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Abstract. Necessary and sufficient condition on the weights will be derived under which a 
fc-th order Hardy inequality holds on classes of functions satisfying more than k "boundary" 
conditions. 
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0. INTRODUCTION 

In this note, we will deal with the k-th order Hardy inequality 

(1) Q K . r ) | ' » o ( . r h k ) <c(J | u« ( x ) \ "w(x )ds ) 

on the class of functions u e AC1- ~l (0,1) for which the right hand side in (1) is finite 

and which satisfy the "boundary conditions" 

(2) u<»»(0)=0 f o r i e M o , 

u W ( l ) = 0 f o r i e A / i . 

where M0, M\ are subsets of the set {0,1 k - 1}. 

The problem what choice of the couple M0,M\ is meaningful, i.e., for what type 

of conditions (2) the inequality (1) makes sense, is completely solved in [DK]—the 

couple M0, M\ has to satisfy the so-called Poly a condition. Such couples Mo, M\ will 

be called admissible. 
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For admissible couples satisfying additionally the condition 

(3) # M 0 + # M j = fc, 

necessary and sufficient conditions on the weights w0 and w (i.e., functions measur­

able and positive a.e. in (0,1)) and on the parameters p,q (1 ^ p ^ oo, 0 < q ^ oo) 

are completely described in [K] and in [S]. Such couples will be called standard. Let 

us only mention that the method consists in reducing inequality (1) under conditions 

(2) to the weighted norm inequality 

(4) [J \(Tf)(x)\«w0(x)dx^J < C [ V \f(x)\"w(x)dx^ " • 

where T is the Green operator of the boundary value problem 

(5) «(fe) = / in (0,1), tx(i)(0) = 0 for i e M0 , ulj)(l) = 0 for j £ Mi, 

i.e., 

u(x) = (Tf)(x)= / K(x.t)f(t)dt 
Jo 

with a suitable kernel K(x,t). 

The aim of this note is to find necessary and sufficient conditions for the validity 

of (1) in the case of overdeterrnined conditions, i.e. in the case that condition (3) is 

violated: 

(6) # M 0 + #M\ > fc. 

For some special cases, this problem was solved by [KSim] (the case M0 = M\ = 

{ 0 , 1 , . . . , fc - 1} and the case M0 = { 0 , 1 , . . . , fc - 1}, Mx = {fc - 1}; mainly sufficient 

conditions), by [KSin] (the case M0 = M0 U {fc - 1}, M\ = Mi U {fc - 1}, where the 

couple Mo, Mi is standard for the inequality of order fc — 1; necessary and sufficient 

conditions) and by [NS] (the case fc = p = q = 2 on the semiaxis (0,oo); necessary 

and sufficient conditions). 

Here, we will show that if we construct the overdeterrnined couple Mo,M\ adding 

some new conditions to a standard couple Mo,Mi, then the necessary and sufficient 

conditions of the validity of (1) under the boundary conditions given by M 0 , M i are 

the same as the necessary and sufficient conditions under the boundary conditions 

given by Mo, My provided the weights w0,w satisfy some additional assumptions. 

For simplicity, we will explain our idea on the particular standard couple 

(7) M0 = { 0 , l , . . . , f c - 1 } , M = 0 
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but it will be clear that the method can be extended to general standard couples 
(see also Example 3). 

Thus, let us consider inequality (1) under the (standard) conditions 

(8) u(0) = u ' ( 0 ) = ... = uik-lH0) = 0 . 

Then the necessary and sufficient conditions for its validity have the form (for the 
case 1 < p <. q < co) 

1/7 / I-* \ W 
I I ,. . (1.. _1 \ „ ,.... 1 

sur 
(9) 

' ( f (i - *)(fc_1),tuo(í)dí) (I «•'-"' (í)dtj <co, 

C / w0(t)dt) (j (x-t^-Wvji-ťWdt) " <oo, 

with p' = - 2 - . 
Now, let us add to (8) the conditions 

(10) < / ( » ( l ) = 0 for j e M 

where M is a nonempty subset of { 0 , 1 , . . . , k - 1}. Then we have the situation 
described above, with M0 and M\ from (7) and with M0 = M0, M« = Af. Define an 
operator T by 

(11) (Tf)(x) = —l—f\x-t)k-1f{t)dt, a. €(0,1). 

The function u = T / obviously satisfies conditions (8) and the equation u^k' = / in 

(0,1). Moreover, since 

ttWW = .1 ( ~ 1 ) J n . A * - t)fc"J"'/W<l^ 0 < j < k- 1, (k- j - IV. J0 

conditions (10) lead to the assumptions 

(12) / (1 - 0 l - J ' - 1 / W ' l t = 0 for j € M. 

If we denote by Lr(w) the weighted Lebesgue space normed by 

|t'(.r)|"!y(x)dx . 1 < p < oo, 
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and by WM the subset of Lr(w) of all functions / satisfying (12), we obtain imme­

diately the following assertion: 

Lemma 1. Let M be a nonempty subset of { 0 , 1 . . . . , k - 1}. Tiien the Hardy in­

equality (1) with overdetermined conditions (8) and (10) is equivalent to the weighted 

norm inequality 

(13) II-7II,.- < Cn/ll-,. forallfeWM 

with WM C Lr(w) determined by conditions (12). If in addition the weight function 

w satisfies 

(14) f (l-t){k-j-l)r'wl-"'(t)dt<oo for jeM, 
Jo 

then WM is a closed subspace of Lr(w) with finite codimension # M . Moreover, 

(15) WM = FM 

where FM denotes the linear hull of the functions 

(16) <Pj(t) = (i-t)k-J-iw-1(t), jeM, 

in Lr (w) and FM its "orthogonal complement", i.e. the set of all f e Lp(w) such 

[ Vj(t)f(t)w(t)dt= f (l-t)k-j-1f{t)dt = 0 
Jo Jo 

for all j € M . 

P r o o f . Recalling the above explanations it is clear that the Hardy inequality 

(1) for u satisfying conditions (8), (10) is exactly inequality (13) for / 6 WM. Denote 

by ('i ')„, the duality between L''(w) and Lp (w): 

(/,</)„, = / / (%(t )w( t )d* , / 6 Lp(w), g e Lp'(w). 
Jo 

Conditions (14) guarantee that <pj e Lr'(iu), and assumptions (12) can be rewritten 
in the form 

(f.^)w=0 for jeM, 

which gives WM = FM. To see that the codimension of WM is # M consider the 
linear mapping * : Lr(w) -> R # M , 

Kl'(f) = {(f^j)Jie.M-

282 

that 



Clearly 

Ker * = {/ 6 Lp{w): {f,<Pj)w = 0 j ' 6 M } = WM 

and 

${Lp{w)) = R # M 

since there exist functions Q ; e Lp{w), i € M, such that {oti,fj)w = b~ij [Ka, 

Theorem 1.22]. Hence for the codimension dim L"{w)/WM of WM we get 

dim Lp{w)/WM = dim Lp{w)/Ker # = dim *(£"(«>)) = dim R # M = #M. 

a 

R e m a r k 1 . (i) Thus, the investigation of inequality (1) under conditions (8), 

(10) can be reduced to the investigation of inequality (13) on the subset FM of Lp{w) 

provided w satisfies (14). 

(ii) Obviously, conditions (14) can be replaced by a single condition 

(17) [ (1 - t ) { * - i ° - 1 ) p V - p ' ( t ) d . < oo 
io 

where 

jo = m a x { j , j e M } . 

(iii) If the set M is empty, then we have no additional conditions on w and the 

subset FM coincides with the whole space Lp{w). In other words: To investigate (1) 

under the standard conditions (8) is equivalent to investigating (13) on the whole 

space Lp{w). 

1. T H E CASE p = 2 

In this case, condition (17) reads 

(18) / ( l - t ) 2 ( f c - i o - 1 ) w - 1 ( t ) d t < o o 
Jo 

and the Hilbert space L2{w) can be written as the orthogonal sum 

(19) L2{w) = FM © EM = EM © WM 

where FM is the linear hull of the functions ipi from (16). Moreover, if we suppose 

that the weight functions w and w0 satisfy 

(20) / (fX(x-t)k-1{l-t)k-^-1w-i{t)dt\ u> 0 (z)da;<co, 
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then obviously 

Tipj e L"(w0) for j e M 

with T from (11). Since FM is finite-dimensional, T maps the subspace FM contin­

uously into Lq(w0). 

Thus, we are able to prove the following assertion: 

Theorem 1 . Let M be a nonempty subset of {0,1 ,k — 1}, j 0 = maxj j , j e 

JW}, and suppose that the weight functions w0, w satisfy conditions (18) and (20). 

Let p = 2, 0 < q < oo. 

Then tJie A:-tJj order Hardy inequality (1) JioitJs for u satisfying the overdetermined 

conditions (8) and (10) if and onJy if it holds for u satisfying the standard conditions 

(8). 

P r o o f , (i) If (1) holds for u satisfying (8), then it obviously holds for u satisfying 

(8) and (10). 

(ii) If (1) holds for u satisfying (8) and (10) and w satisfies (17), then according 

to Lemma 1 inequality (13) holds (with p = 2) for all / € WM, i.e. the operator T 

maps WM continuously into Z/'(«'o). If, moreover, (20) is satisfied, then T maps also 

FM into Lq(w0), and consequently, due to (19), T maps the whole space L2(w0) into 

Lq(w0). But this means, according to Remark 1 (iii), that (1) holds for u satisfying 

(8). ' • 

2. A GENERAL p > 1 

(a) Suppose that M contains only one element, M = {j0}. Then we have only one 

function tp: <p(t) = (1 - t)k'j"-'url(t), ip e V'(w) provided (17) holds, and the set 

FM is onedimcnsional. 

Define a function a by 

(21) a(t) = Cb(l - r ) ( t ~ i " - 1 ) ( " ' - 1 V - p ' ( « ) 

with a suitable constant C0 > 0. Condition (17) guarantees that 

a G L>'(w) and ( o , ^ ) u , > 0 . 

Indeed, 

J aP(t)xc(t)dt = C0
JJ ( l - 0 ( ^ ' " - 1 ) " ' W

1 - " ' ( < ) d t < o o 



and 
r1 r1 . 

a,f)w= a(t)V(t)w(t)dt = Co / (1 - t){k-^-1)p u.1"" (t)dt. 
Jo Jo 

If we choose C0 such that (a, tp) = 1, we can write every g e Lp(w) in the form 

(22) fJ = f + Ca, feFjt,. 

Indeed, if we put / = g- (g,<J>)wa, we have (f,<p)w = (9,f)w - {g,v)w {a,<p)w = 0, 

i.e., / e Fjfc, and we have (22) with C = (g,f)w-

If we now suppose that the functions w and ui0 satisfy 

(23) f C f i x ~ t)fc_1(l - t){k-ju-1)(v'-1)w1-v'(t)dt\ w0(x)dx < oo, 

then we have 

Ta G L"(w0) 

and T maps the onedimensional subset {ca}, c e R, of Lp(u)) continuously into 

L'(wo). Since T maps F ^ continuously into Z-<7(uio) if and only if (1) holds for u 

satisfying (8) and (10) (clue to Lemma 1), we can repeat, in view of (22), the assertion 

of Theorem 1, replacing assumptions (18) and (20) by (17) and (23), respectively, 

and omitting the assumption p = 2. 

E x a m p l e 1. Let us consider inequality (1) under the conditions 

u(0) = w'(0) = . . . = u ( * - 1 ) (0) = 0, ti(l) = 0. 

Then we have the situation just described, with M = {j0} = {0}, and we can assert 

that inequality (1) holds for p.q satisfying 1 < p ^ q < oo if and only if conditions 

(9) are satisfied, provided that 

/ ( 1 _ t ) ( * - i ) p ' V - P ' (t)dt < oo 

and 

/ C f ( * ~ *)"~1(1 " t)(fc"1)(p'"1)«'1""'WdtN) w0(x) 

R e m a r k 2 . Of course our foregoing assertions remain true also for the case 

p > q, 0 < q < oo, 1 < p < oc. but then we have to replace conditions (9) by the 

corresponding conditions for the case p > q (see, e.g., [OK]). 
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E x a m p l e 2 . Let us consider inequality (1) under the conditions 

(24) u(0) = u'(0) = . . . = u ( * _ 1 ) ( 0 ) = 0. u ( * _ 1 ) ( l ) = 0. 

Then we have again the situation described above, with M0 = {j0} = {k — 1}, and 
we can again assert that inequality (1) holds for p, q satisfying 1 < p <. q < oo if and 
only if conditions (9) are satisfied provided that 

(25) / w1-"' (t)dt < oo 
J0 

and 

(26) f1 ( f\x - t ) f c - 1 w 1 -" ' ( t )dt") woix)dx < oo. 

The case of conditions (24) was investigated in [KSin] where the following five 
conditions have been shown to be necessary and sufficient for (1) to hold, with 
z e (0,1) arbitrary but fixed: 

1/7 / /•* \ i/p' 
< oo, C f\t-x)(k-1)qwa(t)dt\ Cf™W'(ť)dt 

( £ w0(t)àt\ " ( f\x - í)(*-1)pV-»' (ť)df) " < oo, 

( [\t-zýk-2)qW0(t)dt\ (J\t-Zy'wl-*'(t)dt\ "<0O, 
l/<7 / /-l \ I//'' 

; < I < 1 

C f\t-z)ik-1],,w0(t)dt) "( J wl--'(t)dt\ ' <00, 

suPfc (J\t' z^-i-V'woWt] (j\z - t)j"V-"'(t)dt) 
j = l k-1 

We will come back to this case later (see Remark 4). 

(b) If M contains more than one element from the set { 0 , 1 , . . . , k — 1}, we can 
proceed similarly, using again the concept of biorthogonality ([Ka, Theorem 1.22]). 
We denote again j 0 = max{j. ./' e M} and suppose that (17) holds. Then for our set 
{ipj}jeM—see (16)—with <pj 6 L" (10) there exist functions a,- e L"(w), i € M, such 

that (cti,<Pj)w = $ij and we can write, in analogy to (22), every function 9 £ L"(iv) 

in the form 

9 = / + ft 



where / belongs to Ffa and h belongs to the linear hull of the ajs, i.e., to a finite-

dimensional svibspace of Lp(w). It can be shown that the functions a{ can be ex­

pressed as linear combinations of the functions 

(1 - t)( f c-->'-1>(p'-1V-*'(t), j € M, 

and if we suppose that (23) is satisfied, we obtain that 

Ton 6 Lq(wQ), i e M. 

The conclusion follows as in part (a). 

3 . A GENERAL STANDARD COUPLE 

We explained our approach using the special standard couple M0,Mi from (7), 

but the method can be used for any other standard couple. Let us describe shortly 

the approach: 

We start with a standard couple M0,M\, for which the necessary and sufficient 

conditions of the validity are known. Then we can express the function u with help 

of an integral operator T, 

/ > 
Jo 

(28) u(x) = (Tf)(x)= / K(x,t)f(t)dt 
Jo 

where the kernel K is known. If our overdetermined couple M0, Mi is determined 

by some additional conditions of the type 

u ( n ) ( 0 ) = 0 , u«" ( l ) = 0. 

we simply use these conditions in (28) and obtain conditions on / : 

(29) j ^|(0,t)/(*)d< = 0, J ^(l.t)f(t)dt = 0. 

Supposing additionally that the weight function w satisfies 

/ : \^(0,t)\\vl-p'(t)dt<oo, i |5f(l,í)rt"1-p'(<)dť<oo, 
I dxa Jn I dxf 

then the conditions (29) describe a closed subspace of Lp(w) (with finite codimen-
sion), and we consider the weighted norm inequality (4) for / from the "orthogonal 
complement" of this subset. 

Finally, we try to find conditions on w and w0 which would allow to extend in­
equality (4) to the whole space L>'(w). 

Without going into details, we explain our idea on a simple example. 
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E x a m p l e 3 . We consider the third order Hardy inequality 

/ rl \ ! / l / ,-1 \ , 1 /P 
(30) / \u(x)\"wo(x)dx) <C{ / \u'"(x)\"w(x)dxi 

for functions v, satisfying 

(31) u(0) = 0, u( l ) = 0, u'(0) = 0, u"( l ) = 0. 

We start with the standard conditions 

(32) u(0) = 0, u'(0) = 0, u( l ) = 0, 

i.e., M0 = {0,1}, Mi = {0}, and the necessary and sufficient conditions of the 

validity of inequality (30) for functions u satisfying (32) have (for 1 < p ^ q < oo) 

the form 

sup 
0 < x < l 

1/9 / rx \ 1/P' \ i . / q / r x \ * / P 

t"(l-t)"wo(t)dt\ I t" (1 - ty w1-" (t)dt\ < o o , 

(33) 

sup (f t2,!wo(t)dt\ ( J (I - t)2"'w1-"'(t)dt\ < o o 

(see, e.g., [K] or [S]). In this case we can write 

(34) (Tf)(x) = u(x) = | j t(2x2 - x2t - 2x + t)f(t)dt - i.r2 J (1 - t)2f(t)dt. 

The additicmal condition u" ( l ) = 0 leads to the condition 

(35) / *(2 - t)f(i)dt = 0. 
./o 

Thus inequality (30) holds for u satisfying (31) if the inequality ||T/||,,™„ ^ CH/Hp,™ 

holds with T from (34) for all / e Lp(w) satisfying (35). 

But condition (35) can be rewritten in the form (/, (p)w = 0 with <p(t) = 

t(2 - i)u)_1(«) provided ip belongs to Lp'(w), which means that w satisfies the 

assumption 

(36) / t" w1-"' (t)dt 



Then, similarly as in Section 2(a), we can construct a function a 6 Lp(w), a(t) = 

c0t
p _ 1 (2 - t)p ~1w1~' (t) and decompose the space Lp(w). If. moreover, 

(37) J ^r(l-x)^ tp'(l-t)tv
l~p'(t)df 

+ x2 I (l-t)2t/~hvi-p'(t)dt) w0(x)dx<oo 

then Ta ~ Lq(iv0) and we can conclude that the conditions (33) are necessary and 

sufficient for (30) to hold also in the overdetermined case (31) provided JO and w0 

satisfy assumptions (3G) and (37). 

4. A N O T H E R APPROACH 

Now, let us consider inequality (1) for functions u satisfying 

(38) u ( i )(0) = u ( i ) ( l ) = 0 for i = 0,1, . . . ,A; - 1, 

i.e., for the case that in (2) we have M0 = A/i = {0,1 , k - 1}. 

Let us choose z e (0,1) arbitrary but fixed and introduce operators Si,z, S2]= by 

(51,,/)(X) = ^ ^ y y j \ x - t)k~lf(t)dt, X ' (0,Z), 

(39) 

(S2,*/)(X) = ~-~--y J (' - X)*-V(0d., X € (Z. 1). 

If we define 

(40) u(x) = X((M)(-e)(5i^/)(«) + (-l)*X(*,i)(x)(S2 ,*/)(x) 

then u satisfies conditions (38) and we have that u<"(x) = f(x) on (0,z) U (z, 1). If 

/ satisfies the assumptions 

(41) I tif(t)dt = 0, z = 0 , l fc-1 

then u<! '(2 + 0) = ?( ' ' ' ( ; - 0) and we immediately have 

L e m m a 2. The Hardy inequality (1) with overdetermined conditions (38) is 

equivalent to the weighted norm inequality 

(42) l|r,/||,,,,, ^ C||/||„„„ 
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for ail f e Lp(w) satisfying conditions (41) with z 6 (0,1) fixed and Tz = Si,z + 
(-l)fc52,z. 

So, we again have a situation similar to that of the foregoing sections: We have 
reduced the Hardy inequality (1) to the special weighted norm inequality (42) on 
a subset of the space Lp(w), and now, we will try to extend Tz to the whole space 
Lp(w). To this purpose, we introduce functions 

(43) tpi{t) = tiw-1(t), i = 0,l fc-1. 

The additional assumption 

(44) / w1-"'(t)dt < oo 
Jo 

guarantees that ipi e Lp (w), and conditions (41) can be rewritten as 

{f,<Pi)w=0, i = 0 , l , . . . , f c - l . 

Similarly as in Section 2, we introduce functions ctj 6 Lp(w) such that (aj,ipi)w — 
Sji, in terms of the functions 

f]i(t) = ti(-p'-1)wl~'''(t). 

Condition (44) guarantees that /j; 6 Lp(w), and the additional assumptions 

J ( f (x - t)fc_1t i( , , '-1)w1"'''(t)dA w0(x)dx < 00, 

/ ( / (t-x)k-1ti(''-»w1-p'(t)dt\ w0(x)dx<oo 

(45) 

guarantee that Tzcti e Lq(w0). Consequently, Tz maps the whole space Lp(w) con­
tinuously into Lq(w0) provided the Hardy inequality (1) holds for u satisfying (38) 
and the weight functions w and w0 satisfy (44) and (45). 

Now let us look for necessary conditions. Assume that (42) holds for all / € Lp(w). 
(a) If the number k is even, then Tz is the sum of positive operators Si,2, S2,2 and 

we have that 

l -WI < Sul/I ^ (Sir- +S2,z)\f\ =Tz\f\, i = 1,2, 

and 

(46) | | S M / I U 0 < ||T. | / | ||,,W0 < C|| | / | i u = CI I / I I - , -

290 



for every / € L"(w), i = 1,2- Consequently, the necessary conditions 

1/1 / r* , \ 1/P' 

< 00, 
(47) 

' 1/1 / /•* \ i /p ' 

(ř - ^^-^ítooWdť) " C /" w1-p'(ť)dť) 

ô(ť)dť) " (r^-t^-^iu1-"'^)^ 

(for i = 1, i.e., on (O, z)) and 

sup C / (* - t)<*--)«tUto(*)dí') C / ^ - " ' ( ť j d ť ) ' < o o , 

(48) 

sup ( í w0(t)dt\ ( í (t - x^-V"'w1-"'(t)dt\ " <oo 

(for t = 2, i.e., on (z, 1)) have to be satisfied. 
(b) If the number k is odd, then Tz is the difference of positive operators Si,,, 

S2,_. For / e Lp(u>), define g by 

, . / / ( * ) for .-€(0,*), 
(49) <7(.r) = ^ 

\ - / ( : r ) for r e ( z , l ) . 

Then <? 6 Lp(to), ||<7||p,u, = | | / | |p ,«, and | |S M / | | , , „„ = ||5.,.,p||,>vw since Si , , is con­

centrated on (0,z) and S2,2 on ( z , l ) . Since T.f = Sizg + S-2.zg, we again obtain 

(4G) and the necessary conditions (47) and (48). 

On the other hand, it follows from (47) that 

(50) C / 2 l(Si,-/X*)IWr)d.r) ' ^ C ( / l/MIM*) d*) ' < C\\f\\PiW 

and it follows from (48) that 

(51) C / l(W)(*)l*«>o(s)<i*) \c^J\f(x)\"w(x)dx^ \c\\f\\p,w 

and consequently, conditions (47) and (48) are also sufficient for (42) to hold on 

L"(w). 

So, we have proved 

T h e o r e m 2. Let z e (0.1) be arbitrary but fixed. Let 1 < p <. q < CO. Tiien 

conditions (47) and (48) are necessary and sufficient for the Hardy inequality (1) to 



hold on the overdetermined class of functions u satisfying conditions (38), provided 

the weight functions w and WQ satisfy assumptions (44) and (45). 

R e m a r k 3 . Obviously, an analogous assertion can be derived also for the case 

P> «• 

R e m a r k 4 . Let us consider the special case k = 1. Then it was shown in 

[KSin] that for w such that 

[ wl~"'( 
/o 

(52) / ш ł - p (ť)dť < oo 

the following pair of conditions is necessary and sufficient for (1) to hold: 

\ ill / rx \ W 
w0(t)dt) / wi-"'(t)dt 

(53) ' U o 

\ i / V , i , \V;>' 
w0(t)dt) / ic1-'' (t)dt) < o o , 

with a fixed z e (0,1). (In fact, (53) are the conditions (27) which for k = 1 reduce 
to two conditions only.) 

Conditions (53) are the conditions (47), (48) above (for k = 1!). Since (52) is in 
fact condition (44), it seems that—in contrary to [KSin]—the additional restrictive 
condition (45) appears in Theorem 2. Let us show that this is not the case since (for 
fc = 1) condition (45) is satisfied automatically. 

Without loss of generality, we can assume that (for z fixed) 

[ wl-p'(t)dt^ [ wl-"'(t)dt. 

Define / by 
U ^ ' W + c for. e (0,2), 
\ujl-"'(t) f o r f G ( z , l ) 

where the constant c >• 0 is chosen so that 

f f{t)dt = J /(,)d/, 

and define g by (49). Then /J g(t)dt = 0, i.e., g satisfies (41) (note that k = 1. i.e. 
i = 0). 



According to Lemma 2, we have \\T.g\\q,w„ < C||<7llp,u>, and consequently (50), 

(51). But due to the positivity of the operator Si,,, we have from (50) that 

) dx [' ( f\vl-"'(t)dt) 'w0(x)dx = J' \(Sí^ví-"')(x)\l'w0(x)< 

< f l S , , . ^ 1 - " ' +c)(x)\"w0(x)dx= [Z\(Si,zf)(x)\<>w0(x)dx 
Jo Jo 

< C\\f\\l,w < oo, 

which is the first condition in (45) (for k = 1) while the other follows analogously 

from (51). 
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