

(4.3) |*.(«)| < de-" for i = 1,2 |*i(A)| ^ ---, £ > 0. 

Now, we can rewrite the equation (4.1) in the form (0.1), setting 

A = A + 6/, 
/»00 

Lip(x)= / *i(*)(A^(-*>ar) + c^(-*.-t))d* 
Jo 

l»C© 

</(*;, xl>)(x) = /(v(ar), A»(ar)) + / k2(s)h(ip(-s1 *)> AV>(-«, *)) d*. 
Jo 

It was shown in [5] that, taking X = C(fi), -D(-4) = {ti G C2(H), w|an = 0}, we 
get Xa = ftga(H), Xa+1 = ftj,a+2(ft), where ftg(fi) is the space of all functions v: 
0 —> R, such that t;/an = 0 and 

l i m s u p K^-yi^Q ft0^ = { w e C 2 (n ) ,At iGf tg} . 
*-*°i*-ifi<* F-2/r 

Then, owing to the assumptions on the functions / , ft, (4.2), (4.3) it is easy to verify 
that g maps, the space Z into Xa, L is a continuous linear operator from Yar+1 into 
Xa satisfying (113) and A is a generator of an analytic semigroup in X. 

The relation between the eigenvalues of the Laplace operator and the Laplace 
transform of the kernel k\ yields the values of the spectrum of the equation. In fact, 
for v G Xa+1 we have 

f°° 
L(A)w= / fc1(s)e-75(A-f-c)t;ds = ibi(A)(A-fc)t;. 

Jo 

Let 0 > /ii > /i2 > /*3 > •'. • be eigenvalues of the operator A. Then A G C, such 
that Re A > —7 is in the spectrum of the operator B (see (3.3)) iff 

(fci(A) + l)/xn = A — ck\(X) — 6 for some n G N. 

It follows that for 6 ^ 0, c -̂  0, k\ nonnegative, nonincreasing, the spectrum of B 
lies in the halfplane with negative real parts and 0 is asymptotically stable solution 
of (4.1). 

If we take k\(s) = e~7*, we have k\(X) = —j-j and we get an instability of the 
zero solution whenever 6 > 7 - / 1 1 or if c + Hi + l(ni + b) > 0. If, moreover, 
c + fin + 7(/*n + b) / 0 for n = 2, 3, . . . , then we can apply Theorem 1 to get the 
saddle point property of the zero solution. 
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R e m a r k . It is also possible to deal with integral operators with singular kernels 
of the type t~Pe"~yt for /? < 1. The weight function e7T in the definition (1.9) of the 
space Ya should then be replaced by the function (—r)~^e7T. All results remains 
valid with this change, only the proofs are a bit more complicated. The operator L 
given by 

L<p= [ s-ße-TAф)às 
jo /o 

then satisfies the assumptions (1.11), (1.13). 

The author wishes to thank to dr. J. Milota for helpful discussions. 
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Souhrn 

ftEŠÍCÍ SEMIGRUPA A INVARIANTNÍ VARIETY 

PRO FUNKCIONÁLNÍ ROVNICE S NEKONEČNÝM ZPOŽDĚNÍM 

HANA PETZELTOVÁ 

V práci je ukázáno, že počáteční úloha pro funkcionální diferenciální rovnice parabo
lického typu definuje Co-semigrupu na prostoru počátečních podmínek, jejíž vlastnosti do
volují zkonstruovat stabilní a nestabilní variety pro plně nelineární rovnice obvyklými me
todami. 
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