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Abstract. Necessary and sufficient conditions are given for the reflected Cauchy's operator 
(the reflected double layer potential operator) to be continuous as an operator from the 
space of all continuous functions on the boundary of the investigated domain to the space 
of all holomorphic functions on this domain (to the space of all harmonic functions on this 
domain) equipped with the topology of locally uniform convergence. 
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As usual, points (a, b) 6 R2 in the Euclidean plane will be identified with the 

corresponding complex numbers a + \b G C. If A C R2, then c\A,8A,A° denote the 

closure, boundary and interior of .4, respectively. 

We denote by 

Br(z):={T,eC;\t,-z\<r} 

the disc of radius r > 0 centered at ; € C; A2 denotes the Lebesgue measure in 

R2 = C. In what follows we always assume that A C C is A2-measurable, OA is 

compact and 

A 2 [ . 4 f l B r ( ; ) ] > 0 

for each z e dA and r > 0. We denote by 

r ^ 0 + HBr(z)} 
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the upper density of A at z G C and define the essential boundary 8esA of A by 

desA:= {z€C;d(A,z)>0,7l(C\A,z) >( )} . 

We denote by CQ1' the space of all real-valued continuously differentiable functions 

tp with a compact support in C; C(1)(3yl) will stand for the space of all restrictions 

to OA of functions in CQ,8J will denote the partial derivative with respect to the 

j - t h variable (j = 1,2) and 8 = | ( d i + id.). Given z e C \ 8A and </> 6 C ^ t M ) we 

choose a tpv € Cg vanishing in a neighbourhood of 2 such that il)^ = tp on 3vl and 

define _ 

C-/1 

The value K^y^z) is independent of the choice of 0 V with the properties specified 

above and the function 

z -, £V(*) 
is holomorphic on C \ 8A. 

Let now D C C be a bounded domain. A mapping 5: U -> C defined on a 

neighbourhood U of the boundary 8D is called the reflection mapping corresponding 

to D if it satisfies the following conditions (i)-(iv): 

(i) The complex conjugate g of g is 1-1 and holomorphic on U. 

(ii) </(»;) = ri for any n 6 3D. 

(hi) g(UDD)=U\ cl £>, ff(W \ cl D) = U n D. 

(iv) 3(3(2)) = z for any 2 £ tV. 

Given such D and </ we now assume that A C D is compact, D \U C A0 and 

define 

G = ( « \ y l ) n „ ( W \ A ) , 

which is an open set containing (U \ A) U 31?. 

To each <p e C^l\8A) we assign a function JA<p(z) defined on G by 

JA<p(z) = K,A<p(z)-KA<p(g(z)), zeG. 

where the bar denotes the complex conjugate. The function 

JA<p:z^JA^(z) 

is holomorphic on G. Now A(G) will denote the space of all holomorphic functions 

on G, *H(G) will stand for the space of all real-valued harmonic functions on G. The 

operators 

(1) JA:p^JA<P 
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(the reflected Cauchy's operator) and 

(2) lmJA: ip*-HmJAip 

(the reflected double layer potential operator) acting from C ( 1 )(9A) into A(G) and 

T-L(G). respectively, proved to be useful in treating some boundary value problems 

(cf. [1]). We equip C(1>(6M) with the topology of uniform convergence on dA and con

sider the topology of locally uniform convergence in A(G) and T-L(G). In connection 

with these topologies the question of continuity of the operators (1), (2) naturally 

arises. We are going to prove the following result characterizing this continuity in 

geometric terms connected with dA; Ai will denote the 1-dimensional Hausdorff 

measure (length) as introduced in [4], chap. II, §8. 

T h e o r e m . The following conditions (a)-(c) are equivalent: 

(a) Xi(desA) < o o . 

(b) The operator (1) [acting from C{l)(dA) into A(G)] is continuous. 

(c) The operator (2) [acting from C(1>(6M) into W(G)[ is continuous. 

P r o o f . Since the implications (a) => (b) =>• (c) were proved in [1], it remains 

to verify the implication (c) => (a). 

Fix x- e dA. First we prove that there are u,v e G such that the vectors 

x — u x — g(u) x — v x — g(v) 

\x-u\2 \x-g(u)\*' \x-v\2 | x -0 ( t>) | -

are linearly independent. Suppose the opposite. Then there is a unit vector 6 such 

that 

for each z e G. For z e D n U put 

Since g(z) £ D,x e D n U the function / is infinitely differentiable on D n U. 

Since f(x) = 0, %(x) = - 1 , the implicit function theorem yields that there is a 

neighbourhood V of the point x such that V n {y;f(y) = 0} is the graph of an 

infinitely differentiable function in a suitable Cartesian coordinate system and thus 

we obtain \2(V n {y;f(y) = 0}) = 0. The assumptions yield that x e clG. Since 

VnG is an nonempty open set. we have X2(VnG) > 0. Since V'nG C Vf){y; f(y) = 

0} by (3) we obtain A2(V n {y; f(y) = 0}) > 0, which is a contradiction. 
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Now we shall prove that there are positive constants r(x), M(x) such that for each 

f ' Co^H < l . s p t ^ C Br(x)(.i) and i = 1,2 

(4) J dapdXi sj M(x). 

R2\/l 

Choose points z\ ,z2 in G such that 

X-Zi x-g(zi) X-Zj t x-g(z2) 
| * - - i | > | . - - p ( - i ) 1 a ' \x-*»\* \x-9(z2)\

2 

are linearly independent vectors. Then there is a positive constant r such that 

B2r(x)n{z1,z2,g(z1),g(z2)} = 0 and 

v~Zl. + . y~sM y~Z2 , y-a(~2) 
|y-*iP b-g(*i)\*' \v-*2\2 |y-«(*a)P 

are linearly independent vectors for each y e B2l(x). Fix # 6 3Z?i(0). Then there 

are Q i , o 2 , infinitely differentiable functions in B2r(x) such that 

on B2T(X). If <p e C£\\<p\ < l,spt<^ C B r ( i ) we define otjtp = 0 on R 2 \B r (a : ) . Then 

B,-(x)\AJ~ 

-±{ i ™*™-\£3r+t=ffl,]-<* 
U*\A 

B,.(x)\A 

Since 

Ia^(eW)(«,)--l»f-i /?Í^MdA2(,) + Í /^4MdA2(,)] 
"i - z,- ni y jy - j(Zj) J 

c\д 

= ~[J ^•vKv)Ыdл 2 + / J£^ . .y ( l W ) W dД. W ] 
R2\/t R2\.4 
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we obtain 

/
fí 2 2 

^ d A 2 ^ V ^ - ^ I n i J ^ a ^ X ^ + V^CB^x)) sup |Va,|-, R2\A 

because Zj,g(zj) £ B2r(:r). Since 

|aj¥)| ^ sup \ctj\ 
B,(x) 

the continuity of the operator (2) yields the estimate (4). 
Since dA is compact there is a finite set X1,..., xk of points in dA such that 

dAc\jBT(xi)(xi). 
j=i 

Further, there are Qi,... ,ctk € Co such that 0 < Oj ^ 1, 

k 

sptaj C Br(xj){xi). /]ctj = 1 on a neighbourhood of dA. 
3 = 1 

If ^eC{
0

l)M s= 1 then 

ldj<pA\2= ldj<p<\\2- I djtpd\2 

R2\A 

= / Eaí(-«ny)dA2+ j a , [ ( ^a„ - l ) ^ ]dA 2 

B 2 \ A n = 1 fi2\A n = 1 

k .. k 

^ VJ M(xn) + j dj [( VJ cn - l)m^\A)] dA2 

= V\W(.г"), 

where \c denotes the characteristic function of the set C. Since the so called perime
ter of A 

P(A) = sup | / div wd\2;w = («»i,li).i),tl), G C^1',^2 +w\ ^ l} 

is finite, we have A^cV^l) < oo by [F], Theorem 4.5.11. • 
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