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Summary. The concept of a route system was introduced by the present author in [3].
Route systems of a connected graph G generalize the set of all shortest paths in G. In this
paper some properties of route systems are studied.
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0. Before giving the definition of a route system we need to introduce some
auxiliary notions.

Let G be a graph (in the sense of [1], for example, i.e. a finite undirected graph
with no loops or multiple edges) with a vertex set V(G). We denote by Wn (G) the
set of all sequences

(O) UQy -+ vy Ugy

where ¢ > 0 and uo,...,u; € V(G). Similarly as in [4], instead of (0) we write
ug...u;. Ifv,...,v; € V(G) and a = vp...v;, where j > 0, then we put Aa = vy,
Za=vj, ||la|| =j and @ = vj...vo. If ug,...,uk, wo,...,wm € V(G), B=1uo...u

and v = wp...wn, where k,m > 0, then we write 8y = ug...urwo ... wWm. We
denote by * the empty sequence in the sense that ax = a = *a for every a € Wi (G),
*+ = % and ¥ = *. Put W(G) = Wn(G) U {*}. If M C Wx(G) and u,v € V(G),
then we denote

M(up) = {a € M; Aa=u and Za = v}

and

M) = {a € M; there exist 8,7,6 € W(G)
such that a = By and v € M, )}
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Let vp,...,v; € V(G), where i > 0; we say that vg ... v; is a path in G if the vertices
vo, - - . , ¥; are mutually distinct and the vertices v; and v;+1 are adjacent in G for each
integer j, 0 < j < i. We denote by P(G) the set of all paths in G. Let a € Wx(G);
we say that a is a shortest path in G if a € P(G) and ||a|| < ||8]} for every B € P(G)
such that Aa = A8 and Za = ZB. We denote by S(G) the set of all shortest paths
in G.

Let G be a connected graph, and let R C P(G). We will say that R is a semi-route
system on G in the following Axioms I-1V are fulfilled for arbitrary u,v € V(G) and
a, B, v, 6 € W(G):

I if v and v are adjacent, then uv € R;
II ifa€eR, thena€eR,;
HOI if uav € R, then ua € R;
IV  if aufvy, uév € R, then audvy € R.

Moreover, we say that R is a route system on G if it is a semi-route system on G
and the following Axiom V is fulfilled for arbitrary u,v € V(G):

V there exist a € R such that Aa = v and Za = v.

Let G be a connected graph. Consider a route system R on G; if u,v € V(G),
then we denote

dr(u,v) = min(]laf; @ € R, Aa =u and Za =v).

It is easy to see that S(G) is a route system on G. Note that S(G) is the only route
system on G if and only if G is a tree, cf. [3]. Instead of ds(g) we will write d only.
Obviously, if u,v € V(G), then d(u,v) is the distance between u and v in G.

The following theorem was proved in [4}:

Theorem 0. Let G be a connected graph, and let R be a route system on G.
Then R = S(G) if and only if the following conditions (1)~(3) hold for arbitrary
u,v,2,y € V(G) and o, B € W(G):

(1) ifuazv € R, then uwv ¢ R;
(2) if uazy, uvPy, vuar € R, then vByz € R;
3 - if zy, wvaz € R, upyz € R for no ¢ € W(G) and

uvyy € R for no v € W(G), then vazy € R.
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1. Let G be a connected graph, and let R be a semi-route system on G. We say
that R is geodetic if the following Axiom VI is fulfilled for arbitrary u,v € V(G):

VI I'R.(u’u)l <1

Thus, if R is a route system on G, then it is geodetic if and only if [R(y,v)| = 1 for
every pair of vertices u and v of G.

Example. Let G be a connected graph of diameter two. Put S = S(G). For
every pair of vertices u and v of distance two in G we choose exactly one path in
S(u,v)> Say a path ayy, such that ayy = @yy. Denote

R ={u; ue V(G)}u
U {vw; v and w are adjacent vertices of G}U
U{aqy; ,y € V(G) and d(z,y) = 2}.

It is not difficult to see that R is a geodetic route system on G.

Let G be a connected graph. Consider a route system R on G. If u,v € V(G),
then we denote by Nz (u,v) the set of all w € V(G) such that there exists « € W(G)
with the property that uwa € R(, ). Similarly as in [3] we denote

#r(z,y) = {x} U {z € V(G); Nr(z,z)— Nr(z,y) # 0}

for any z,y € V(G). The mapping #r has its origin in the author’s study of
mathematical models in semiotics.

It is not difficult to see that if G is a connected graph and R is a geodetic route
system on G, then #z(u,v) = #r(v,u).

Lemma 1. Let G be a connected graph, and let R be a route system on G.
Assume that R is not geodetic. Then there exists a pair of adjacent vertices u and
v of G such that #r(u,v) # #r(v,u).

Proof. Since R is not geodetic, there exist v,w € V(G) such that |R(,,v)| > 2
and |R(z )| = 1 for any z,y € V(G) with the property that dr(z,y) < dr(w,v).
Since |R(w,v)| > 2, there exist distinct @, 3 € R(u,y) such that |a|| = dr(w,v).
Then a and 8 have no common vertex different from v and w (otherwise, combining
Axioms II and III, we easily get @ = (3, which is a contradiction). We distinguish
two cases: :

1. Let dg(w,v) = 1. Then a = wv. Since 8 # a, there exist u € V(G)
and v € W(G) such that § = wyuv. Axiom IV implies that if § € R(y,u), then
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8v € R(y,.). Hence w ¢ #7(u,v). Recall that @ = wv. We have wvu ¢ R(y,y)
(otherwise, Axiom IV would imply that wyuvu € R, which is a contradiction). Thus
w € #r(v,u).

2. Let dr(w,v) > 2. Then there exist u € V(G) and v € W(G) such that a =
wyuv. According to Axiom III, wyu € R(y,u). It follows from the definition of dg
that dg (w,u) < dg(w,v). This implies that Ry, ) = {wyu}. Hence, w ¢ #r(u,v).
Clearly, u does not lie on 8. Moreover, we see that u ¢ R(y,4). Thus w € #r(v,u),
which completes the proof of lemma. a

Combining Lemma 1 with the above observation we get:

Theorem 1. Let G be a connected graph, and let R be a route system on G.
Then R is geodetic if and only if #xr(u,v) = #r(v,u) for every pair of vertices u
and v of G.

If G is a connected graph and u,v € V(G), then instead of #s(g)(u,v) we will
write #(u,v). Note that the mapping # was introduced in [2].
A connected graph G is called geodetic if S(G) is a geodetic route system on G.

Corollary 1. A connected graph G is geodetic if and only if #(u,v) = #(v,u)
for every pair of vertices u and v of G.

2. In this section we will prove that if G is a connected graph and R is a route
system on G, then there exists a subset of R which is a geodetic route system on G.
In fact, we will prove a more general result for semi-route systems.

If G is a connected graph, then we define b(G) = |E(G)| - |V(G)| + 1, where E(G)
is the edge set of G.

Theorem 2. Let G be a connected graph, and let R be a semi-route system on
G. Then there exists a geodetic semi-route system R* on G with the properties that
R* CR and

4) Riu,v) # 0 if and only if R(y,v) # 0

for every pair of vertices u and v of G.

Proof. We proceed by induction on b(G). Obviously, b(G) > 0. First, let
b(G) = 0. Then G is a tree, and therefore, R = S(G). We put R* = R.

Let now b(G) > 1. Then there exists a € E(G) such that G —a is connected. Let r
and s be the vertices incident with a. Axiom I implies that R(r,s) # 0. There exists
a € Ry(r,s) such that

(5) lall > llo’|| for every o € Re).
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There exist adjacent v,w € V(G) and &,¢{ € W(G) such that o = §vw(. Then
vw € R. Combining Axiom IV with (5) we get

(6) Rv,w) = {vw}.

Let e be the edge incident with v and w. We see that G — e is connected. Since
R C P(G), it is clear that R(*»*») N R(w:*) = . Denote

() R =R - (RO y R,

It is easy to see that R is a semi-route system on G — e such that ﬁ(t,u) C Rt
for every pair of vertices ¢t and u of G. Since b(G — €) = b(G) — 1, the induction
hypothesis implies that there exists a geodetic semi-route system 7 on G — e with
the properties that 7 C R and

(8) T(t,u) # 0 if and only if ﬁ(t,u) # ( for every pair

of vertices ¢ and u of G.

Consider arbitrary vertices z and 2z’ of G such that 7(,,.) # 0. Recall that T is
geodetic. We denote by 7., the only element of 7, .); note that if z = 2/, then
Tzz! = Z.

Consider arbitrary vertices  and y of G such that R(z,y) # 0 and T(;,,) = 0. As
follows from (7) and (8),

Riz,y) C R URM@Y),

Recall that R(»w) N R(¥) = . If R(z,) € R("'¥), then we put & = v and § = w;
if R(z,y) € R then we put Z = w and § = v. Since R(z,y) # 0, it follows from
Axioms II and III that R, z) # 0 # R(y,5)- We wish to show that

(9) R(z,i) N (R(v,w) u ’R(w,v)) =0= R(!'l.y) n (R(v,w) u 'R_(w,u)).

We assume, to the contrary, that (9) does not hold. Without loss of generality,
let Rz,z) N R # B. As follows from (6), there exist 8,7 € W(G) such that
Bvwy € R, ). Since T € {v,w} and R C P(G), we get ¥ = x. Thus & = w. This
implies that R, ,) € R"). Recall that R(s,4) # 0. According to (6), there exist
¢,% € W(G) such that pwvy € R(; ). Since fvw € R, Axiom IV implies that
Bvwvyp € R, which is a contradiction. Thus (9) holds. We get T, z) # 0 # T(j,4)-
This implies that 7.:75y € R. ’
For arbitrary vertices ¢ and u of G such that R,.) # 0 we define

Oty = Tiu if Tty #0 and Oeu = TeiTau if T = 0.
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We put
R* = {01u; t,u € V(G) such that R, # 0}.

Certainly, R* C P(G). It is easy to see that R* is a geodetic semi-route system on
G. Moreover, it is clear that (4) holds. Thus the theorem is proved. O

Corollary 2. Let G be a connected graph. A route system R on G is geodetic if
and only if no proper subset of R is a route system on G.

Corollary 3. For every connected graph G there exists a geodetic route system
onG.

3. Let G be a connected graph. We say that a route system R on G is mazimal
(or minimal) if R is a proper subset of no route system on G (or no proper subset
of R is a route system on G, respectively). Corollary 2 asserts that a route system
on G is minimal if and only if it is geodetic. Recall that S(G) is a route system on
G. We will ask when S(G) is (or is not) a maximal route system on G.

Theorem 3. Let G be a connected bipartite graph. Then S(G) is a maximal
route system on G.

Proof. We assume, on the contrary, that there exists a route system R on
G such that S(G) g R. As follows from Axioms I and II, there exist distinct
u,v,w € V(G) and a € W(G) with the properties that

uavw € R -~ S(G) and wuav € S(G).

Hence, d(u, w) # |luavw|| = d(u,v)+1. Since G has no odd cycle, it is routine to show
that d(u,w) = d(u,v) — 1. This means that there exists 3 € W(G) such that ufwv €
S8(G). Since S(G) C R, we have ufwv € R. Recall that uavw € R. Axiom IV
implies that uBvwv € R, and thus uBvwv € P(G), which is a contradiction. Thus
the theorem is proved. O

Clearly, a geodetic graph has no odd cycle if and only if it is a tree.

Theorem 4. Let G be a geodetic graph different from a tree. Then S(G) is not
a maximal route system on G.

Proof. Clearly, there exists an odd cycle in G. It is routine to prove that
there exist z,y € V(G) and g,0 € W(G) such that zgy € S(G), zoy € P(G),
llzoyll = llzeyll + 1, and o has no common vertex with p.

Consider arbitrary v, € W(G) such that pzoyy € S(G). Suppose pzoyyp ¢
P(G). Then o has a common vertex with gy. Without loss of generality, we assume
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that o has a common vertex with . Then there exist £&1,&, (i, ¢; € W(G) and
t € V(G) such that ¢ = &t&; and ¢ = (1t(>. Since & téazoyy € S(G), we have
tes009 € S(G). Hence |lzayll > ltGayll > t€azayll > 1+ zeyll < llzoyll, which
is a contradiction. Thus gpzoyy € P(G). Suppose pzo ¢ S(G). Put A = pzo and
pu = pxd. There exists w € S(G) such that Aw = Ap and Zw = Zu. We have
lwll < ||xll, and thus |lwy|| < |lzyll = |Ay]l + 1. This implies that wy € S(G). Since
G is geodetic, wy = Ay. Thus w = A. Recall that o # . We have Z\ = Zo, which
is a contradiction. Thus pzoy € S(G). Analogously, oyy € S(G). We have proved
the following statement:

(10) if pzoyy € 8(G), then pzoyy € P(G) and
pzo, oyy € S(G)for any ¢, € W(G).

Denote
T = {pzoyy; ¢,¥ € W(G) such that pzeyy € S(G)},

T={a aeT})and R =S(G)UTUT. Obviously, S(G) G R. As follows from
(10), R € P(G). W want to prove that R is a route system on G. Certainly, R
fulfills Axioms I, Il and V.

Consider arbitrary u,v € V(G) and a € W(G). Suppose uav € R. If uav € §(G),
then ua € S(G). Assume that uav ¢ S(G). Without loss of generality, let uav € T.
Then there exist v, ¥ € W(G) such that pzoyy € S(G) and uav = pzoyy. If ¢ # *,
then ua € 7. If ¥ = *, then ua = pzo, and according to (10), pzo € S(G). Hence
R fulfills Axiom III.

Consider arbitrary u,v,w € V(G), a,8,7,0 € W(G). Suppose aufvy,udv € R.
We distinguish two cases:

1. Let aufvy € S(G). If udv € S(G), then audvy € S(G). Suppose udv ¢ S(G).
Without loss of generality, we assume that udv € 7. Then there exist ¢, € W(G)
such that pzgyy € S(G) and udv = pzoyy. We have apzoyyy € S(G), and thus
audvy = apzoyyy € T.

2. Let aufvy ¢ S(G). Without loss of generality, we assume that aufBvy € 7.
Then there exist ¢,9 € W(G) such that pzoyy € S(G) and aufvy = pzoyy.
According to (10), pzo,0yyp € S(G). Recall that G is geodetic. If both u and v
belong to pzo, then udv € S(G), and thus audvy = cufvy. If both u and v belong
to oy, then we obtain the same result. Let now u belong to ¢z and v belong to
yy. There exist A\, u € W(G) such that § = Aou. Obviously, aulppvy € S(G). If
udv € S(G), then audvy = pzroyy € S(G).

Suppose udv ¢ S(G). Then there exist £, € W(G) such that either (a) £zoy( €
S(G) and udv = zoy( or (b) (ypz¢ € S(G) and wdv = €ydz(. First, let udv =
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Ezoy(. Since G is geodetic, we have zgy( = ulguv. Hence audvy = aufvy. Let
now udv = €ydz(. Then u # z. We have {ygz( € S(G). Since u # z, A # *.
There exists 7 € W(G) such that A = rz. Since G is geodetic and urz € S(G), we
have urz = £ypz. Recall that aulguvy € S(G). Hence afypzouvy € S(G). Since
uvy = yv, we conclude that ypzey € S(G), which is a contradiction.

Thus R fulfills Axiom IV. The proof is complete. ]

Conjecture. Let G be a connected graph. Then S(G) is a maximal route system
on G if and only if G is bipartite.
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