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ROUTE SYSTEMS OF A CONNECTED GRAPH 

LADISLAV NEBESKY, Praha 

(Received November 1, 1993) 

Summary. The concept of a route system was introduced by the present author in [3]. 
Route systems of a connected graph G generalize the set of all shortest paths in G. In this 
paper some properties of route systems are studied. 
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0. Before giving the definition of a route system we need to introduce some 
auxiliary notions. 

Let G be a graph (in the sense of [1], for example, i.e. a finite undirected graph 
with no loops or multiple edges) with a vertex set V(G). We denote by WN(G) the 
set of all sequences 

(0) u0,...,Ui, 

where i ^ 0 and u0,...,U{ G V(G). Similarly as in [4], instead of (0) we write 
u0 ... U{. liv0,..., Vj G V(G) and a = v0 ... Vj, where j ^ 0, then we put ,4a = v0, 
Za = Vj, \\a\\ = j and a = Vj ...v0. Ifu0,...,uk, w0,...,wm€ V(G), ft = u0...uk 

and 7 = w0 ... wm, where k, m ^ 0, then we write fly = u0... ukw0 . . . wm. We 
denote by * the empty sequence in the sense that a* = a = *a for every a G WA^(G), 

** = * and * = *. Put W(G) = WN(G) U {*}. If M C WN(G) and u,v G V(G), 
then we denote 

M(UyV) = {a G M\ Aa = u and Za = v} 

and 

M^u^ = {a G M) there exist /3,y,S G W(G) 

such that a = fijS and 7 G M(UiV)}. 
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Let VQ, ..., Vi £ V(G), where i ^ 0; we say that VQ ... Vi is a path in G if the vertices 
Vo,. . . , Vi are mutually distinct and the vertices Vj and Vj+i are adjacent in G for each 
integer j , 0 < j < i. We denote by V(G) the set of all paths in G. Let a G WW(G); 
we say that a is a shortest path in G if a £ V(G) and ||a|| ^ \\f}\\ for every /3 G 'P(G) 
such that Aa = A/3 and Za = Z/3. We denote by S(G) the set of all shortest paths 
i n G . 

Let G be a connected graph, and let 72 C V(G). We will say that 72 is a semi-route 

system on G in the following Axioms I-IV are fulfilled for arbitrary u,v £ V(G) and 
a, 0,i,6e W(G): 

I if u and v are adjacent, then uv £ 72.; 

II if a £ 72,, then a € 72; 

III if uav £ U, then txa € 72; 

IV if aufivy, u5v € 72., then au6vy € 72. 

Moreover, we say that 72. is a route system on G if it is a semi-route system on G 
and the following Axiom V is fulfilled for arbitrary u, v £ V(G): 

V there exist a £ 72. such that Aa = u and Za = v. 

Let G be a connected graph. Consider a route system 72. on G; if u,v £ V(G), 

then we denote 

dn(u, v) = min(||a||; a G 72, Aa = u and Za = v). 

It is easy to see that S(G) is a route system on G. Note that S(G) is the only route 

system on G if and only if G is a tree, cf. [3]. Instead of ds(G) we will write d only. 

Obviously, if u,v £ V(G), then d(u,v) is the distance between u and v in G. 

The following theorem was proved in [4]: 

Theorem 0. Let G be a connected graph, and let 72. be a route system on G. 
Then 72: = S(G) if and only if the following conditions (l)-(3) hold for arbitrary 

u,v,x,y £ V(G) anda,f}£ W(G): 

(1) ifuaxv £ 72., then uv £ 72,; 

(2) ifuaxy, uv(3y, vuax £ 1Z, then v/3yx £ 72; 

(3) ifxy, uvax £ 72., u<pyx £ 11 for no (f £ W(G) and 

uvrpy £ TZ for no t/> G W(G), then vaxy £ 72. 
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1. Let G be a connected graph, and let 72. be a semi-route system on G. We say 
that 71 is geodetic if the following Axiom VI is fulfilled for arbitrary u,v G V(G)i 

VI \7lM\^h 

Thus, if 71 is a route system on G, then it is geodetic if and only if |72.(U)V)| = 1 for 
every pair of vertices u and v of G. 

E x a m p l e . Let G be a connected graph of diameter two. Put S = S(G). For 
every pair of vertices u and v of distance two in G we choose exactly one path in 
S{u,v), s^y & P^h OLUV, such that avu = auv. Denote 

ft={u; uE V(G)}U 

U {vw; v and w axe adjacent vertices of G}U 

U {a*y; z,y € V(G) and d(x,y) = 2}. 

It is not difficult to see that 72. is a geodetic route system on G. 

Let G be a connected graph. Consider a route system 71 on G. If u,v E V(G), 
then we denote by Nn(u, v) the set of all w G V^G) such that there exists a € W(G) 
with the property that uwa G 7£(U)V). Similarly as in [3] we denote 

#n(x,y) = {x} U {* G F(G); N^,*) - Nn(z,y) ± 0} 

for any x,y G V(G). The mapping # ^ has its origin in the author's study of 
mathematical models in semiotics. 

It is not difficult to see that if G is a connected graph and 71 is a geodetic route 
system on G, then #n(u,v) = #n(v,u). 

Lemma 1. Let G be a connected graph, and let 71 be a route system on G. 
Assume that 71 is not geodetic. Then there exists a pair of adjacent vertices u and 
vofG such that #n(u,v) £ #n(v,u). 

Proof . Since 71 is not geodetic, there exist v, w G V(G) such that 172.(^)1 > 2 
and |7£(X)S/)| = 1 for any x,y G V(G) with the property that dn(x,y) < dn(w,v). 
Since ITJ^^jl ^ 2, there exist distinct a,/? G 7l(w,v) such that ||a|| = dn(w, v). 
Then a and /J have no common vertex different from v and w (otherwise, combining 
Axioms II and III, we easily get a = /3, which is a contradiction). We distinguish 
two cases: 

1. Let dn(w,v) = 1. Then a = wv. Since /? ^ a, there exist u G V(G) 
and 7 G W(G) such that /? = 11171x1;. Axiom IV implies that if 6 G 7l(w,u)i then 
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Sv G 7Z(WyV). Hence w i #n{u,v). Recall that a = wv. We have wvu $ 7l{WyU) 

(otherwise, Axiom IV would imply that wyuvu 6 71, which is a contradiction). Thus 

v) G #n{v,u). 

2. Let dn{w,v) ^ 2. Then there exist u G V{G) and 7 G W{G) such that a = 
wyuv. According to Axiom HI, wju G Tl(WlU). It follows from the definition of dn 
that dn{w,u) < dn{w,v). This implies that 7l(WyU) = {wyu}. Hence, w $ #n{u,v). 

Clearly, u does not lie on /3. Moreover, we see that (3u £ 7Z(WyU). Thus w G #n{v, u), 
which completes the proof of lemma. • 

Combining Lemma 1 with the above observation we get: 

Theorem 1. Let G be a connected graph, and let 71 be a route system on G. 

Then 71 is geodetic if and only if #n{u, v) = #n{v, u) for every pair of vertices u 

andv ofG. 

If G is a connected graph and u,v G V{G), then instead of #s(G){uiv) we will 
write #{u,v). Note that the mapping # was introduced in [2]. 

A connected graph G is called geodetic if S{G) is a geodetic route system on G. 

Corollary 1. A connected graph G is geodetic if and only if #{u,v) = #{v,u) 

for every pair of vertices u and vofG. 

2. In this section we will prove that if G is a connected graph and 71 is a route 
system on G, then there exists a subset of 71 which is a geodetic route system on G. 
In fact, we will prove a more general result for semi-route systems. 

If G is a connected graph, then we define b{G) = \E{G)\ - \V{G)\ + 1 , where E{G) 
is the edge set of G. 

Theorem 2. Let G be a connected graph, and let 71 be a semi-route system on 

G. Then there exists a geodetic semi-route system TV on G with the properties that 

71* C 71 and 

(4) 7V{u%v) £ 0 if and only if 7l{UyV) ^ 0 

for every pair of vertices u and vofG. 

P r o o f . We proceed by induction on 6(G). Obviously, b{G) ^ 0. First, let 
6(G) = 0. Then G is a tree, and therefore, 71 = S{G). We put 71* = 71. 

Let now 6(G) ^ 1. Then there exists a G E{G) such that G - a is connected. Let r 
and s be the vertices incident with a. Axiom I implies that 7£(r,s) ^ 0. There exists 
OL G 7l(r,s) such that 

(5) ||a|| 3* ||<*'|| for every ol G 7l(ry8). 
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There exist adjacent v,w e V(G) and f,C € W(G) such that a = £vwC. Then 
vw e n. Combining Axiom IV with (5) we get 

(6) 7 ^ ) = {vw}. 

Let e be the edge incident with v and w. We see that G - e is connected. Since 
ft C V(G), it is clear that n^w) n ft(w»v) = 0. Denote 

(7) n = n- (niv>w) U 7^'v)). 

It is easy to see that n is a semi-route system on G — e such that 7 (̂t,u) C 7^(tJli) 
for every pair of vertices t and ti of G. Since 6(G - e) = 6(G) - 1, the induction 
hypothesis implies that there exists a geodetic semi-route system T on G - e with 
the properties that T Qn and 

(8) T(tiU) 7-- 0 if and only if TZ(tiU) ^ 0 for every pair 

of vertices t and u of G. 

Consider arbitrary vertices z and z' of G such that T(ZiZ>) # 0. Recall that T is 
geodetic. We denote by TZZ> the only element of T(ZyZ>)\ note that if z = z', then 
r« ' = z. 

Consider arbitrary vertices x and y of G such that 7 (̂x>y) ?-- 0 and T(XtV) = 0. As 
follows from (7) and (8), 

ft(x,y) C T ^ ' ^ U T ^ ' " ) . 

Recall that 7̂ v>™) n 7̂ ™'*) = 0. If 7 (̂X)y) C ftK«0, then we put x = v and y = w, 
if 7 (̂x>y) C 7^(^x,'t;), then we put x = w and y = v. Since 7 (̂x>y) ?- 0, it follows from 
Axioms II and III that 7 (̂X)X) ^ 0 ^ ft(y,i/)- W e wish to show that 

W ft(x,x) n (fl(v'") u 7 ^ > ) = 0 = 7^y>y) n (n^w) u 7 ^ ) ) . 

We assume, to the contrary, that (9) does not hold. Without loss of generality, 
let 7 (̂x>x) n7^(t;^) ^ 0. As follows from (6), there exist /3,7 G W(G) such that 
/3iruT7 G 7^(a.)^). Since 5 G {v,w} and 7̂  C ^(G), we get 7 = *. Thus x = w. This 
implies that 7 (̂,c>y) C 7^(tx',t;). Recall that 7^(x,y) ^ 0. According to (6), there exist 
<p,ip e W(G) such that ipwvi}) G 7^(x>y). Since /few G 7 ,̂ Axiom IV implies that 
f}vwv\l> en, which is a contradiction. Thus (9) holds. We get T(x,x) i=- 0 ^ 7(y,y). 
This implies that TxxTyy G 7 .̂ 

For arbitrary vertices t and u of G such that 7 (̂t,u) ^ 0 we define 

crtii = rtu if 7(tjU) ^ 0 and otu = rttri-u if T(t%u) = 0. 
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We put 
TV = {atu; t,u€ V(G) such that Tl(tiU) 7- 0}. 

Certainly, TV C V(G). It is easy to see that TV is a geodetic semi-route system on 
G. Moreover, it is clear that (4) holds. Thus the theorem is proved. • 

Corollary 2. Let G be a connected graph. A route system Tl on G is geodetic if 
and only if no proper subset ofH is a route system on G. 

Corollary 3. For every connected graph G there exists a geodetic route system 
onG. 

3. Let G be a connected graph. We say that a route system 11 on G is maximal 
(or minimal) if H is a proper subset of no route system on G (or no proper subset 
of 72. is a route system on G, respectively). Corollary 2 asserts that a route system 
on G is minimal if and only if it is geodetic. Recall that S(G) is a route system on 
G. We will ask when S(G) is (or is not) a maximal route system on G. 

Theorem 3. Let G be a connected bipartite graph. Then S(G) is a maximal 
route system on G. 

Proof . We assume, on the contrary, that there exists a route system Tl on 
G such that S(G) C Tl. As follows from Axioms I and II, there exist distinct 
u,v,w E V(G) and a E W(G) with the properties that 

uavw Gil — S(G) and uav E S(G). 

Hence, d(u,w) ^ ||tjavii;|| = d(u,t/)-f 1. Since G has no odd cycle, it is routine to show 
that d(u, w) = d(u, v) - 1 . This means that there exists 0 E W(G) such that ufiwv E 
S(G). Since S(G) C Tl, we have ufiwv E 11. Recall that uavw E Tl. Axiom IV 
implies that u/3vwv E Tl, and thus ufivwv E 7*(G), which is a contradiction. Thus 
the theorem is proved. • 

Clearly, a geodetic graph has no odd cycle if and only if it is a tree. 

Theorem 4. Let G be a geodetic graph different from a tree. Then S(G) is not 
a maximal route system on G. 

Proof . Clearly, there exists an odd cycle in G. It is routine to prove that 
there exist x,y E V(G) and g,a E W(G) such that xgy E S(G), xay E V(G), 
\\xay\\ = \\xgy\\ -f 1, and a has no common vertex with g. 

Consider arbitrary <p,t/> E W(G) such that ipxgyip E S(G). Suppose yxayxp £ 
V(G). Then a has a common vertex with <pif>. Without loss of generality, we assume 
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that a has a common vertex with <p. Then there exist fi,$2» Ci> C2 e W(G) and 
t G V(G) such that <p = £1*62 and a = Ci*C2- Since titfrxgytp € S(G), we have 
t&xgy G S(G). Hence ||.xtTy|| > ||^2y|| > \\t&xgy\\ ^ 1 + \\xgy\\ -= ||x<ry||, which 
is a contradiction. Thus <pxay^ G V(G). Suppose <pxa $ S(G). Put A = <pxg and 
H = (DxJ. There exists u G 5(G) such that Au> = A/i and Zu =̂  Z/i. We have 
||o;|| < ||/i||, and thus \\u>y\\ < \\ny\\ = ||Ay|| + 1. This implies that uy G «S(G). Since 
G is geodetic, CJI/ = Ay. Thus u = A. Recall that a ^ *. We have 2A = -£c, which 
is a contradiction. Thus <pxay G S(G). Analogously, aytp G <S(G). We have proved 
the following statement: 

(10) if <pxgyt/> G S(G), then <pxayty G P(G) and 

<pxa, ayt\) G iS(G)for any <p,tp G VV(G). 

Denote 

T = {<pxay^^)\ <p,t\> G W(G) such that yxQfyty G «S(G)}, 

T -= {a; a G T} and 71 = <S(G) U f u f , Obviously, 5(G) C ft. As follows from 
(10), 11 C P(G). W want to prove that 72. is a route system on G. Certainly, U 

fulfills Axioms I, II and V. 

Consider arbitrary u, v G V(G) and a G W(G). Suppose uav G Tl. liuav G 5(G), 
then ua G 5(G). Assume that uav £ 5(G). Without loss of generality, let uav G T. 
Then there exist <p, ^ G W(G) such that (pxqyty G 5(G) and wau = <pxay^>. If ^ 7-= *, 
then ua eT. li ^|> = *, then ua = ^ a , and according to (10), <̂ a;cr G 5(G). Hence 
/^ fulfills Axiom III. 

Consider arbitrary u,v,w G V(G), a,/3,7,<$ G W(G). Suppose aufiwy,uSv G 7£. 
We distinguish two cases: 

1. Let aufiwy G 5(G). If uto; G 5(G), then au(Jv7 G S(G). Suppose uSv i S(G). 

Without loss of generality, we assume that uSv G T. Then there exist <p,t/> G W(G) 
such that <pxgyty G 5(G) and ucfo = <pxayty. We have a<pxgytl>j G 5(G), and thus 
au<St;7 = a<pxay\\)^ G T. 

2. Let aupwy fi S(G). Without loss of generality, we assume that aufiwy G T 
Then there exist <p,^) G W(G) such that (pxgyty G 5(G) and au/ivj = <pxaytp. 

According to (10), <pxa,ayip G 5(G). Recall that G is geodetic. If both u and t; 
belong to <pxa, then ii(5>v G 5(G), and thus auSwy = au/3wy. If both u and v belong 
to ayty, then we obtain the same result. Let now u belong to <px and v belong to 
y^p. There exist A,/x G W(G) such that 0 = A<x/x. Obviously, auXg^iwy G 5(G). If 
u<$v G 5(G), then auoVy = <pxgryi\) G 5(G). 

Suppose ucfo £ 5(G). Then there exist £,C G W(G) such that either (a) £xgy£ G 
5(G) and uSv - ^xayC, or (b) ^ygxQ G 5(G) and uSv = €yax£. First, let w5v = 
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£xoyQ. Since G is geodetic, we have £xoy( = UXQIJLV. Hence auSvy = au0vy. Let 
now u6v = £t/tf:rC- Then u ^ x. We have ^2/^C € S(G). Since u ^ x, A 7- *. 
There exists r € W(G) such that A = TX. Since G is geodetic and UTX G S(G), we 
have UTX = £yj)x. Recall that auXQpvy e S(G). Hence aZyQXQfivy € «S(G). Since 
Hwy = y^;, we conclude that yQXQy E S(G), which is a contradiction. 

Thus K fulfills Axiom IV. The proof is complete. • 

Conjecture. Let G be a connected graph. Then S(G) is a maximal route system 
on G if and only ifG is bipartite. 
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