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TENSOR APPROACH TO MULTIDIMENSIONAL WEBS 

ALENA VANŽUROVÁ, Olomouc 

(Received June 28. 1996) 

Abstract. All anliolonomic (n + l)-web of dimension r is considered as an (n + l)-tuple 
of r-dimensiona] distributions in general position. We investigate a family of (1, l)-tensor 
fields (projectors and nilpotents associated with a web in a natural way) which will be used 
for characterization of all linear connections on a manifold preserving the given web. 
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0. INTRODUCTION 

A c/-web on a manifold M is usually introduced as an ordered family of d differen-

tiable foliations of the same dimension which satisfy additional conditions (the tan

gent distributions are in general position in TM). The theory of (n + l)-webs of codi-

mension r on a smooth nr-dimensional manifold .1/ was summarized by V. V. Gold

berg [G]. The reached results were obtained by applying the theory of systems of 

differential forms and Cartan methods. A more general and in a way dual case was 

investigated by I. G.Shandra. His paper [Sh] is devoted to non-holonomic (n + 1)-

webs of dimension r on MnT (the web distributions are non-holonomic in general), 

and to connections preserving web distributions. A web is substituted by a family of 

1-forms (affinors) satisfying a set of conditions. This approach was previously used in 

[Ng] and [Va] where invariant tensor fields associated with a 3-web were investigated. 

Our aim is to use a family of tensor fields H& forming a {r7^}-structure, in

stead of web foliations or tanget distributions, to characterize r-dimensional (or 

Supported by grant No. 201/90/0227 of The Grant Agency of Czech Republic. 

225 



r-codimensional) webs on manifolds and web-preserving connections. In many con

siderations (e.g. the existence of canonical connections) the role of the fields Hg is 

essential but the integrability conditions are not used. So we will introduce the defi

nition of a web in a more general setting. Distinguished web-preserving connections, 

the canonical 7-connections, can play a similar role by characterization of the most 

important classes of (n + l)-webs as the so called Chern connection by classification 

of 3-webs [Ki, Cli, Ak, G]. 

The existence of a {H%}-structure on a manifold M is equivalent with the existence 

of a Gi,.-structure on M. A {H&}-structure induces both an r-dimensional and an 

r-codimensional (n + l)-webs. 

Note that in general, it is possible to consider d-webs of dimension r, on an m-

dimensional manifold where m is not a multiple of r, or even webs consisting of 

foliations of different dimensions. By technical reasons, it is hardly possible to expect 

a nice tensor theory in the general case although special examples are known since 

G. Bol, and many papers of V. V. Goldberg and others are devoted to this subject. 

Note that if the number of foliations is not " sufficiently high" the local situation is 

trivial (a given web is equivalent to a web formed by parallel plane surfaces). On the 

other hand if a web consists of " too many " foliations it can be investigated through 

its sub-webs. In the case of an /'-dimensional web on an nr-dimensional manifold, it 

is convenient to assume d — n + 1. 

We will suppose that manifolds, bundles, vector and tensor fields under conside

ration are smooth (of the class C°°). M will denote a manifold, TM its tangent 

bundle, X(M) denotes the set of all vector fields on M. 

1. T E N S O R FIELDS ASSOCIATED WITH (n + 1 ) -WEBS OF DIMENSION r 

Defini t ion 1.1. An anholonomic (n + l)-web of dimension r (or of codimen-

sion r, respectively) on a C°°-nr-manifold M is a family W = (D0 , Di,..., D„) of 

distributions of dimension (codimension) r which are in general position.1 

Web distributions D„, a = 0 , . . . , n are r-dimensional subbundles Da ->• M of the 

tangent bundle TM -» M. If all subbundles D 0 , . . . ,Dn are integrable (that is, if 

A', Y e Da then [X,Y] G Da) we say that W is holonomic. 

As morphisms, we take diffeomorphisms / : M -> M' which preserve web distri

butions, Tf(Da) = D'a. 

1 In general position means that at any point, the intersection Da f~l Dp is trivial for /3 5̂  

226 



Any ordered2 anholonomic (n + l)-web W = (Do, • • •, Dn) of dimension r is in a 

correspondence with a family of (1, l)-tensor fields {iff ; a,P 6 1 , . . . ,?i) which will 

be described in the following. 

Any n-tuple of web distributions forms an almost product structure on Mnr. Let 

us fix an almost product structure 

(1.1) [Du---,Dn\. 

Denote by Pa the corresponding projectors where a = 1 , . . . , n . Then TM = ^Da, 

Pa : TM -> Da, PaX = Xa for any vector field X e 3Z(M). These projectors satisfy 

i m P a = Da, 

(1.2) Pa
2 = Pa, PaPp = Q, V _ > a = i d (a£P, a,fi = l,...,n). 

Let us choose a fixed basis 

(1.3) X'0,...X
T

0 

of the distribution Do, and let us decompose base vector fields with respect to the 

almost product structure (1.1): 

(1.4) Pa(Xl) = (X'0)a = Xa£Da (a = l,...,n, i = l,...r) 

where we write X'a instead of (A'o)a for the sake of simplicity. A correspondence 

Xa H> XI, a jt fi, i = l,...,r can be extended by linearity into a bundle isomor

phism 

P f : Da -> D0. 

Evidently, the definition of the above mappings is independent of the choice of a 

basis in D0. With respect to composition, these bundle isomorphisms satisfy the 

equalities 

By
poB^ = Bl, P;; o P f = idr,,,, BZ o Bi = 0 for K jt 0, 

P e o P f = Pf , P „ . o P f = 0 for K^3 + a. 

R e m a r k 1.1. In particular, if n = 2 the isomorphisms P 2 , B\ can be extended 

by linearity to an involutory isomorphism P of the whole tangent space at any point, 

B.TM-+TM, V X e 2 ( M ) P A = BJP^X + B\p,X, B2X = X. 

This is not the case for n > 3. 

-' By ordered we mean here "with a fixed order of web distributions". 
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Now let'us introduce (1, l)-tensor fields H& : TM -> Dp by 

Hi = Bf o P(v (/J -t a, a, /J e { 1 , . . . , n}). 

It can be verified that the following equalities arc satisfied for a, (5,7, K e { 1 , . . . , n}: 

(1.5) Hp*oHg = Pa, d + a, 

(1.6) H}oHi = Hl, 7 ^ / 3 5 ^ 0 ^ 7 , 

(1.7) HZoHi = Q, ^j.K + 8 + a. 

(1.8) ( P f )2 = 0, fl ^ a, 

(1.9) P f o P n = P f , 0jta, 

(1.10) P J o P n = 0, 7 # / M a, 

(1.11) # £ I Da = B'l, im Hp
a = D0. ti £ a. 

The kernel of the endomorphism Hi is k e r P f = J^yDy, 7 runs over all indexis 

{1, ...,&,... ,n} where the symbol a means that a is omitted. Let us use the notation 

H° = P „ , a• = 1 n. 

Then the above conditions (l .o)-(l . lO). (1.2) can be rewritten in a shorter form3 

(1.12) V J Pc<;> = id, H^ ° Hi = 6i HZ ( a , ^ , 7 , K 6 { l , . . . , n } ) 

where 5@ is the Kronecker symbol. 

Def ini t ion 1.2. The family of (1, l)-tensor fields satisfying (1.12) will be called 

a { P f } ^ g—i-structure of dimension r on Mnr. 

Tensor fields P f , j3 ^ a are nilpotent by (1.8). Each of them determines an almost 

tangent structure on Mnr and satisfies 

Dp =imHi CkaHi = V J P T , 7 6 { l , . . . , d . . . , n } . 

Let us define P 0 by the formula 

(113) P0 = kT,H«-

' A family of 1-forms {Pa}a , J a=l , . . . , n on M satisfying (1.12) is called an isotranslated 
n-K-structure in [Sh]. 



Then P0 is a projector onto D0. In fact, 

po = ^ H EZR% = h £ <^Hl 
a,0,K,i <*,0,K,I 

(1 .14) n V 

a=i V,T
 y a,7 

and i m P 0 = A> since i m P o l A = A> for any 7 £ { 1 , . . . ; ; } . In fact, using notation 

introduced in (1.3), (1.4) wc verify that 

p0(x;) = i £ / e v ; = i£#fp7x< = ^ £ ^ A « 
a,0 a„B 0 

= i fo*o + £ ^ 'A"o) = i fc + £ X'P) = XnXo e A.. 
V 0*1 J V (9#7 J 

Therefore Pa: TM -> £>0 and P0 | £>0 = id. 

2. T H E ANHOLONOMIC (n + 1 ) - W E B CORRESPONDING TO A { P ^ } - S T R U C T U R E OF 

DIMENISON ;• 

On the other hand, a family of (1, l)-tensor fields (1.12) defines an anholonomic 

(n + l)-web of dimension r (or of codimension r, respectively). In fact, let { P f } be 

a system of (1, l)-tensor fields satisfying (1.12) on M. Then {Ha}a=1 is a system of 

mutually orthogonal projectors: 

(H^)2 = H'a', H^H^ = 0 (ft^a). 

Let us verify that the system yields an almost product structure 

[D, = i m P 1
1 , . . . , P „ = i m Pf,?]. 

Assume X £Dan Dp (ft jL a. a, ft = 1 , . . . , n ) . Then X = H$X = H^(H^)X = 0. 

So couples of different distributions have trivial intersections. Moreover, TM = 

0 im H«. Further, {H&}, ft ^ a is a family of almost tangent structures H%: TM -> 

Dp on M, 

(H!l)2 = 0, H}H^ = HI, HI H'i = 0 (KJL0) 

and the restriction H^\Da: Da -» Dp is a bundle isomorphism. In fact, let Xa £ 

Da. Then HgX = H^H^X e Dp. Suppose HgX = 0 for some X £ Da. Then 
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X = H%X = H^H^X = B ° 0 = 0 which proves that ker(Bf | Da) is trivial. Denote 

these bundle isomorphisms by Bf = B f | Da, and the rank r = rk / f f = rkBf. It 

follows dimil'/ = nr where r is the common dimension of all £)n , a = 1 , . . . ,n. Now 

let us introduce 

(2-1) //° = iyj/Zf. 
o,/5 

Then H§ is a projector which can be verified by evaluation similar to those in (1.14). 

This projector determines an r-dimensional distribution, D0 = imHft. It can be 

verified that rkB,0 = d i m B 0 = r. In fact, let us start, from any basis (X*) of D-,; 

HgX* = i £) XL If X e B \ , X = £ , . A.XJ we obtain equivalences 
n 0=1 

H°X = o <=*• y j y j A;x^ = o <=> A, = o 
i 0 

which prove that HgX = 0 for X <E D1 if and only if X = 0. Thus Hg \ D-, are 

isomorphisms for 7 = l , . . . , n . Using decomposition of any basis X0 of D0 with 

respect to the almost product structure [Di,.. • ,Dn] we obtain isomorphisms Bg 

given by Bg: Xj >-> B«X*, and B° = (Bg)" 1 . 

P ropos i t i on 2 . 1 . Let {Bf} be a system of (1, l)-tensor fieids satisfying (1.12) 

on an nr-dimensional manifold M. In the above notation, let Da = i m B ^ , a = 

0 , 1 , . . . ,n . Then (Do, Dy,..., Dn) is an anholonomic (n + l)-web of dimenison r on 

M. 

P r o o f . It was verified above that dim£>„ = r k B ° = 7- for a = 0 , l , . . . , n and 

that Da n D13 = 0 for a + j5, a,0 = 1, . . . ,n. Now let. X € £>0 n£>„, a e { 1 , . . . , »} . 

Then X = H^X = H^H°H« X = B ° (± £ H}(H%X)) = i j d ^ g B / 7 = ^ B « X , 
j3,7 3,7 

that is, X = - X which proves B 0 n D„ = 0. So the distributions B 0 , . . . , D„ of 

dimension r are in general position. • 

R e m a r k 2.1. Similarly, we can prove that, a {H^}-structure on M gives rise 

also to an anholonomic (11 + l)-web of codimension r formed by distributions in 

general position Da = kevHa. Q = 0,1 ,n, 

D0 = ker B° = ker (/ + £ Hg), P0 = / - B° = 1 ((n - 1) / - £ flj), 

B>,v = kerB" = y j ( l - ^ ) B 7 , P„ = ]T(1 - ,5„) B7- a = l , . . . ,n 



where Pa denote the corresponding projectors. We can say that given an (n + 1)-

web (Da) of dimension r (or (Da) of codimesion r) the normal bundles form a web 

(TM/Da) of codimension r (respectively a web (TM/Da) of dimension r ) . 

3. T H E PRINCIPAL BUNDLE OF WEB-ADAPTED FRAMES 

Let W denote an anholonomic (n + l)-web of dimension r. 

Defini t ion 3 .1 . A frame (X[\...\Xn) is called adapted with respect to an 

almost product structure [Di,... ,Dn] if Xa £ Da for i = 1 , . . . ,r, a• e { 1 , . . . , n } . 

Def ini t ion 3.2. A frame will be called W'-adapted, or adapted with respect to 

an anholonomic web W = (Do, L>i , . . . , L>n) if it is adapted to (1.1) and is "normed" 

in such a way that tensor fields 

(з.i) xi = J2 x« 

form a basis of Do. 

The family WM of all W-adapted frames constitutes a G-structure on M. Its 

structure group 

/A 0 . . . 0\ 

GL(r,U) = . =GL(r.U\: ° A ' " ° 

"• t i m c s \ 0 0 . . . A ) 

, A Є GL(r, I 

(the diagonal product of GL(r. R) n-times) is a subgroup of GL(nr, R) isomorphic 

with GL(r. R). 

Def in i t ion 3.3. A web W will be called regular if the corresponding G-structure 

WM of web-adapted frames is integrable (=locally flat). 

Def in i t ion 3.4. A frame is adapted with respect to an {Ha}2 „=1-structure if 

(3.2) tff A ; = X},, i = l,...,r (Pjta, ft,a 6 {1, . . . ,n}). 

It can be easily seen that a frame is W-adapted iff it is adapted to the corre

sponding {tf^}-structure. So all {tff }-adapted frames form a GL(r, Restructure on 

M. 
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With respect to an {/ffj-adapted frame, the components of the tensor H% 

are (H^)Z] = S^S^Sf and the matrix representation of the endomorphism (H^)x: 

TXM -> {Dp)*, xe M is4 

/ 0 0 0^ 

Hg = I 0 /,. 0 

\ 0 0 0 , 

where the (r x r)-identity matrix IT stands at the position (a. 3). 

4. CONNECTIONS 

Let M be a manifold endowed with an anholonomic web VV, let Pa denote the 

corresponding projectors and H% the adjoined (l , l )- tensor fields. 

Defini t ion 4 . 1 . We say that a linear connection V on M is W'-preserving if all 

projectors are covariantly constant, 

V P „ = 0 , a = 0 , ! , . . . , » . 

All W-preserving linear connections will be described in Theorem 4.2. 

R e m a r k 4.1. A distribution D on M is called parallel with respect to a 

connection V if the following condition is satisfied: 

V X, Y e X(M) (Y 6 D=> VXY G D). 

If D is both integrable and parallel to a. connection V then V can be reduced to the 

integral submanifolds of D. 

It can be easily verified that a connection V is web-preserving if and only if all web-

distributions JDQ., a = 0 , 1 , . . . , n are parallel with respect to V. The web-preserving 

connections are exactly the linear connections on M reducible to the subbundle WM 

of adapted frames. 

In a similar way we introduce the following definition. 

Defini t ion 4.2. A connection V preserves an {i/f j-stracture if 

Vfl£ = 0 for all pairs a,0 6 { 1 , . . . n } . 

The above condition can be written as 

(4.1) V a , 0 V I , Y e X(M) 0 = Vff£(X;Y) = VXH%Y - H^VXY. 

iß 4 The notation corresponds to the right action H£(u) = u • Hg, u £TXM. 
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Proposition 4.1. A linear connection V on M is {tf%}-preserving if and only 
if V is W'-preserving. 

Proof . Let Y 6 Da, a G { l , . . . , n} . Then H^VxY * VXH%Y = VXY. 
Now let y e D0. Then Y = £ E tff >', and tf§Vxy = £ £ tf£ E # 2 v x t f ? y = 

" c,5 ",/3 7 
£ E VX(HVH*Y) = vxtf0°y = v*y. 

7,0 
On the other hand, let VP„ = 0 for a = 0,1, n. Let us choose an adapted 

frame (Aj | . . . |X<), A^ = £ * * . Then VXA^ = E VXX7 where VXA0' e Do and 
7 7 

VxA* e D7 by the assumptions. That is, (VXX[\... |VxA,\) is also adapted and 
we obtain B?VXX\ = VXA* = Vxtf?A*. Consequently, VB^Py = Vtff = 0, 
7 = 1,. . . n. D 

Proposition 4.2. A linear connection preserves an {H^}-structure if and only 
if the following formula holds: 

(4.2) V/ie {l , . . . ,n} VA,y eX(M) VXY = ^ t f £ V x HgY. 

Proof . Let V preserve the structure. Then tff VXY = Vx H&Y, which follows 
by (4.1). We evaluate 

VXY = VJ H% VXY = Y X«0Hi VXY = VJ ff| Vx #£Y, 0 € {1, . . .n}. 

On the other hand, let the condition (4.2) be satisfied for all /3. Then we can write 
for arbitrary indices /?, 7, K 

(4.3) HIVxY = VJ tf^tf^ Vxtff y = tf^ Vxtff y 

However, 

(4.4) H}VxHiY = J2H°PVX(SZH^Y) = ^^VxH^Y = VxIQY. 

Taking into account (4.3), (4.4) we obtain Vtf^ =0. D 

An arbitrary linear connection T on a web-manifold yields a web-preserving con
nection as follows [Sh]. 
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Propos i t ion 4.3. Let T be a Jinear connection on a manifold MnT endowed 

with an {H^}-structure of dimension r. Then for any K £ {1 , . . . ,n} the following 

formula defines an {H^.}-preserving connection V = V ( r ; K ) : 

VXY = YJH«TX(H*Y). 

P r o o f . By standard evaluation, it can be checked that V is a connection. 

Moreover, it satisfies the condition (4.2). • 

The so called Chern canonical connection [Ch, Ki] on a three-web manifold admits 

the following generalization to our case. Denote by 7 a mapping satisfying 

(4.5) 7 : { l , . . . , n } - + { l , . . . , n } , 7(a) 6 { l , . . . , d , . . . , n } . 

There exist (n - l ) n such mappings. Now let M be a manifold endowed with an 

anholonomic (n -4- l)-web of dimension r. For any function 7 described above, we 
7 

can construct a connection V which parallelizes all distributions D0,..., Dn and is 

unique in the following sense [Sh]. 

Theorem 4.1 . Let M be a manifold endowed with an aniioJonomic (n + l)-web 

of dimension r, W = (D0,... ,Dn), let {H^}1^tl3=l be the corresponding structure, 

and let 7 : { 1 , . . . ,n} —• { 1 , . . . , n } , a >-» 7(0:) be a function such that 7(a) jt a. 
7 

Then there exists a unique connection V = V win'cJi is HP-preserving and its torsion 

tensor T satisfies 

(4.6.) iqg>T(HZX,H$$Y)=0 (n- = l , . . . . n ) . 

This connection is given by the formula 

(4-7) VXY = Y^HP
l{a){H«X,H;{a)Y]. 

The proof of the theorem was partially and very briefly sketched in [Sh] (with 

some indices missing on page 65). Since the theorem is important for the theory let 

us present the proof with all details here. 

P r o o f . First let us prove that if such a connection exists it is necessarily 

given by the formula (4.7). So let V satisfy the above conditions. Then VXY = 
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Y,H*VxH2Y \vhere 7 is a fixed index (7 e {1, . . . ,n}). By the assumption (4.6) 

we obtain 

0 = HjfeffZVB-xHZKrY -Y,H;VH;YH1HZX - [HZX,H]Y)) 

= H]Vlt;;XH]Y - H^VH,YH^HZX - H^[H^X,H^Y}. 

Since H^VH.;XIjyY = (H^)2VH..XY = HJVH::XY we obtain 

(4.8) H]VH::XY = H][HZX,H]Y}. 

Now 

VXY = VE„ „,x ( E " l y ) = E ^V«sXY 
(4.9) " ~* 

= Y,H%HlHgVH;:xY = J2H?H]VH::XH}Y. 
a,P a,P 

Substituting H~^Y instead of Y to the formula (4.9) and 7(a) instead od 7 in the 
above formula for the connection (4.8) we obtain 

VXY = £ < t t ) ^ [ H : X , f l ; ' : » < » y ] = YtH?(a)[Ha-X,H^)Y}. 
a.0 a.0 

Now let us verify that the formula (4.7) defines a linear connection on M. Linearity 
is obvious. An evaluation shows that 

VfXY = fVxY - E<(a)(^
("'>7) • (ffIA') 

a,P 

= fVxY - Y,(H;[a)Yf)H*{a) H°X = fVxY 

and 
VxfY = fVxY + Y(HSXf)(H^a]H;{a)Y) 

a.0 

= fVxY + (x/)y. 

It remains to prove (4.6). Let us verify (4.2). Let K £ {1,. . . ,«}. Then 

^W;VXH;Y= E BSH^a)[HZX,B^H;Y] 
l> a,p,n 

= E i fT(«)KA '^ ( 0 ) y] = v*y-
a,fi 
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Now 

XfâПKX, йfflү) = J2 нtìнЪ) rø-я*. t>T)нt\y\ 
a,ß 

- E нtlн«нy(«) ҝ w яt) v > < a ) л i 
o,j9 

-HҖ[ЩX,H$$Y] = 0. 

a 
The linear connection V introduced by the formula (4.7) will be called the cano

nical 'y-connection for W. 

Let us evaluate components of the 7-connection with respect to a web-adapted 

frame (X'a), a = 1 , . . . , n , i = 1 , . . . ,r. Let @, /j be fixed, Xjj 6 £>,,, A* e D g . Let us 

denote V x i X * = E , , K ^ A " j and [X>,X*] = E . , * ^ * ) * * - According to the 

formula (4.7) we obtain 
p i * ; * — £kjk;-f{fi) 
Ve;i - "«VrO»);<-

Many ivestigations in web geometry are devoted to the problem of local equivalence 

of webs. The canonical 7-connection on a web manifold can play an important role 

in the classification of webs. 

T h e o r e m 4.2 . [Sh] TJie following conditions are equivaJejit: 

(1) TJje (n + l)-web W is regular. 

(2) There is an atlas on M such that the corresponding holonomic frames (gfr) 

are web-adapted. 

(3) The G-structure of all {H^}-adapted frames is locally Bat. 

(4) For any canonical linear •y-connection, the torsion and curvature tensors are 
1 7 

equaJ to zero, T = 11 = 0. 

R e m a r k 4.1. According to (3) any regular web is holonomic, the coordinate 

vector fields {gfr,« = li • • • ,r} form a basis of the distribution Da, a = l , . . . , n . It 

is well known that an (n + l)-web is regular if and only if it is locally diffeomorphic 

to a web formed by n + 1 foliations of parallel ?--dimensional affine subspaces (in 

general position) in R n r . 

Let V, V be a couple of W-preserving connections. Then the difference tensor 

S = V - V satisfies 

(4.10) S(X, H?Y) = H?S(X, Y), 
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which follows by the evaluation 

(4.11) 0 = VH^(X-Y) =VHP(X;Y) + S(X,H%Y) - H?S(X,Y). 

For any fixed X 6 X(M), let us introduce a vector 1-form on M by <i>X = 

S(X,-): Y K-» S (X ,Y ) . Then * : X >-> * X yields a homomorphism X* i-» ( # X ) X , 

TXM -» End(T IM) at any point x 6 M. According to (4.10), $ X commutes with 

all mappings H&. For any K 6 { l , . . . , n } and A e TrM the restriction $KXX = 

^ A X K D K J J , £ End(DK ) I is an endomorphism of (DK)X. Moreover, S(X,Y) = 

Y,H°(^KX)(H^Y). In fact, §:TM -» End(TM) is a vector bundle morphism and 

similarly, §K: T M -» End(DK) is a bundle morphism of a vector bundle T M -» M 

into a vector bundle End(Z?K) -» M. Obviously, it is sufficient to define the values 

of $ A on an arbitrary distribution DK. 

If one linear web-preserving connection is given, the above considerations enable us 

to describe the nr2-dimensional bundle of all web-preserving connections as follows. 

T h e o r e m 4 .3 . Let V be a web-preserving- linear connection on M. Let us choose 

K e { l , . . . , n } . Any web-preserving linear connection is of the form V = V + S wliere 

S is a (l,2)-tensor Geld on M given by the formula 

(4.12) S(X,Y)= Y^H°($KX)(H*Y), X,YeX(M) 

where $ K : TM —» End(D„) is a differentiable vector bundle morphism. 

P r o o f . Let V, V be W-preserving connections, S = V — V. Then $K in

troduced by $KX = §X\DK, K e { 1 , . . . ,n} satisfies the conditions required by the 

theorem. On the other hand, let V be W-preserving and let <1>K : TM -» End(D«) be 

a bundle morphism. Let us introduce S by the formula (4.12). An evaluation shows 

that S satisfies (4.10): H£S(X,Y) = Y,H^H^KX)(H^Y) = H£($KX)(H«Y) = 

Y,H%($KX)HZ(HgY) = S(X,H£Y). So (4.11) holds, and V + S is W-preserving. 
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5. T H R E E - W E B S 

In particular, let n = 2. The isomorphisms B'2, B 2 can be extended by linearity 

to an involutory tangent bundle isomorphism 

B-.TM-+TM, VXeX(M) BX = B\PXX + B\P2X, B2X = X. 

A 3-web can be given as a couple [P\, B} of (1,1) tensor fields satisfying 

P i 2 = P i . PlB + BP1=B, B2 = id. 

Here Pj = H\ is a projector onto D\, P2 = H2 = id - Pi is a projector onto D2. 

A 3-web is holonomic if and only if [Pi ,Pi] = 0 and B[B,B](P1X,P1Y) = 

[B,B](PiX,PiY) for X, Y G 3£(M) (here [ ] denotes the Nijenhuis bracket). 

There exists a unique function 7 : {1,2} -4 {1,2} -4 with 7(a) / a given by 

7(1) = 2, 7(2) = 1. 

That is, for an anholonomic 3-web (with a fixed order of web distributions) the above 

construction yields a unique canonical 7-connection 

VXY = H\[H\X,H2Y) + Hl[Hl,H\Y] + H\[H'iX,H\Y] + H2[H\X,H2Y] 

= P P 2 [ P i A , BP{Y] + BPi[P2X, BP2Y] + P i [P 2 A, PXY) + P2[PU P2Y] 

which coincides with the connection introduced by S. S. Chern [Ch] and reconstructed 

by P . T . Nagy in [Ng]. 

A 3-web is called parallelizable if it is equivalent (locally diffeomorphic) to a regular 

(parallel) 3-web formed by three systems of parallel affine r-planes in an affine space 

R2r which are in general position. 

Parallelizable webs are equivalently characterized either by vanishing of both the 

torsion and the curvature tensor of the Chern connection, T = TZ = 0 [Ak], [A&S], 

or by the closing of the Thomsen figure, [Ch], [Ac], or by the condition that all 

coordinatizing loops are abelian groups [Ac], [A&S]. 

A (holonomic) 3-web is called isoclinicly geodesic if T = 0 [A&S] (in [Ak], para-

tactical was used). It was proved in [Va2] that 

r ( P i A , p y ) = B[PX , £ ] ( />!* , P i Y ) , T(P2X,P2Y) = - P [ P i , B ] ( P 2 A , P 2 y ) , 

T ( P i A ' , P 2 y ) = B [ P i , P ] ( P A ' ,P 2 y) = 0. 

Especially, T = 0 if and only if [Pi,B] = 0. It can be also verified that T = 0 iff 

[H%, H;] = 0 for a, fi, 7, K e {1,2}. 



A (holonomic) 3-web is called a Bol web if the curvature tensor 11 is antisymmetric 

in one couple of arguments, that is, one of the following conditions is satisfied: 

Tl(X,Y)Z = -1Z(X,Z)Y, or =-Tl(Y,X)Z, or = -Tl(Z,Y)X. 

6. EXAMPLES 

E x a m p l e 6.1. More generally, a (holonomic) (n + l)-web of dimension r (of 

codimension r) in R"r is usually called parallelizable if it is equivalent with a web 

formed by n + 1 foliations (in general position) of parallel r-planes (respectively 

of parallel (n — l)r-planes). With respect to a web-adapted coordinate frame, the 

corresponding tensor fields have matrix representations 

/ 0 0 0 

Hi = 0 /(„,„• 0 

\ 0 0 0 

where I{a,p) denotes a unit matrix in the position (a, (5). 

According to Theorem 4.2. parallelizable r-dimensional (n + l)-webs are in fact 
7 7 

regular webs in the sense of Definition 3.3. and can be characterized by T = R. = 0. 

All coordinate n-quasigroups of a parallelizable r-codimensional (n + l)-web are 

abelian n-groups [G]. 

E x a m p 1 e C.2. A commutative Lie group G = (S1, •) of complex units gives rise 

to an integrable parallelizable 3-web on the torus T 2 = S1 x S1 as follows. Let us 

consider Lie subgroups 

G 1 = G x { l } , G2 = { l } x G , G0 = {(g,g);geG}. 

Then the factor spaces Ti = (G x G)/Gi, i = 0,1,2 define a 3-web of dimension one 

on G x G with equivalence classes being the leaves (formed by meridians, parallels, 

and the third system of closed curves). Obviously, local coordinates can be chosen 

on T 2 so that the coordinate frame is web-adapted, and H& are given by 

H[=(l ° V H'i=(° ° 1 1,0 of 2 \o 1 

,0 0j' l \ \ 0 / ' \1 0 , 

Both the curvature and the torsion tensors of the Chern connection are zero, the 

web is parallelizable. 
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More generally, if Q = (G, •) is an r-dimensional Lie group with a unit e, a 3-web 

of dimension r can be introduced on the analytic manifold G x G in a similar way 

as a triple (Fo,F\,?*) where Ti = (G x G)/G{. The resulting web is the so called 

group 3-web since all coo rd ina t ing loops are associative, the curvature tensor of the 

Chern connection vanish, 71 = 0. A group web is parallelizable ( T = 0) if and only 

if the Lie group G is commutative [Ak]. 

E x a m p l e 6.3. In R4, let us introduce web foliations by 

x3 = const, X4 = const, 

x\ = const, x2 = const, 
X\ + x3 

<Pi = 
X2 + X4 

The tangent distributions are D\ = (g |^ , g | j ) , D2 = (g2_, ^2-), and D 0 is spanned 

by any couple ( t i i , ^ ) of independent vectors satisfying d<pi(vi) = dtp2(vi) = 0, 

z = l , 2 . An evaluation shows that 

1 X\+X3 1 Xi +- x* . 
dVl = ; h\ - ; r-/ l2 H ft3 - ; rxft4, 

X2 + X4 (x2 + X4)2 X2 + X4 (X2 + X4)2 

, 1 , X\ - X3 1 XX - X3 , 
d^2 = h\ - ~-h2 - h3 + x2 - x4 (x2 - X4)2 x2 - x4 (x2 - X4)2 

and we can choose 

V\ = (x\+X3)£- + (x2+X4)£-2+(X\+x3)^- + (x2+X4)^-4, 

V' = {Xl-X3)dk + iX2-XA)^ + (~Xl+X3)i + {-X2+X4)oV4' 
It can be easily seen that the tangent vectors 

e\ = (:n +x3)— + (x2 + x4)T—, e3 = (x\ + X3)-—+ (X2 + Xi) — , 
ox\ dx2 dx3 dx4 

e2 = (x\ -x3)7— + (x2 -X4) — , e4 = (~X\ + x3)-— + (-x2 + X4)-— 
ox\ ox2 dx3 0x4 

form a web-adapted frame, v\ = e\ + e3, v2 = e2 + e4, B2(ei) = e3, B\(e2) = e4. 

With respect to this adapted frame (e\,e2,e3,e4) We have 

P\ = Hi = ( l l ) , p ^ m = ">° 
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An evaluation yields 

[ei,e2] = ei - e2, [ei,e3] = - e i + e3, [ei,e4] = e2 - e3, 

[e2,e3] = ei - e 4 , [e2,e4] = - e 2 + e4, [e3,e4] = e3 - e4, 

V e iei = ei, i = 1,2,3,4, 

- V e i e 2 = V e 3ei = - V e 3 e 2 = ei, V e i e 3 = - V e i e 4 = - V e 3 e 4 = e3, 

- V e , e i = Ve„e2 = - V , 4 e i = e2, V e , e 4 = - V e , e 3 = - V e 4 e 3 = e4. 

The non-zero components of the connection in the adapted frame (ei) are 

P 1 — P 1 _ P 2 — r 2 -_ P 3 _ p 3 _ p4 _ p4 _ i 1 11 — i 31 — i 2 2 — i 42 — i 13 — i 33 — i '24 — i 44 — i , 

P 1 _ P 2 _ p 3 __ p4 __ p3 _ p4 _ p i _ p 2 _ i 
1 12 — i 21 — i 14 — 23 — i 34 — i 43 — i 32 _ L 41 ~ L-

The torsion tensor T(X,Y) = V x Y - V y X - [X,Y] does not vanish identically: 

T(ei ,e_) = B[Fi,B](ei ,e_) = - 2 e i + 2 e 2 , 

r ( e 3 , e 4 ) = £[Ti ,B](e 3 , e 4 ) = - 2 e 3 + 2e4, 

T (e i , e 3 ) = T(e i , e 4 ) = T(e 2 , e 3 ) = T(e 2 ,e 4 ) = 0. 

The curvature tensor 

H(X,Y)Z = VXVYZ - V y V X Z - VIX,Y]Z 

does not vanish identically, e.g. 

^ ( e 2 , e 3 ) e 4 = - V e 2 e 3 - VC3e4 - V e i e 4 + V C 4 e 4 = 2e3 + 2r4 = - ^ ( e 3 , e 2 ) e 4 , 

^ ( e 4 , e i ) e 3 = - 2 e 3 - 2 e 4 = - f t ( e , , e 4 ) e 3 , 

and satisfies H(Y,X)Z = -H(X,Y)Z. 

We conclude that the web is neither parallelizable nor paratactical nor a group 

web, but it belongs to the family of Bol webs. 

R e m a r k 6.1. With respect to the coordinate frame (^§7, gf j , gf j , gfj) the 

corresponding matrix representations are 

= Q = 

XlX2 - X 3 Д 4 

XiXt - X2X3 ' 

x? - x\ 

xí - xí \ 
X1X4 — X2X3 

X]X 2 — X3X4 

\ X1X4 — X 2X 3 

,0 0)' ^-{0 I 
and the evaluations would be mor.e complicated 

H\ = 

XiX 4 - X2X3 / 

, нl = 

B ì = i 

0 Q 
0 0 

в = 

, #_ = 

0 Q 

э-1 0 
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