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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OP SOME LINEAR 
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Abstract. In this paper we investigate the asymptotic properties of all solutions of the 
delay differential equation 

y'(x) = a(x)y(r(x)) + b(x)y(x), xSI = [x0, oo). 

We set up conditions under which every solution of this equation can be represented in 
terms of a solution of the differential equation 

z'(x) = b(x)z(x), x e I 

and a solution of the functional equation 

\a(x)Mr(x)) = \b(x)\v(x), x € I. 
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1. INTRODUCTION 

We consider the linear differential equation with the delayed argument in the form 

(1.1) y'(x) = a(x)y(T(x)) + b(x)y(x), xel=[x0,oo). 

The asymptotic behaviour of solutions of equation (1.1) has been studied in many 

papers (for results and references see, e.g., [7]). Among the works related to our 

present results we can mention papers [2] by N .G .de Bruijn, [9] by T. Kato and 

J. B. McLeod, [8] by M. L. Heard, [11] by F. Neuman, [6] by I. Gyori and M. Pituk, [5] 

by J. Diblik and [3], [4]. 

The idea that we wish to generalize first appeared in [9]. The authors derived 

asymptotic formulas for solutions of the equation 

y'(x) = ay(Xx) + by(x), x e [0, oo) 

in terms of functions <p(x) = |^(a;)|, where ip(x) = x13, 0 = i o°5^i• Note that the 

function ip(x) defines a solution of the functional (nondifferential) equation 

aip(Xx) + bip(x) = 0, a; 6 [0, oo) 

and the function <p(x) = \ip(x)\ fulfils 

\a\<p(Xx) = \b\tp(x), z € [ 0 , o o ) . 

M. L. Heard [8] considered a more general equation 

(1.2) y'(x)=ay(T(x)) + by(x), x€l 

under the hypothesis a ^ 0, b < 0, r € C2(I), r ' being decreasing on I. The 

asymptotic behaviour of all solutions of this equation was related to the behaviour 

of a solution of the equation 

aip(T(x)) + b-il>(x) = 0, x e l . 

The generalization of this asymptotic result to equation (1.2) with variable coeffi

cients has been carried out in [3]. Similarly as in [8], the assumption b(x) < 0 was 

necessary to preserve the validity of the corresponding estimates. 

Our aim is to discuss the relationship between the asymptotic behaviour of solu

tions of equation (1.1) and the functional equation 

(1.3) \a(x)\<p(T(x)) = \b(x)\<p(x), x€l 
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in the case b(x) > 0. We show, under additional assumptions, that every solution 

y(x) of (1.1) is asymptotic to a solution z(x) of the equation 

z'(x) = b(x)z(x), x e I 

and, moreover, the difference of any two solutions yi(x), yt(x) of (1.1) such that 

yi(x) is asymptotic to y%(x), approaches a solution ip(x) of (1.3). 

Throughout this paper we denote / = [x0, oo) and I* = [T(X0), oo). By a solution 

of (1.1) we understand a function y(x) e C°(P) n Cl{I) fulfilling (1.1) for every 

x e I. Further, by the symbol Tn(x) we denote the n-th iterate of T(X) (for positive 

integers n) or the —n-th iterate of the inverse function T"1 (X) (for negative integers 

n) and put T°(X) = x. 

2. RESULTS 

We start with the study of equation (1.3) under the assumption \a(x)\ = K\b(x)\ 

for every x e I and a suitable K > 0. The following statement yields the form of a 

solution <p(x) of (1.3) in terms of a solution a(x) of the Abel equation 

(2.1) O(T(X)) = a(x) - 1, x e I. 

P r o p o s i t i o n . Let b(x), T(X) € C°(I), b(x) # 0, |a(a;)| = K\b(x)\ for every x e l 

and a suitable K > 0, T(X) < x and T(X) being increasing on I. Then there exists 

an increasing solution a(x) 6 C°(I*) of equation (2.1) and the function 

(2.2) <p(x) = Kcci»x), xel* 

defines a continuous positive and monotonic solution of (1.3). 

P r o o f . Put Xj = T~'(XQ), j = - 1 , 0 , 1 , . . . and denote Lj = [XJ-I,XJ], where 

j = 0 ,1,2, — We consider an increasing function OQ(X) e C°(I0) such that 

a0(x-i) =a0(x0) - 1. 

Then the function 

a(x) = a0(T
n(x)) +n, x € In, n = 0 , 1 , 2 , . . . 

is a continuous increasing solution of (2.1). 

Substituting p>(x) = j f a M into (1.3) it iseasy to check that this function defines 

a solution of (1.3) with the required properties. D 
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R e m a r k 1. We note that the solutions of the Abel equation (2.1) can be given 
explicitly in some important cases (e.g., if T(X) = x — r, T(X) — Ax, T(X) — x1). For 
methods of solving the Abel equation and other functional equations we refer to [10]. 

To study the asymptotic behaviour at infinity of all solutions of (1.1) we first recall 
the following result which is due to I. Gyori and M. Pituk [6], The authors considered 
the equation 

(2.3) Z'(X)=P(X)Z(T(X)), x e l . 

For 
p~~(x) = max(0, — p(x)), xel 

we have 

Theorem 1. Let p(x), T(X) e C°(I), T(X) < x for every x el. If 

(2.4) J \p(x)\ dx < oo, 

then every solution z(x) of (2.3) tends to a finite (possibly zero) constant L 6 R. In 
addition to (2.4) assume that 

(2.5) [ p-(x)dx<l. 
JXQ 

Then for every L e i there exists a solution z*(x) of (2.3) such that lim z*(x) — L. 

Using Theorem 1 it is easy to prove 

Lemma 1, Let a(x), T(X) e C°(I), b(x) e C°(I*), r(x) < x for every xel and 
let 

(2.6) / (\a(x)\ exp | - f b(s)ds\ j dx < oo. 

Ify(x) is any solution of (1.1), then 

(2.7) ljir^ (exp j - f b(s)ds\y(x)j = L € R. 

loose a ^ XQ such that there exists 

lim | exp < — / b(s) ds >y*(x)) 
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Conversely, we can choose a ^ XQ such that there exists a function y*(x) fulfilling 
(1.1) on [a, oo) and 



P r o o f . Put z(x) = exp{—/^ b(s)ds}y(x) in (1.1) to obtain equation (2.3) 

with 

p(x) = a(x) exp \ — I b(s) ds>, x G I. 
I 7T(X) J 

The first part of the statement follows immediately from Theorem 1. To prove the 

second part it is enough to consider a ^ XQ large enough so that (2.5) holds with XQ 

replaced by a. D 

R e m a r k 2. If the integral condition (2.6) is fulfilled and, moreover, 

/ (a"~(x)expl- b(s)ds> J dx < 1, 

where a~"(x) = max(0, — a(x)), x e I, then we can put a = XQ. This case occurs, 

e.g., provided a(x) > 0 for every x a I. 

R e m a r k 3. The assumption b(x) > 0 for every ir € I is not necessary to ensure 

the validity of (2.6). However, in the sequel we consider delays T(X) with the property 

0 < T'(X) <. A < 1. Under such a requirement it is natural to assume positive values 

of b(x) to satisfy (2.6). E.g., if b(x) ^ 5 > 0 and T'(X) <_ A < 1 for every x £ I, then 

it is enough to assume a(x) = O (erx) as x —> oo, 7 < <J(1 — A), to fulfil condition 

(2.6). 

L e m m a 2. Let b(x) 6 C°(I), T(X) e &(!), let b(x) be positive and nonde-

creasing on I, \a(x)\ = Kb(x) for every x <E I and a constant K > 0, T(X) < x 

and 0 < T'(X) 5j A < 1 for every x € I. Assume that f(x) is a continuous positive 

solution of (1.3) given by (2.2). Ify(x) is a solution of (1.1) satisfying 

y(x) = o( exp \ / 6 ( s )ds>) as a-~> 00, 

then 

j/(rr) = O (f(x)) as x -> 00. 

P r o o f . Multiply both sides of equation (1.1) by exp{— f* b(s) ds} to get 

- g [exp J - jT* 6(s) ds}y(a:)] = a(x) exp { - £ b(s) d*}j,(r(a:)). 

Integrating this equality over [x, 00) we obtain 

y(x) = - exp J J ' 6(a) d s } jf°° (o(i) exp { - ^ 6(s) ds} j / ( r ( t ) ) ) dt 
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by using the relation lim (y(x) exp{- /x* b(s) ds}) = 0. 

Put xn~ T~"-(X0), n = 0,1,2,... and assume that M > 0 is such that 

(æ)|^Mexp< / b(s)ds>, x>-x.ђ. 

Then 

|y(ж)| ^ Mexp ' b(s) d s | j™ (|o(ť)| exp | - jf ^ 6(a) dsj> j dť 

= MKexp( [ b(s)ds\ [ ( & ( č ) e x p j - / 6(s)ds j jdí 

< MÍT exp ( /%(s)ds] 

: jf ( I Í H | ( ] M ) 5 [ e x p { - L 6 ( s ) d s 

^MiiTexp-J / fe^ds^^-^-expl- / b(s)ds 

MK r r ( i ) 

1-A 

— - . exp I 1 b(s) ds>, x>- X\. 

Further, repeating this we can deduce that 

MKn ( /"r"(x-1 1 
| j / W Ur-A)...(i-A")e x pUo 5 { s ) d s | ' 0 a ; " ' 

n = 1,2,.... Since 

exp < / b(s) ds > < exp < / 6(s)ds>, x^xn+i, 

n = 1,2,..., we can estimate y(x) as 
(2.8) \y(x)\ < M„A;n

v a;„ s= x < avfi, 

where Mn = ( 1_X);^I-A~) e x P{.C 6 M d s l -
. On the other hand, 

(2.9) \<p(x)\>NKn, xn^x^xn+1, 

where N > 0 is a constant. Summarizing (2.8) and (2.9) we have 

y(x) = O (<p(x)) as x -* oo. 
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Lemmas 1 and 2 yield 

Theorem 2. Let b(x) € C°(I), T(X) G CX(Z), Jet b(x) be positive and nonde-
creasing on I, \a(x)\ = Kb(x) for every x e I and a constant K > 0, T(X) < x 
and 0 < T'(X) <, A < 1 for every x G I. Further, asmme that ip(x) is a continuous 
positive solution of (1.3) given by (2.2). Then for any solution y(x) of (1.1) there 
exists a constant L G R and a function g(x) such that 

(2.10) y(x) = Ly*^) + g(x), x >. a, 

where L, y*(x) and a >. Xo are given by Lemma 1 and g(x) = O (tp(x)) as x -¥ co. 

R e m a r k 4. In the sequel we wish to show that the O-estimate of a function 
g(x) given in Theorem 2 is strong enough. We introduce a change of variables 

(2 11) z(t) - «4-M 
(2J1) z{t)-*w)y 
where ip(x) G C1(J), \ip(x)\ > 0 on /, is a solution of the functional equation 

(2.12) a(x)ip(r(x)) + b(x)tp(x) = 0, xel 

and h(t) = a~1(t) on a(I), a(x) 6 CX(I) being a solution of the Abel equation (2.1) 
such that a'(x) > 0 for every xel. We note that the existence of a solution a(x) of 
(2.1) with such properties is ensured provided T(X) 6 C1^), T(X) < x and r'(x) > 0 
for every xel (for more information about the transformation theory of functional 
differential equations see [11]). 

If we assume \a(x)\ = Kb(x) for every xel and a constant K > 0, then equation 
(2.12) admits the solution ip(x) = Ka(x\ where K = -Ksigna(x0). 

Transformation (2.11) converts equation (1.1) into the form 

(2.13) w(t)z(t) + p(t)z(t) - z(t - 1) = 0, 

where 

w(t)= * . ,P(t) = l + ^f)
W(t) = l + lnKw(t) 

V ' -b(h(t))h(t) Fy' V(AW) 

and thus equation (1.1) becomes the type discussed by N. G.de Bruijn in [2]. The 
relevant theorem reads as follows: 



Let B and g be positive constants, Q > 1, and suppose that for %>.\ the functions 
wn(t) and p^n\i), n = 0,1,2,..., are continuous and satisfy 

(2.14) \wM(t)\<Bn+1nnrn-e, \{p(t) - \}M\ < Bn+1nnt-n~e (0° = 1). 

Then, if z(t) is a solution of (2.13) and lim z(t) = 0, we have z(t) — 0. 

Now we substitute back transformation (2,11) to obtain (with respect to <p(x) — 
\4>(x)\) the following result: 

In addition to the assumptions of Theorem 2 we assume that conditions (2.14) 
with the above specified w(t) and p(i) are fulfilled for t >• 1. Then all conclusions of 
Theorem 2 remain valid and, moreover, if the function g(x) satisfies g(x) = o(ip(x)) 
as x ->• oo, then g(x) is the identically zero function on [cr, oo). 

We note that both inequalities contained in (2.14) coincide provided \a(x)\ = 
Kb(x). 

3. APPLICATIONS 

In this section we give two examples to illustrate the above results. 

E x a m p l e 1. We consider the equation 

(3.1) y'(x) = axy(Xx) + bxy(x), x 6 [1, oo), 

where a ^ 0, b > 0, 0 < A < 1. Functional equation (2.12) becomes 

axip(Xx) + bx-tp(x) = 0, x e / 

and has a solution ib(x) = x13, 3 = —=-=V Then 
log A-1 

<p(x) = mx)\=xW, 1/3! = ^ ! -

is a solution of (1.3), where a(x) = ax, b(x) = bx, T(X) = Xx. The Abel equation 
(2.1) can be read as 

a(Xx) = a(x) - 1, x e [1, oo) 

and admits a solution a(x) = -—|—r with positive derivative on [l,oo). Then 
log A"1 

h(t) = a~l(t) = A~*. Now it is easy to verify that the assumptions of Theorem 2 
and Remark 4 imposed on a(x) = ax, b(x) = bx, T(X) = Aa: are satisfied and we may 
summarize the results as follows: 
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Consider equation (3.1), where a ^ 0, b > 0 and 0 < A < 1. Then there exists a 

a >• x0 and a function y*(x) fulfilling (3.1) on [<r, cc) such that 

y*(x) ~ exp < -x2 > as x -> oo. 

Furthermore, for any solution y(x) of (3.1) there exists a constant £ £ R and a 

function g(x), g(x) — O (x^'1) as x -J- oo, /? = r1-r, such that 
log A 

j/(a;) = i V ( s ) + g(x), x > <r. 

If g(x) = o (a;''3') as x —> oo, then <?(ar) is the zero function on [<r, oo), i.e., y(x) is a 

constant multiple of y*(x). 

E x a m p l e 2. We apply our asymptotic results to equation (1.1) with a(x) = 

—b(x), i.e., we consider the equation 

(3.2) y'(x) = b(x)[y(x) - y(r{x))], xel, 

where b(x) 6 C°(I), T(X) € C1^), b(x) is positive and nondecreasing on / , r(x) < x 

and 0 < T'(O;) ^ A < 1 for every x 6 J. Equations (2.12) and (1.3) with a(x) = ~6(a;) 

admit a constant solution. Then we get the following statement: 

Let the above introduced assumptions on b(x) and T(X) be fulfilled. Then there 

exists a <T ^ a:0 and a function y*(x) fulfilling (3.2) on [<r, oo) such that 

y*(x) ~ exp < / b($) ds > as x —> oo. 

Furthermore, any solution y(x) of (3.2) can be represented in the form 

(3.3) y(x) = Ly*(x) + g(x), x >-a, 

where i € B is a constant depending on y(x) and g(x) is a bounded function fulfilling 

(3.2) on [<r,oo). Assume that conditions (2.14) specified in Remark 4 are fulfilled. 

If the bounded function g(x) tends to zero, then g(x) must be identically zero on 

[<r,oo). 

Equation (3.2) has been studied by several authors, usually under the assumption 

T(X) = x ~ r or, more generally, r(x) = x — r(x), r(x) being bounded (see, e.g., 

Atkinson and Haddock [1], J. Diblik [5] and S. N. Zhang [12]). We mention the result 

derived in [5], where equation (3.2) has been considered under the assumptions b(x), 

T(X) e C°(I), b(x) > 0, T(X) < x, where T(X) is increasing and r(x) =x — r(x) is 
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bounded for every x e I. It is interesting that the structure formula derived in [5] 
for solutions y(x) of (3.2) coincides with formula (3.3) including the boundedness of 
g(x) even if our assumption T'(X) SJ A < 1 implies that r(x) = X — T(X) is unbounded. 
Therefore our approach enables us to extend some asymptotic results to a wider class 
of equations (3.2). 

A c k n o w l e d g m e n t . The author thanks the referee for his valuable remarks. 
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