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.Abstract. In the present paper we deal with the existence of large homogeneous partially 
ordered sets having the property described in the title. 
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1. INTRODUCTION 

This note is a continuation of [9] and [10]. 

Let P be a partially ordered set. We apply the same notation as in [10]. Namely, we 

denote by Int0 P the system of all intervals of P , including the empty set. Further, 

let I n t P be the system Into P \ {0}- These systems are partially ordered by the 

set-theoretical inclusion. 

In the case when P is a lattice the system I n t 0 P was studied in [2]-[8], [11], [13]. 

The class of all partially ordered sets P such that Into P is selfdual will be denoted 

by y0. Let y have an analogous meaning with Int0 P replaced by I n t P . 

Igoshin [8] proved the following result: 

A finite lattice L belongs to y0 if and only if either (i) card L ^ 2, or (ii) card L = 4 

and L has two atoms. 

In [8] the question was proposed whether there exists an infinite lattice belonging 

to y0. 

In [9] it was shown that the answer is "No" and that a partially ordered set belongs 

to y0 if and only if it is a lattice satisfying some of the conditions (i) or (ii) above. 

Partially ordered sets belonging to y were investigated in [12] and [10]. 
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From the above mentioned result of [9] it follows that the relation card P ^ 4 is 

valid for each P G y0. A natural question arises whether an analogous situation 

occurs for the class y , i.e., whether there exists a cardinal k such that for each 

P G y the relation card P <_ k holds. 

A partially ordered set P will be said to be homogeneous if. whenever Xi,yi G P, 

Xi < Vi (»' = 1,2), then card[:Ei, j/i] = card[x2,J/2]• There exist partially ordered sets 

which belong to y and fail to be homogeneous (cf. [12]). 

In the present note the following result will be proved: 

(*) Let a be an infinite cardinal. There exists a connected partially ordered set 

Pa such that (i) Pa belongs to y; (ii) cardPQ = a; (iii) Pa is homogeneous. 

2. CONSTRUCTION OF Pa 

We need some auxiliary results. 

Let 1 be the additive group of all integers with the natural linear order. Further, 

let a be an infinite cardinal and let ui(a) be the first ordinal whose cardinality is 

a. Consider a linearly ordered set / which is dually isomorphic to ui(a). Then each 

ideal of / is isomorphic to / . 

Put Hi = TL for each i € / and let us have the lexicographic product 

H = rie,Hi 

(cf., e.g., [1]). For h G H and i G / let /i ; be the component of h in Hi. Denote 

supp/i = {»' G / : hi jtO}. 

We set 

Ga = {h € H: suppft is finite}. 

Then we clearly have 

cardGQ = a. 

Let 0 < h € Ga. There exists i0 € I such that i0 is the least element of supp/i. 

We denote by Ga' the set of all g G Ga such that i < i0 for each i G suppff- Then 

Ga' is a linearly ordered group isomorphic to Ga. This yields that card Ga = a and 

also card(G*")+ = a. The set (Ga
!)+ is a subset of the interval [0, h] of Ga. Hence 

card[0,/i] = a. 

If x,y G G, $ <y, then the interval [x, y] of G„ is isomorphic to [0, y — %]• Thus we 

have 
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2 . 1 . L e m m a . Let a and G„ be as above, x, y e Ga • x < V- Then card [x, y] = a. 

Again, let a and Ga be as in 2 1 . Choose x e G„, :i' > 0. Put A = B = Ga and 

consider the direct product 

C = A x B. 

The elements of C will be denoted as t = (ta,t„) with io € A, h e B. 

Let Ci be the set of all (t„,th) £ C such that 

(ia.ifc) > (0,0), („ + /(,<.*• 

Further, let C2 be the set, of all (ta,th) eC such that 

(i„,i6) ^ (x,x), ta + tb2x-

Next, let C3 = Ci U C2 . Hence C3 is the interval [(0,0), (x,x)] of C. (Cf. Fig. 1.) 

(.T,X) 

/ Ch \ 
(a ; ,0)< > ( 0 . . r ) 

2 .2 . L e m m a . Let [w,u] be an intervai of the partiaily oidered set C3 , t( < v. 

Then caxd[u,v] = a. 

P r o o f . Put u = (ta, tb), v = (t'a, t'h). Then 

[u,v] = [ta,t'a]x[t,„t'b] 

and either /„ < t'a or i^ < t'b. Thus according to 2.1, card[u,t>] = a. Q 

Now suppose that we have replicas of Ci which will be denoted by Cn, where n 

runs over the set of all integers. Similarly, let C2 be replicas of C2 . Hence for each 
n £ 1 there exists an isomorphism <pnl of Cn onto Ci; for p e C" we denote 

^ 1 ( P ) = ( P : 1 > K 1 ) -
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iilarly, for n e I there is an isomorphism tpn2 of C n onto C2 ; for q e C n we put 

^n2(g) = (qnVif)-

.1 the elements p n l , p n l , qn2, qn2 belong to the interval [0,x] of G 0 . 

The following identifications will be adopted-. 

1) Let p ^L C^ and q e C n . The elements p and q will be identified if (under the 

notation as above) we have 

P f = 0 , q f = x, p n l = q n 2 . 

2) Let p be as in 1 and q e C n _ 1 . We identify the elements p and q if • 

pn i
= 0 , qr i ) 2=x, p-=qr i ) 2 . 

(Cf. Fig. 2.) 

Fig. 2 

Having in mind these identifications we put 

P„=U(CnUCn) . 
n<EZ 

We define a binary relation ^ on Pa as follows. Let p, q 6 Pa. We put p ^ q if 

some of the following conditions is valid: 

1) There exist n e I and i e {1,2} such that both p,q belong to Cf and the 

relation p ^ q holds in C n . 

2) There exists n e 2 such that q e C n and (under the notation as above) eithe 

(i) p e C " " 1 and pi,n-1)2 SC qn l 

or 

(ii) p e C n and pf ^ q n l . 

2.3 . Lemma. The relation ^ is a partial order on the set Pa and under t. 

partial order, Pa is connected. 



The proof is a routine, it will be omitted. 

For each partially ordered set P we denote by Max P and Min P the set of all 

maximal elements of P or the set of all minimal elements of P , respectively. 

For each integer n we have 

MaxCJ1 = { f £ CJ": Q1 + tf = x}, 

Min C!2
l = {t G C2": tf + f̂ 2 = x}. 

Further, we have 

MaxP„ = ( J MaxCj", 

MinP„ = ( J MinCJ . 

3. P R O O F OF (*) 

If 0 is an equivalence relation on a partially ordered set P and a G P , then we put 

[a]0 = ( i £ P : 60a} . The symbol id denotes the least equivalence relation on P . 

Let @ be the class of all discrete partially ordered sets, i.e., the class of all partially 

ordered sets P such that each bounded chain in P is finite. 

We shall apply the following result (cf. [10]): 

3 . 1 . T h e o r e m . A partially ordered set P belongs to S" if and only if there exist 

equivalence relations ©i and 0 2 on P such that 

(i) for each a G P there are elements ut,u2 G M i n P and Vi,v2 G M a x P such 

that [fl]0i = [«i,«i] and [a]02 = [u2,v2]; 

(ii) 0 ! A 0 2 = id; 

(iii) whenever a and 6 are eJenients of P with a ^ b, then there exist zi,z2 G [a, b] 

such that a&izi&2b and aQ2z2&ib. 

In [12] this result was proved under the additional hypothesis that P belongs to &. 

Let Pa be as in Section 2. We define binary relations 0 i and 0 2 on Pa as follows. 

Let p and q be elements of P„ with p G C", q G C"* (m,n G 2; i,j G {1,2}); for 

p and q we apply the notation as in Section 2. 

We put p&iq if 

m = n and pj," = q™j. 
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Further, we put p&2q if p n t = qa
nj and either 

ii = m, i = j , 

or 

m = n + 1 and z' 5̂  j . 

From the definitions of Oi and Q2 we immediately obtain 

3.2. Lemma, ©i and ©2 are equivalence relations on P such that ©i A 0 2 = id. 

3.3. Lemma, ©i and 0 2 satisfy the condition (i) from 3.1. 

P r o o f . Let p € Pa. First suppose that there is an integer n such that p 6 CJ1. 

Hence y?nl(p) = ( p n l , P n l ) . There exist t>i,u2 <E C" such that 

(1) » i t = P n \ < + < = * , 

(2) < = P " \ < + < = * • 

From the first relation in (1) we infer that p©it>i is valid; the second relation in (1) 

yields that v\ e M a x P a (cf. the formulas at the end of Section 2). Analogously, from 

(2) we obtain that pQ2v2 and v2 € MaxPa. 

Further, there exist elements »i e C " - 1 and u2 6 C2 such that 

a') «r i ) 2=pn \ «4r1)2+«ir1)2=*, 
(2') « 2 6 = P n \ « 2 " 2 + « 2 2 = ^ -

Then pQ2ui, pQ\u2 and «i ,«2 6 Min.Pa. 
The case when p € C2 tor some n £ l i s analogous. Q 

3.4. Lemma, ©i and ©2 satisfy the condition (iii) from 3.1. 

P r o o f . Let p,q e Pa, p ^ q. 

a) Suppose that p € Cf for some ?i 6 Z. Then </ also belongs to Cn. Thus 

p n l < g " \ P " 1 ^ ? ? 1 -

There exist 21, z2 £ C[" such that 

P n l (~ i ) = («?n l ,Pn l), v " l ( ; 2 ) = ( P " \ g " 2 ) . 

Then ci,22 £ [p,«] a n c l 

p@izi<d2q, pQ2z2&iq. 
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b) Now suppose that p € C£ for some n € 1. Then we have three possibilities for 

the element q, namely 

qdC!2\ q€C?, q g CJ'+ 1 . 

In the first case we proceed as in a). In the second case we have analogous relations 

as in a) with the distinction that in the components of p we write the index 2 instead 

of 1; the conclusion is the same as in a). The third case is similar to the second. D 

3.5 . L e m m a . Pa belongs to S'. 

P r o o f . This is a consequence of 3.1-3.4. D 

Under the notation as in Section 2 we have 

card A = card B = a, 

whence ca rdC = a. Since C3 C C, according to 2.3 we get cardC 3 = a. Clearly 

cardCi = cardC 2 = ca rdC 3 and hence cardC; = a (i = 1,2). Thus in view of the 

definition of Pa we obtain 

(3) c a r d P Q = c v . 

3.6. L e m m a . Let p,q€ Pa,p <q. Then card [p, q] = a. 

P r o o f . In view of 3.4 there is z\ G Pa such that p0iZiQ2</, z\ € [p,<?]• We 

have either p < Z\ or z\ < q. Suppose that p < z\. In view of the definition of Q\, 

the interval [p, z{\ of Pa is isomorphic to some interval of Ga. Hence card [p, z\] = a. 

Then in view of (3) the relation card [p, q] = a is valid. The case Z\ < q is analogous. 

D 

Now, (*) is a consequence of 3.5, (3) and 3.6. D 
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