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A METHOD FOR DETERMINING CONSTANTS IN THE LINEAR 

COMBINATION OF EXPONENTIALS 
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Summary. Shifting a numerically given function 6i expai« + . . . + & „ expa n t we obtain 
a fundamental matrix of the linear differential system y = Ay with a constant matrix A. 
Using the fundamental matrix we calculate A, calculating the eigenvalues of A we obtain 
O i , . . . , o n and using the least square method we determine &i,..., &n. 
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Let n Ja 1 denote an integer, a i , . . . , an; bi,..., bn real numbers, a,- ^ a,j if i ^ j, 

6,^0 for » = l , . . . ,n, 

f(t) = b1expa1t + ... + 6nexpa„t 

for real t. Let hi,..., hn; k%,..., kn denote real numbers, hi = fci = 0, ht ^ hj and 

ki^kjiii^ j;i,j = 1,..., n. Define the n x n-matrix valued function 

Y(t) = 

Д t - Л i - * i ) . . . f(t-hi-kn) 

lf(t-hn-h) 
for real í. 

f(t-hn-kn)J 

Theorem. Y is a fundamental matrix of the linear differential system y = Ay 

with a constant n x n-matrix A, and a i , . . . ) 0 n are the eigenvalues of A. 

Proof. Let us set ?/; = exp(—a;)i * = 1,.. . , n, 

E1=E(hu...,hn) = 

WГ 

yh

n'-

УÌ". 

, E2 = E(ku...,kn), 
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G = d iag[a i , . . . , o n ] , B = diag[i>i e x p a i i , . . . , 6 n e x p o n t ] . 

Using induction we shall prove that Ei is regular or, equivalently, the function 

<P(V) = ciyhl + .. • + cny
h" 

has at most n — 1 positive roots for arbitrary c i , . . . , cn excluding ci = . . . = c n = 0 

and arbitrary hi, • • •, hn satisfying our assumptions. This is clear for n = 1. Let 

n > 1, let our assertion be true for n — 1 and let us suppose (p has n positive roots. 

Hence, the derivative ip' has n - 1 positive roots which, using hi = 0, contradicts 

the induction hypothesis. Similarly, E2 is regular. Using our notation we obtain 

y = EiBE%, Y = EiGBEl. Hence Y is regular and A = YY~X = EiGE~l is 

constant, which proves our theorem. • 

Let p >. 2n be an integer, t0,h > 0 real numbers, / , = f(t0 — (i — l)h) for 

i = I,...,p. Let n,h,fi,...,fp be known, while o i , . . . ,an; &i , . . . ,bn are to be 

determined. We put hi = ki = (i — l)h for i — 1 , . . . , n. (However, there exist many 

methods for choosing hi, kt.) Now, we may calculate Y(t) for 

t e M = {t0-(i-l)h: i = l , . . . , g } , 

where q = p — 2n + 2, q >. 2. We will determine Y(t) numerically for some fixed 
t ~ M and put 

A = Y(t)Y(t)~1. 

Concerning numerical errors, we would probably obtain better results putting 

A = ^(Y(ti)y(.i)-1 +... + nt^Y^r1), 

where m > 1 is an integer, t\ ...,tm 6 M, t{ ^ tj if i # ;'. We obtain o i , . . . , o n 

calculating the eigenvalues of A. 
Alternatively, the formula 

A = - ^ - i n y ( « 2 ) y ( t i ) - 1 

<2 - h 
can be used. Let gi,...,gn denote the eigenvalues of the matrix y ( t 2 ) y ( t i ) _ 1 for 

some fixed ti,t2 £ M, t\ ^ t2. Hence, the values a i , . . . ,an coincide with the values 

lng;; i = l,...,n. 

Now, & i , . . . , 6 n may be determined using the least square method. 
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