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Summary. In this paper first order systems of linear of ODEs are considered. It is shown 
that these systems admit unique solutions in the Colombeau algebra &(Rl). 
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1. INTRODUCTION 

We consider the linear Cauchy problem 

n 

(1.0) ( 4 ( 0 = £ ^ * ; ( 0 * ; ( 0 + /*(0 

(1.1) I xk(to) = xok, t0eR\ k= l , . . . , n , 

where Akj, Xj and fk are elements of the Colombeau algebra ^(R 1 ) , xok are known 
elements of the Colombeau algebra C of generalized complex numbers, xk(to) is 
understood as the value of the generalized function xk at the point to and k = 1, . . . , 
n (see [4]). Elements Akj and fk are given, elements xk are unknown (for k, j = 1, 
.. . , n). Multiplication, derivative, sum and equality is meant in the Colombeau 
algebra sense. We prove theorems on existence and uniqueness of solutions of the 
Cauchy problem for the system (1.0). 

In the paper [4] some differential equations with coefficients from the Colombeau 
algebra were examined. Certain problems for the quantum field theory lead to such 
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equations. However, these equations cannot be considered in the theory of distri­
butions, due to difficulties in defining a multiplication of distributions. The algebra 
^ (R 1 ) , constructed by Colombeau in [4], contains the space of distributions ^ ' (R 1 ) , 
has C0o(R1) as a subalgebra, and admits a derivation operator which extends differ­
entiation in .^'(R1). 

2. NOTATION 

Let &(Rl) be the space of all C°° functions R1 —* C with compact support. For 
q = 1, 2, . . . we denote by s/q the set of all functions <p G @(Rl) such that the 
relations 

/

oo i»00 

<p(t)dt = l, f tk<J?(t)dt = 0, l^k^q 
-OO J —oo 

hold while be set of all C°° functions R1 —• R1 with compact support satisfying (2.1) 
will be denoted by s/q. 

Next, <f[R!] is the set of functions R: s/xXRx -> C such that # ( $ , . ) G C°° for 
each fixed $ G M -

If R G ^[R1], then DkR($,t) for any fixed 4> denotes a differential operator in t 
(i.e. DkR(*,t)=§£(R(*,t))). 

For given $ G &(Rl) and e > 0, we define $ £ by 

(2.2) * t ( 0 = £ - 1 4 > ( j ) . 

An element R of <f [R1] is moderate if for every compact set K of R1 and every 
differential operator Dk there is N G N such that the following condition holds: 
for every 4> G s/s there are c > 0 and T/0 > 0 such that 

(2.3) suv\DkR($£,t)\^ce-N for 0 < e < r)0. 
tzK 

We denote by &M [R1] the set of all moderate elements of <f [R1]. 
By T we denote the set of all increasing functions a from N into R+ such that 

a(q) tends to oo if q —» oo. 
We define an ideal ^ [ R 1 ] in 8[R1] as follows: u G .yVfR1] if for every compact 

subset K of R1 and every differential operator Dk there are N G N and a G T such 
that the following condition holds: for every q ^ N and $ G s/q there are c > 0 and 
tjo > 0 such that 

(2.4) mp\DkIH*e,t)\^ceato-N for 0 < e < IR>. 
t£K 
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The algebra ^(R 1 ) (the Colombeau algebra) is defined as the quotient algebra of 
^ / [R 1 ] with respect to ^VfR1] (see [4]). 

We denote by So the set of all functions from s/\ into C. Next, we denote by SM 
the set of all the so—called moderate elements of So defined by 

(2.5) SM - {R G So : there is N G N such that for every 4> G JZ//V 

there are c > 0 and ?;o > 0 such that |.R(4>e)| .$ ce~N 

for 0 < e < ?/o}. 

We define J of SM by 

(2.6) J^ - {Re So: there are N G N and a eT such that for 

every q ^ N and 4> G s/q there are c > 0 and r/0 > 0 

such that |fl(*e)|-^ cea^-N for 0 < e < r;0}. 

We define an algebra C by setting 

C = < W ^ (^e [4]). 

If R G SM [R1] is a representative of G G ^(R 1 ) , then for a fixed t the map Y: 
$ —> R(<&, t) G C is defined on s/\ and Y G SM . The class of V in C depends only on 
G and J. This class is denoted by G(t) and is called the value of generalized function 
G at the point t (see [4]). 

We say that G G ^(R 1 ) is a constant generalized function on R1 if it admits a 
representative R($,t) which is independent of t G R1. With any Z G C we associate 
a constant generalized function which admits R($,t) = Z($) as its representative, 
provided we denote by Z a representative of Z (see [4]). 

Throughout in the paper K denotes a compact set in R1. We denote by RAkj($, t), 

fy*(*>0> ^roi(*)» Rxj(t0)($) and /?*,-(*,<) representatives of elements Akj, /*, #0;, 

xj(t) and *,• for *, j = 1, . . . , „. Let ,4(*) = ( ^ ( 0 ) , / ( 0 = (fi(t),...,fn(t))T, 

x(t) = (x i (0 M 0 ) T , *'(«) = (x /
1 (0 , . . . , < (0 ) T > *o = (aroi,...,-ron)T, where 
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T denotes the transpose. We put 

RA(*,t) = (RAkj(<t>,t)), 

DkRA(*,t) = (DkRAkj(*,t)), 

Rf(*,t) = (Rfl(*,t),...,Rfn(*,t))T, 

RT(*, t) = (RXl(<t>, 0 , . . . . RXn(*, 0) T , 

/?,-(*, 0 = (Ižx; (*, 0. •••, fíxn(*, 0 ) T , 

fíx0(*) = (« ,„ , , . . . , fi,0nW)T, 

I?x(.0)W = («-.(..)(*), - . . , Ižxn(l0)(*))T, 

J RA(*,s)ds=(J RAki($,s)ds), 

J Rf(*,s)ds=(J Rfl(4>,s)ds,...,J (*,s)ds) 

l|Дл(Ф0l! = 
x , Ë IДЛ.ДФ,OІ2. 
Ч *,i*i 

!!/?/(•. 011 = л £.*/(•. 01 
Ь = i 

\\RA(*,t)\\K = sup | | ^ ( ^ , 0 I | , 

li«/(*.0k=8Up||/J,(*,0ll-
teK 

We say that a generalized function G is real valued if it admits a real valued 

representative. 

Starting with those elements of <frj which are real valued we obtain in this way an 

algebra R1 containing R1 as subalgebra. Thus C = R1 -f iR1, where i2 = —1 (see[4]). 

Let akh bj G ^ [ R 1 ] , mkji pj G J\ qj G C, r;- G C; Akjl fJ9 Xj G ^ ( R 1 ) 

for it, j = 1, . . . , n. Then we write a = (akj) G ̂ V n x n [ R 1 ] , 6 = (fci . . . . ,6 n ) T G 

^ " R 1 ] , m = (mkj)e e / n x n , P = (P i , . . . ,Pn) T G , / " , 9 = (<71, • - - ,<7n)T € C», 

r = ( r ! , . . . , r n ) T G C \ .4 = (Akj) G ^ " ( R 1 ) , * = (* 1 > . . . ,a . n )T G ^ ( R 1 ) , 

^ ( • > 0 G ̂ xn[Rl] and Rx(^t) G ^ [ R 1 ] . 

We say that x = (a?i , . . . ,xn) G ^ ( R 1 ) is a solution of the system (1.0) if x 

satisfies the system (1.0) identically in ^ ( R 1 ) . 
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3 . SYSTEMS OF LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS 

Let i denote the usual square root of —1 . We shall consider the problems 

(3.0) ( Z'(t) = iA(t)Z(t) 

(3.1) \ Z(t0) = I, t0eRl 

and 

(3.2) ( Z'(t) = A(t)Z(t) 

(3.3) \ Z(t0) = I, t0eRl, 

where I denotes the identity matrix. 

First we introduce a hypothesis H: 

Hypothesis H 

(3.4) Ae&nxn(Rl); 

(3.5) the matrix A G &nxn(Rl) admits a representative RA($,t) such that 

(a) RAkj($,t) e R1 for every $ 6 ^ i and k,j = 1,..., n, 

(b) RA(*,t) = (RA($,t))T for every $ 6 ^ ; 

(3.6) the matrix A admits a representative RA($,t) such that 

RA(<P,t) has the property (3.5) (a) and RA(<b,t) = ~(RA(<P,t))T 

for every $ G M i 

(3.7) the matrix A admits a representative RA($,t) with the 

following property: for every K there is N G N such that for every 

$ G £?N there are constants c > 0 and ?/o > 0 such that 

J J \\RA(<Pe,s)\\ds\\K^c for 0 < £ < / / o . 

(3.8) the matrix A admits a representative RA(3>,t)s\ich that 

(c) RAkj($, t) = 0 for every $ 6 . c / i , k < j and n > 1; 

(d) for every K there is N G N such that for every <$ G &?N 

there are c > 0 and r/o > 0 such that 

/ i ^ ^ ^ d s $. c for 0 < e < n0 and j = l , . . . , n . 
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Now we will give theorems on the existence and uniqueness of solutions of homo­
geneous systems. 

Theorem 3.1. Let the assumptions (3.4)-(3.5) be satisfied. Then the problem 
(3.0)-(3.1) has exactly one solution in &nxn(Rl). 

R e m a r k 3.1. Theorem 3.1 is similar to Theorem 3.2.4 and Theorem 3.5.4 in 

[4]. The author assumes in Theorem 3.2.4 that A G ̂ ( R 1 ) and A has a compact 

support. Theorem 3.5.4 is proved for generalized functions with values in Banach 

spaces. The proof of Theorem 3A is slightly different from that of Theorem 3.5.4. 

P r o o f of T h e o r e m 3.1. We consider the system of differential equations 

(3.9) f Z'(t) = iRA(*,t)Z(t) 

(3.10) 

r z'(t) = mA(Ф,t) 

\ Z(t0) = I, 

where RA(^yt) is a representative of A satisfying (3.5). 

For a fixed <I> G M this problem is the classical linear Cauchy problem. It has 

exactly one solution # z ( $ , 0 on R1. We are going to prove Rz($,t) E ^xn[R1]. 

Let Rv($, 0 be a solution of the adjoint systems to the system (3.9). Then, by (3.5), 

we get 

(3.11) DxRv(*,t) = -\RA(Q,t)Rv(*,t) 

and 

(3.12) ( f l v ( * , 0 ) * M * . 0 = c(*), 

where (/?*/($, 0 ) = (Rv(<$,t)) and c(4>) is a constant dependent on <f>. 
Putting 

Rv(*,t) = Rz(*,t) 

we have 

(3.13) ( R z ( * . , 0 ) " « z ( * « , 0 = ( « z ( * c , * o ) ) * ^ ( * c « o ) = /. 

Hence 

(3.14) • | | « z ( * £ ) < ) l k ^ V ^ -

Relations (3.9) and (3.14) yield 

(3.15) \\DrRz(9t,i)\\K£ce-rt for 0 < e < »;0-
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Thus ftz($, t) G ̂ " [ R 1 ] . I f w e d e f i n e z as t h e c I a s s o f R z ( * , 0 in » n x n ( R 1 ) , then 
Z is a solution of the problem (3.0)—(3.1). To prove uniqueness of the solution of the 
problem (3.0)-(3.1) we observe that by (3.9) and (3.13) 

(3.15) D,((RZ(*,<))*) = -i(Rz(*,t))*RA(*,t) 

and 

(3.16) (Rz(*,0)* = (flzCM))"1 e ^x n[R'] . 

We define Z* as the class of ( f t z ( $ , f ) ) \ Then 

(3.17) (Z*)' = -iZ*A. 

Let Y € ^ " ( R 1 ) be another solution of the problem (3.0)-(3.1). We denote 

(3.18) U = Z*(Y-Z). 

By (3.17)-(3.18) we obtain 

(3.19) U' = (Z*)'(Y-Z) + Z*(Y'-Z') 

= - iZM(Y - Z) + iZ*(AY -AZ) = Q 

and 

(3.20) flt/(<Mo)= ( f t z ( * , < o ) H / M < M o ) - I W , < o ) ) G </"x". 

The last relations yield 

(3.21) U(to)=0. 

Applying Theorem 2.3.1 from [4] and relations (3.19)—(3.21) we can see that 

(3.22) U = 0 in Sfnxn(R1). 

or equivalently 

(3.23) (R z (* ,0 )* (Ry(* , t ) - RZ(<M)) G ^ ' n x n [ R 1 ] . 

On the other hand, (3.16) and (3.23) yield 

(3.24) Rz(*,t)(Rz(*,t)Y(RY(<l>,t)- RZ(*,t)) G ^ n x n [ R x ] 

and consequently 

(3.25) Ry(*,t) - Rz(*,t) e ^ ' n x n [ R 1 ] . 

This proves the theorem. D 
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T h e o r e m 3.2. Let the assumptions (3.4) am/(3.6) be fulfilled. Then the problem 
(3.2)-(3.3) has exactly one solution in &nxn(R*). 

P r o o f . The proof of Theorem 3.2 Js similar to that of Theorem 3.1. We start 
from the problem 

(3-26) f Z'(<) = «>,(*, 0-7(0 

(3-27) \ Z{t0) = l, ( 0 6 R 1 , 

where /2>i(*.0 has the property (3.6). 
First we prove relations (3.13)-(3.14) and (3.16), where Rz($,t) denotes a solution 

of the problem (3.26)-(3.27). Uniqueness follows from (3.18) and (3.22). Indeed, 

(3.28) W = (Z*)'(Y -Z) + z*(Y' - Z') 

= - Z*A(Y -Z) + Z\AY -AZ) = Q 

where 

(3.29) {ZmY = Z*A* =-Z*A. 

Using relations (3.22)-(3.25) we have 

(3.30) Y = Z, 

which completes the proof of Theorem 3.2. • 

T h e o r e m 3.3. Let the assumptions (3.4) and (3.7) be fulfilled. Then the problem 
(3.2)-(3.3) has exactly one solution if&nxn(R*). 

P r o o f . We consider the problem (3.26)-(3.27), where <t> G s/\ and RA(<fr,t) 
has the property (3.7). Using the Gronwall inequality we have 

(3.31) | | f l * ( * e , 0 l k ^ v ^ e x p ( | | y | | . f l*(* c ,*) | |d* |J ^ v ^ e x p c . 

By (3.31) and (3.26) there is N G N such that for <J> G &N we have 

(3.32) \\DrRz(*e,t)\\K^cre-N for Q < e < m. 

Hence Rz(*,t) € ^ " [ R 1 ] . Denoting by Z the class of RZ(^J) in ^ n x n ( R 1 ) , we 
get that Z is a solution of the problem (3.2)-(3.3). Let Y G ^ n x n ( R 1 ) be another 
solution of the problem (3.2)-(3.3). 
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Then 

(3.33) A « r ( * , 0 = « i i ( * . 0 « v ( * , 0 + « m ( * , 0 . 

where 

(3.34) / 4 ( * , I ) € ^ S X " [ R 1 ] 

and 

(3.35) Ry($,l)-I€ / n x n . 

In view of (3.26) and (3.33)-(3.35) we deduce that (for q ^ Ni and $ 6 J*',) 

(3.36) | | « z ( * „ 0 - l^y (*«, 01k 

$ ( | | t fy (* . - . lo) - I l k + H«m(*«,0lk)exp (J / | |«x(*.,«) | |d«| | ) 
Jto W K ' 

<: c0e
a(<q)-Nl for 0 < e < t]0. 

On the other hand, by (3.36), (3.26) and (3.33) we have 

(3.37) | | D 1 ( 7 ? z ( * c , 0 - - B r ( * c , 0 ) l k ^ c i e t t ( f ) " j V a for 0 < e < fjQ. 

This yields 

(3.38) .flz(*, 0 - flr(*, 0 € ^ ' ^ " [ R 1 ] . 

and Theorem 3.3 is proved. • 

R e m a r k 3.2. Let S denote the generalized function which admits as a repre­
sentative the function R(&,t) = $(-<) , where 4> e s/\. Then the problem 

{ x'(t) = e-*<p(—)x(t) 

* ( - l ) = l 

has exactly one solution Rx($e,t). Since 

(3.40) Rx(*c,t) = exp ( J e-1*^—) d s j for small e > 0 

and 

(3.41) I / ' |e-i*(-í)|d.U r \*(t)\dt 
I J_l I V C / I I J-.00 

< oo. 
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we conclude that /?*(<->*,<) satisfies the condition (3.7). Thus the problem 

(3.42) 
jx' = 6x 

I *(-!)=! 

has exactly one solution x £ #(R*), which is a class of #*($,<)• 

Theorem 3.4. Let the assumptions (3.4) and (3.8) be satisfied. Then the problem 
(3.2)-(3.3) .has exactly one solution in ^n x n(R1). 

Proof. We examine the problem 

(3.43)it 

(3.43)n* { 

(3.44) 

oi/?„„(*, 0 = «„,,(*, 0I**.*(*,0 

AЯ,.ЛФ.0 = fíл.1(Ф.0ftzlt(Ф,0+-+«ляk(Ф,0fíznfc(Ф,0 
j = k 

iфk, 

, м. - - * n * \ » / " Л в П 1 

f 1, if 

l й ' " , Ф ' , » ) = { o , i f : 
where j , k = 1, ..., n and RA($,t) satisfies (3.8). 

By (3.43)i* and (3.8) we infer that (for * € */Nl) 

(3.45) l|ft*,*(*.,0lk ^exp(| J ^ u (< l> , , 0d S | J 

and 

(3.46) \\DrRzlK(*e,t)\\K ^cie~Ni for 0 < e < tjoi and Jb=l, . . . ,n. 

If n > 1, then (3.43)n* and (3.8) imply (for * € s/Nt) 

(3.47) l l ^ « ( * « , 0 l k ^ e x p ( | j f RA„(*t,s)As\K) 

x (l + I Ju (exP (~ / ' RA»(*c,T)dT))RMl(*"S)R*A*s,s)ds\\) 

$ cifN* 

for 0 < £ < »?02 and At2 6 N. 
Hence, by (3.43)2* we have 

(3.48) l lorfl ,„(*c,0| |K^c2£-^, 0<£<»;o2, iV^eN. 

132 



We show by induction that 

(349) ll*.™(*.,OII*<ctoe-"« 

and 

( 3 5°) \\DrRtKh(*t,i)\\K^Bme-N'» 

for 0 < .; < »/<>, Nm, Nm € N, m = 1, ..., „ an<j /t = 1, ..., „. 
Therefore 

(3.51) «.?(•, 0 € ^ x n [ R ] ] . 

If Z denotes the class of Rz(*, t) i„ ^ x n ^ i ) t h e n z .g & ^ . ^ Q{ ^ ^ 

(3.2)-(3.3). Now we shall prove the uniqueness of solution as the problem (3 2)-
(3.3). Let Y € ^"xn(R*) be another solution of the problem (3.2)-(3 3) Then \L 
relations (3.33)-(3.5) are valid. We set ' 

(3-52) IM*<,0 = IW<,0-IM*<,0-

Using (3.43)]t and (3.33)-(3.35) we conclude that there is Nlk e N such that for 
q ^ Nik and $€.«/ , 

(3.53) ||tfUlk(*<,Olk ^ qike^~^ exp ( | | f ^ „ ( ^ e , « ) d * | | )', 

where 

(3.54) Ru(<P£,t)=(Rukj(<t>e,t)), 0<v<Vo and guGR1. 

In view of (3.33) and (3.43)i* we have (for q ̂  Nik and * e &/ ) 

(3.55) IPr/2uJfc(^£,0lk ^ 5u^f)--vffc 

for small £. 
Thus 

(3.56) / ^ S ^ f R 1 ] . 

Similarly (if n > 1) 

(3-57) IIIW*.-,0lk Ztok^M-"", 
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where N2* G N, g2k G R1 and K = 1, . . . , n. 
Taking into account (3.57) and (3.43)2* we infer that 

(3.58) IIDr«««(*«,01k ^ hktaKq)-N** 

for small e, 92k G Rl and N2k G N. So 

(3.59) R2k(<P,t)e^[R1]. 

Finally, by induction we get 

\\Ruik{*t,t)\\K<9jk€aM-Nik 

and 

(3.60) \\DrRUjk(<Pe,t)\\K < 9jkea^N^ 

for small e, Nj*, Nj* G N and j , k = 1, ..., n, which yields Rv 6 ^ n x n [ R 1 ] , and 
this completes the proof of Theorem 3.3. • 

Theorem 3.5. Let the assumptions (3.4)-(3.5) be fulfilled. Then the problem 

(3.0)' f z'(t) = iA(t)z(t) 

{ (3.1)' ( x(t0) = o, t0e& 

has only the trivial solution in ^"(R1). 

P r o o f . If x is a solution of the problem (3.0)'-(3.1)' in ^"(R1), then 

(3.61) oi/**(*, 0 = i ^ ( * . OIM*, 0 + *m(*. 0, 

where 

(3.62) 72m(4>,<)€^ /"[R1], 4>GM and fi,i(<I>,t) satisfies (3.5). 

Let 

(3.63) Rm{*,to)GSn-

Equalities (3.61)-(3.63) yield 

(3.63') R.(*,t) = Rz(*,t)Rc{*,t), 
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where Rz(<bJ) is a solution of the problem (3.9)-(3.10) and 

r o,«c(<j>,o = («*(*, or1*-.**, o 
(3.64) < 

\ f t C ( * , . 0 ) = « m ( * . <0). 

By (3.16), (3.62) and (3.64) we have 

(3.65) D , f l e (* ,0€<Q[R 1 ] 

and 

(3.66) D i . R c ^ O e ^ ^ l R 1 ] . 

On the other hand, 

(3.67) « c ( * , 0 = / ( « z ( * , ^ " ^ m ^ . ^ d * + « , „ ( * , * 0 ) , 
J<o 

therefore 

(3.68) 7 J c ( * , 0 e W ] 

and 

(3.69) / I c ( * , 0 G ^ n [ R 1 ] . 

Using (3.63) and (3.68)-(3.69) we deduce that 

(3.70) fl*(*,0€-^n[R1], 

which completes the proof of Theorem 3.5. D 

Theorem 3.6. We assume thatA £ 9nxn(Rl) an J at least one of the conditions 
(3.6)-(3.8) is satisfied. Then the problem 

(3.2)' f x'(t) = A(t)x(t) 

(3.3)' 1 x(*0) = 0 

Las only the trivial solution in ^" (R 1 ) . 

In the case (3.6) the proof of Theorem 3.6 is similar the to proof of Theorem 3.5. 
To this purpose we examine the equality 

(3.7i) D l/e,(*,o = «>i(*,Ofl«(*.0 + «m(*.0 
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where Rm(Q}t) G ^ n [ R 1 ] , $ G tf\ and RA($,t) has the property (3.6). Next, 
we show that Rr($,t) G «vVn[R1]. Now we shall prove Theorem 3.6 in the cases 
(3.7)-(3.8). We observe that 

(3.72) 0M*,0) e^xn[R% 

where Rz($,t) is a solution of the problem (3.26)-(3.27). 
Indeed, by the classical results of the theory of differential equations we have 

(3.73) Di((rtz(*,0)-1) = -(Rz(^,t)y1{RA^,t)Y. 

Hence we can obtain similar estimates for elements of the matrix (Rz($e > 0 ) as for 
elements of the matrix Rz($e,t) in relations (3.31)-(3.32) and (3.46)-(3.50). Apply­
ing relations (3.63)-(3.69) and (3.71)—(3.72) we can prove Theorem 3.6 analogously 
as in the cases (3.5)-(3.6), which implies our assertion. 

Theorem 3.7. We assume that conditions (3.4)-(3.5) are satisfied. Then every 
solution x of the equation (3.0)' has a representation 

(3.74) x = Zc, 

where Z is a solution of the problem (3.0)—(3.1), c = (ci, . . . , cn)
T and Cj are constant 

generalized functions on R1 for j = 1, . . . , n. 

Theorem 3.8. Let A G ̂ n X n (R 1 ) and let at least one of the assumptions (3.6)-
(3.8) be satisfied. Then every solution x of the equation (3.2)' ijas a representation 
(3.74), where Z is a solution of the problem (3.2)-(3.3). 

P r o o f s of T h e o r e m s 3.7-3.8. Let x be a solution of the equation (3.0)' 
of (3.2)'. Then, by arguments similar to those given in the proof of Theorem 3.5, we 
have (for a fixed to G R1) 

#*(<*>, 0 = «z(*> t)Rc(*> 0, Dx Re(*, t) = (flz(*, Or'flmv*, 0> 

where 

iic(*,*o) = «.(«o)(*) a n d Rm(*,t)e^n[R1]. 

Hence, taking into account (3.66) and Theorem 2.2.1 from [4], we obtain (3.74). • 

R e m a r k 3.3. If the matrix A G &nxn(Rl) has not properties (3.6)-(3.8), then 
the solution Rz($i t) of the problem (3.26)-(3.27) need not be moderate. In fact, let 
6 denote the generalized function on R1 (the delta Dirac distribution) which admits 
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as a representative the function Rs($,t) = *(—<)> w-ie-*e * € s/\. Then, taking into 
account the problem 

x'(t) = (*(-<))'*(-). x(-l) = 1, 

we have 

(3.75) It(<->, 0 = x(t) = exp (*(-<) - $ ( - 1 ) ) . 

Since there is $ E s/q such that <1>(0) = 1 for q = 1, . . . (see [4], pp. 7-11), therefore 
(for small e > 0) 

Rr(4>£,0) = expfc""1) and exp (*(-*)) £ AfP*1]. 

It is not difficult to show that the problem 

(3.76) 
(x' = (62)'x 

1-(--) = -
has not solution in ^(R 1 ) . Indeed, if the problem (3.76) has a solution x E ^(R 1 ) , 
then 

£>1 «,(*, 0 = ((*H))2)'fl,(*, 0 + flm(<I>, t) 

where Rx(4>, - 1 ) - 1 € / and «,„($,<) € ./KfR1]. 

Hence we get 

(3.77)M**.0) 

= exp(e-24>\0))(^J^ (exp ( - < r 2 * 2 ( ^ ) ) ) . J M * c > * ) d * + 1 + / U * . ) ) 

for -ftw($) E ̂  and for a suitably small e > 0. 
Let *(0) = 1 and Q e s/q for q = 1, .... Then there is N E N such that for q ^ N 

and <1> E ^ 

(eXp(7T*a(T))) ,ftn(*"*)l^i aIld l«m(*«)l^i 

hold for 0 < 6: < 7jo and s £ K. 
So, by virtue of (3.77) we obtain 

~exp(£-2) <£ /J r (* c ,0) ^ ~ e x p ( ^ 2 ) . 

Consequently, Rx($£lt) g rfjif[R1], which is impossible. Thus the problem (3.76) has 
no solution in ^ (R 1 ) . 
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R e m a r k 3.4. We define the matrices A\, Ai, A3 and Aj by 

A<t\-(
s(k)W sMM \ Am-( ° ^ ^ 

( 6(t) 2S(t-l)\ Am_(S(t) 0 \ 
A3[t)-{z6(t + l) 46(t + Z))' Mt)-\p(t) S(t + \))' 

where p 6 ^ (R 1 ) and 6 denotes the delta Dirac distribution. It is not difficult to 
verify that the matrix Ay has property (3.5), the matrix Ai has property (3.6), the 
matrix A3 has property (3.7) and the matrix A4 has property (3.8). 

Now we sill give two; theorems on the independence of solutions of the problems 
(3.0)-(3.1) and (3.2)-(3.3) on representatives of the matrix A. 

T h e o r e m 3.9. We assume that 

(3.78) A€#nxn(Rl), 

(3.79) the matrix A fulfils at least one of the conditions (3.5)-(3.6), 

(3.80) i?z(<->, 0 is a solution of the problem (3.9)-(3.10), 

(3.81) IU<M)e^nxn[Rl], 

fiy(4>, t) is a solution of the problem 

| Y ' ( 0 =\(RA(*,t) + Rm(*J))Y(t) 

{Y(t0) = / , « o € R l . 

ThenRy(^,t)€^Xn[R1]. 

Theorem 3.10, We assume that 

(3.83) contitions (3.78) and (3.81) are satisfied, 

(3.84) a matrix A fulfils at least one of the properties (3.7)-(3.8), 

(3.85) Äz($ , t) is a solution of the problem (3.26)-(3.27), 

ßy(*>0 is a solution of the problem 

(3.86) 
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V'(0 = (RY{*,t) + Rm(*,t))Y(t) 

Y(t0) = / , i o S R 1 . 



ThenRY(*tt)ef»*nJJli]. 

P r o o f of T h e o r e m s 3.9 a n d 3.10. If A fulfills at least one of the con­
ditions (3.5)-(3.8), then .Rz(*,0 € ^n[Rl] and (Rz(*%t))~l E ^ " [ R 1 ] . Let 
RY($J) be a solution of the problem (3.82) or (3.86). Then 

(3.87) RY(*t,t) 

= tfz(*«.0 + / Rz(*e,t)(Rz(<be,s)yXRm(<j>£yS)Ry(<l>e,s)ds. 
Jto 

Hence, be the Gronwail inequality, we get Ry($,t) E ^n
f
x n[R1] . D 

4. SYSTEM OF NONHOMOGENEOUS DIFFERENTIAL EQUATIONS 

T h e o r e m 4 .1 . We assume that conditions (3.4)-(3.5) are satisfied and f E 
^"(R1). Then the problem 

(4.0) ( x'(t) = iA(t)x(t) + f(t) 

(4.1) \ x(t0) = x0y t0eR\ * o E C n 

ijas exactly one solution in ^"(R1). 

Theorem 4.2. We assume that A E &nxn(Rl), / E &n(Rl), and at least one of 
conditions (3.6)-(3.8) is satisfied. Then the problem 

(4.2) f x'(t) = A(t)x(t) + f(t) 

(4.3) 1 x(t0) = x0, t0eR\ x0ecn 

has exactly one solution in ^"(R1). 

P r o o f s of T h e o r e m s 4.1-4.2. The uniqueness of solutions of the problems 
(4.0)-(4.1) and (4.2)-(4.3) follows from Theorem 3.5 and 3.6. Now, we shall prove 
existence of a solution of the problem (4.0)-(4.1). To this purpose we consider the 
problem 

(4.0)' f x'(t) = iRA($, t)x(t) + Rf(*,t) 

(4.1)' 1 x(t0) = R,0(*), 

where RA(^,t) satisfies (3.5). Let Rx(^,t) be a solution of the problem (4.0)'-(4A)'. 

Then 

(4.4) Rx(<P,t) = Rz(*it)Rv(<t>,t)i 
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where 

v - l 
(4.5) ґ oiЛ„(Ф,0=(Лг(Ф,ť))" Rj(*,t) 

(4.6) 1 Л„(Ф,ť0) = Л*0(Ф) 

and Rz(&,t) is a solution of the problem (3.9)-(3.10). 
By (3.16) and (4.5) we get 

(4.7) (Rz(*,t))~' € - C - I R 1 ] , D1Rv(<t,t)e^xn[R1} 

and 

(4.8) « , ( * , < ) = / (RZ(*,s))-1R}(*,s)ds + RXB(*). 
«!<o 

Thus 

(4.9) Rv(*,t) e ^[Rl], 

If we define x as the class of Rz($,t)Rv($,t), then a: is a solution of the problem 
(4.0)—(4.1), which completes the proof of Theorem 4.1. D 

The proof of existence of a solution of the problem (4.2)-(4.3) is similar to the 
proof of Theorem 4.L Indeed let, Rx($,t) be a solution of the problem 

(4.2)' j x'(t) = RA(Ф,t)x(t) + R,(Ф,t) 

(4.3)' 1 x(t0) = ЛX0(Ф). 

Then .Rx(<$,<) has the properties (4.4)-(4.9), which completes the proof of the the­

orem. 

Theorem 4.3. We assume that conditions (3.4)-(3.5) are satisfied and f £ 
^ ( R 1 ) . Moreover, we assume that Q is a solution of equation (4.0). Then every 
solution x of equation (4.0) has a representation 

(4.10) x = Zc + Q, 

where Z is a solution of the problem (3.0)-(3.1), c = (c\, . . . , cn)
T and Cj are 

generalized constant functions on R1 for j = 1, . . . , n. 

Theorem 4.4. Let A € &nxn(Rl), / G ̂ "(R1) . Let Q be a solution of equation 
(4.2), and let at least one of conditions (3.6)-(3.8) be satisfied. Then every solution 

140 



x of equation (4.2) has a representation (4.10), where Z is a solution of the problem 
(3.2M3-3). 

P r o o f s o f T h e o r e m s 4.3 and 4.4. We see that x defined by (4.10) is a 
solution of the equation (4.0) or (4.2). Next, we consider equalities 

(4.11) Q' = L4Q + / 

and 

(4.12) Q' = .4Q + / . 

In view of the relations (4.0), (4.11), (4.2) and (4.12) we have 

(x-Q)' = iA(x-Q) 

or 
(x-Q)' = A(x-Q). 

Applying Theorem 4.1 and 4.2 to the last equalities we get 

(* - Q) = Zc, 

which completes the proofs. • 

R e m a r k 4.1. If / is a piecewise continuous function on R1, we define Rf($}t) 
as follows: 

/

oo 
f(t + ti)*(ti) du (see [4]), 

•OO 

where * E M - Obviously, Rf($,t) G ^/ [R 1 ] . Let / i , ft be continuous functions 
defined by 

fO, i H ^ O , 
(4.14) fi(t) = {4 ,f4 n 

I *, if t > 0 

and 

(4.15) h(t) 
_ ( t, iH <$0, 

~ \ 0, if t> 0. 

Then the classical product is 0. Their product in the Colombeau algebra ^(R1) is 
non zero (see [4], p. 16). On the other hand, if <7i, #2 € C°°, then the classical 
product and the product in ^(R1) give rise to the same element of ^(R1). Hence we 
deduce: 
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Corollary 4.1. Let a// elements of a matrix A and of a vector f be C°° functions 
on R1. Moreover, let xo E C n . Then the classical and the generalized solutions (i.e. 
solutions in the Colombeau algebra) of the problem (4.2)-(4.3) give rise to the same 
elements of &n(Rl). 

Indeed, let x and y be respectively a classical solution and generalized solution of 
the problem (4.2)-(4.3) (because the matrix A fulfdls condition (3.7)J. Then 

u'(t) = A(t)u(t), u(t0) = 0 

where u(t) = x(t) — y(t). Hence, by Theorem 3.6 we infer that x = y. 

Corollary 4.2. If all elements of the matrix A are piecewise continuous functions, 
then the matrix A has the property (3.7). 

E x a m p l e 4.1. If necessary, we denote the product in ^(R 1 ) by 0 to avoid 
confusion with the classical product. We consider the equations 

(4.16) *'(0 = / i(0*(0 + /2(0, 

(4.16)' *'(*) = / i ( 0 © * ( 0 + £ ( 0 . 

where f\ and fi are defined by (4.14)—(4.15). 

If is easy to show that x = fi is a classical solution of the equation (4.16) (in the 
Caratheodory sense). On the other hand, x = f2 is not a solution of the equation 
(4.16)' in the Colombeau algebra ^(R 1) (because f\ 0 fi is not zero in ^(R1)) . 

R e m a r k 4.2. It is known that every distribution is moderate (see [5]). On the 
other hand, L. Schwartz proves in [19] that there does not exist an algebra A such that 
the algebra ^ (R 1 ) of continuous functions on R1 is a subalgebra of A, the function 
1 is the unit element in A, elements of A are "C°°" with respect to a derivation 
which coincides with the usual one in C*(Rl), and such that the usual formula for 
the derivation of a product holds. As a consequence multiplication in ^(R 1) does not 
coincide with usual multiplication of continuous functions. To repair the consistency 
problem for multiplication we give the definition introduced by J . F . Colombeau in 
[5], 

An element u of ^(R 1 ) is said to admit a member w € &'(Rl) as the associated 
distribution, if it has a representative Ru(&e>t) w-th the following property: for every 
V> G &(Rl) there is N € N such that for every $ € ^ ( R 1 ) we have 

(4.17) / Ru(**,t)1>(t)dt-*w(il>) as e-+0. 
J —oo 

If u admits an associated distribution w, then this associated distribution is unique 
(see [4], p. 64). 

142 



R e m a r k 4.4. The authors of [3] have considered a delta sequence 6n E @(Rl) 
with the following properties: 

(i) there is a sequence of positive numbers an converging to 0 such that 6n(t) = 0 
for |/| ^ an and f^ 6n(t)dt = 1, 

(ii) for every positive integer k there is a positive integer M* such that 

«* I" \SÍk)(t)\dt^Mk for «€N. 
J —OO 

Definition 4.1. Let S and U be two given distributions on R1. If for every delta 
sequence the product (S * 6n)(U * 6n) admits a limit in @}'(Rl) if n —• oo, we define 
SU G &(RX) as this limit (the asterisk denotes the convolution, see [3], p. 242). 

The following theorem has been proved in [5] (p. 107): 

Theorem C. If the product SU exists, then the product S 0 U G ̂ (R1) admits 
an associated distribution which is SU. 

Definition 4.2. We say that x G ̂ " (R 1 ) is a weak solution of the system (1.0) if 
n 

(x'k — J2 Akj GXJ — fk) G ̂ (R1) is associated to the zero distribution for k — 1, . . . , 
i= i 

n (see [4]). 

Definition 4.3. Let Akj, £j, fk G ^'(R1) and let AkjXj denote products in the 
sense of Definition 4.1 (k, j = 1, . . . , ?i). Then we say that x = (x\,..., xn) is a 
distributional solution of the system (1.0). 

Theorem 4.5. Let x be a distributional solution of the system (1.0). Tiien x G 
^ ( R 1 ) is a weak solution of the system (1.0). 

P r o o f . Let 

IW**.0 = 04*;*&)(0> 
/ M * „ 0 = (*;*&)(0, 
ft/*(*«,0 = (/**&)(0, 

n 

2/*(*«,0 = «,<;(*„0 ~ z3IW**>0IM*<>0 ~ «/«,(*«. 0. 
; = i 

where 

(4.18) &(0= ^ ' • ( T ) ' * e^(R l) a n d k=1> •••"• 
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n 

Then yk($t, t) € ^A/[RX] and y*(* f , 0 is a representative of (x'k - £ j4fcj ©a.j - /*) 

for k = 1, . . . , n. On the other hand, Theorem C and the convergence in &'(Rl) 

imply 

lira / y * ( * « , 0 ^ ( 0 ^ = 0. 
*—•O J-oo 

where ^ - ^ ( R 1 ) and k = 1, . . . , n. • 

The last inequality completes the proof of Theorem 4.5. 

R e m a r k 4.5. By Theorem 4.2 (property (3.7)) we observe that if all elements 
of a matrix A and of a vector / are locally integrable functions and XQ 6 Cn , then 
the problem (4.2)-(4.3) has exactly one solution x G &n(R]). By virtue of Theorem 
4.5 we deduce that x admits an associated vector distribution w = (w\} ..., wn) use 
fc-th component is 

roo 

wk(il>k) = \im R,„(*t,t)1>k(t)dt, 

where ij>k € @(R'), k = 1, . . . , n, .?-(•., ,f) is a solution of the problem 

(x'(t) = RA(*e,t)x(t) + Rf(Qe,t) 

\ *(.<>) = z0 , t o S R 1 , x 0 € C n 

and « „ ( * „ . ) = /~TO ,4(1 + £«)*(«) du, fl/(*„ 0 = JZ. f(t + cu)*(u) dti. 

R e m a r k 4.6. It was shown in [13] that the problem 

{ 
x'(t) = 26(t)x(t) 

* ( - ! ) = 0 

has a solution x = c//, where 6 denotes the Dirac delta distribution, H denotes the 
Heaviside function and c denotes a constant. On the other hand, the problem 

, , , = 26(t) x(t) 

(4iэ) г ; ,. 0 

j x'(t) = 2, 

1 *(-!) = ' 
has only the trivial solution in # ( R ] ) (Theorem 3.3). Hence x = H is not a solution 
of the problem (4.19). It is not difficult to observe that x = 0 and x = H are weak 
solutions of the problem (4.19). 

R e m a r k 4.7. In many papers conditions are given which guarantee existence 
of distributional solutions of ordinary differential equations (for example in [7], [11], 
[12]—[16]). Non-continuous solutions of ordinary differential equations can be consid­
ered in an other way (for example, see [8], [9], [10], [17], [18]). 
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R e m a r k 4.8. Let Akj = B,
kji where Bkj are functions of finite variation for Ar, 

j = 1, . . . , n and the derivative is meant in the distributional sense. Moreover, let 

(4.20) « i i f c i ( * « , 0 = ( -9*i**«) / (0 . 

where 6e is defined by (4.18). Then [1] yields 

/ l#-4fci(*«i0|d* ^ c < °° ror • € «fi*i and fc,j = l , . . . , n . 
JK 

Hence the matrix v4 has the property (3.7). 

It is worth noting that if A is a matrix such that A E ^ r n x n ( R 1 ) , .4^ = 2?^, fljj 

are continuous functions, j = 1, . . . , ?i, the derivative is meant in the distributional 

sense, Akj = 0 for k < j and n > 1, then the matrix 4̂ has the property (3.8). (The 

last fact follows by (4.20).) 

R e m a r k 4.9. The definition of generalized functions on an open interval 

(a, 6) C R1 is almost the same as the definition in the whole R1 (see [4]). In 

this paper we have proved theorems on generalized solutions of linear differential 

equations in the case (a, 6) = (—oo,oo). It is not difficult to observe that the above 

proved theorems are also true in the case when generalized functions Akj, fk and Xk 

are considered on an interval (a, 6) for fc,.; = 1, . . . , n. To this purpose it is necessary 

to formulate the properties (3.4)-(3.8) on the interval (a, 6). 
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