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ABSTRACT RESULT 

Let B be ah ordered Banach space with an order cone P,UcB and let A: U ~» U 
be a continuous operator. 

The operator A is order preserving if x < y =*• A(x) ^ A(y), strictly order pre­
serving if x < y =*- A(s) < -4(y), strongly order preserving if a; < y => .4(2;) <C A(j/). 
(a; <£ y means y - x e intP.) 

An element x e U is called a subequilibrium (superequilibriurn) provided x <_ Ax 
(x >• Ax). A sub- or superequilibriurn is called strict if the strict inequality holds. 

We denote [v,w] = {u e B; v <_ u <_ w}. 

Theorem 1. [1] Assume that v, w, v < w are a sub- and superequilibriurn, 
respectively, of an order preserving operator A, the interval V = [v,w] C U and 
A(V) is a relatively compact set. 

Then A: V -+ V and there are a minimal and maximal fixed points, say g, r, such 
that the set F of all fixed points of A in V is a subset of the interval [e,r]. 

A sequence (xn)n^z in U such that xn+i — Axn, xn —» x~~ for n —t —00, xn -> x+ 

for n —> 00, x~, x+ 6 U is called an entire orbit connecting x~ with x+ • 

Theorem 2. [5, Proposition 2.1] Let v,\ < u% be fixed points of a strictly order 
preserving continuous operator A: U -+-U. Let W = [ui,^] C U and A(W) be 
relatively compact. 

Then precisely one of the following three cases occurs: 
(a) there is another fixed point of A in W, 
(b) there is an entire orbit consisting of strict subequilibria, connecting u\ with u%, 
(c) there is an entire orbit consisting of strict superequilibria, connecting u-z with 

Let us consider again the situation when A: V ->• V, V = [v,w], v < w are sub-
and superequilibria. 

The fixed point « 6 V is called stable with respect to V if for each e > 0 there is 
S > 0 such that An(x) € 0(u, e) for each x 6 0(u, 5) n V and each n € N. 

Under the assumptions of stability of each fixed point u 6 V and the relative 
compactness of the set A(V) it is proved that the set of fixed points of a strongly order 
preserving operator A: V ->• V is a continuous totally ordered curve [5, Theorem 3.3]. 

Under weaker assumptions we obtain the following result. 

Theorem 3. Let A: V -> V be a strictly order preserving continuous mapping, 
A(V) be a relatively compact set. Assume that all fixed points of A are stable with 
respect to V. 
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Then the set F cV of fixed points of A is connected. 

The proof is based on the following lemma. 

Lemma. Let the assumptions of Theorem 3 be satisfied and let 1/1,3/2 € V, 
V\ < 3/2 be fixed points of A. Then there is a continuous totally ordered curve of 
fixed points of A connecting y\ with y2. 

Proof . As the set A(V) is relatively compact, the set F of fixed points of A 
is compact and there exists a countable dense subset F0, Fo = F. We denote by 
span(F0) the spanning set of F0 and E\ = span(F0). Obviously E\ is a separable 
closed subspace of E. We denote by P\ = PnE\ the positive cone in E\. As y\, y% € F, 
V\ < 3/2 we have 3/2-3/1 6 PnJSi. Moreover, the cones P, P\ induce the same ordering 
on the set F. 

As E\ is a separable Banach space, there is a strictly positive linear functional 
x* '6 Pi* [2]. Obviously for each «i,U2 € F we have uj < «2 =* x*(u\) < x*(u2). 
Let F\ be the set of fixed points of A in [3/1,3/2]-

Denote Z = {U C F%, U is a totally ordered set, y-\ e U, y2 6 U}. The set Z is 
inductively ordered by the set inclusion. Denote by U+ the maximal element of Z. . 
As U+ is a totally ordered set, x* is a homeomorphism of U+ onto a closed set 
x*(U+). 

We claim x*(U+) is connected. Supposing the contrary there are ua,up € U+ 

such that x*(ua) = a, x*(U/3) = 0, a,0 € x*(U+) and (a,/3) C R\x*(U+). That 
means [«a,U/3] contains no fixed point, 

The assumption of stability of fixed points implies that there is no strict superequi-
librium in 0(up,6) n [ua,Ufj] and no strict subequilibrium in 0(ua,8) D [ua,Uj}] for 
8 sufficiently small. 

Thus we have obtained a contradiction with Theorem 2 as neither case (a), nor 
cases (b), (c) occur. 

D 

Proo f of T h e o r e m 3. Theorem 1 implies there are a minimal and a 
maximal fixed point g, r and that F C [e,r], 

lir = e, the set F is a singleton. 
If r > Q then for each u G F there are continuous totally ordered curves of fixed 

points of A connecting Q with u and u with r. That means F is connected. 
D 

Corollary. Assuming Q ^ r the set F C V is a union of continuous totally 
ordered curves of fixed points of A connecting Q with r. 
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The above Corollary completes the cascade of results of KrasnosePskij and Lus-
nikov [6] conperning the relations between the type of monotony and the structure 
of the set of fixed points. The authors in [6] use another assumption instead of the 
stability of each fixed point. They assume the interval [g, r] is degenerated, i.e. there 
is no strict sub- or superequilibrium inside. 

The following theorem presents a summary of results of Krasnosel'skij and Lus-
nikov (parts (a),(b) and (d)) and ours (part (c)). 

Theorem 4. Let an interval V — [g, r] be degenerated for a completely contin­
uous operator A: V -+ V. Then 
(a) the set F of fixed points of A forms a continuous branch in V (i.e. F has a 

nonzero intersection with the boundary <9ft of each bounded open set fi such 
that r e d and Q £ ft); 

(b) if the operator A is order preserving then F contains a continuous curve; 
(c) if the operator A is strictly order preserving then F is a union of continuous 

curves; 
(d) if the operator A is strongly order preserving then F is a continuous curve. 

R e m a r k . The assumption of degeneracy of the interval [Q, r] can be slightly 
weakened by assuming that for each fixed point x € [g,r] there is 0 << S such that 
there is no strict sub- or superequilibrium in the interval [x, x + S] D [g, r]. 

APPLICATION 

We are interested in the structure of the set of solutions of the periodic boundary 
value problem 

(1) u" + f(t,u) = 0, 

(2) «(0) = u(2ii), «'(0) = W'(2TC), 

where / : / x R - > K i s a continuous function. 
We assume that there are constants a, b € R such that 

(i) there is a lower solution a and an upper solution /3, a, /3 £ C'2 (I), of the problem 
(1), (2) such that a < a(t) <_ /3(t) s= b, 

(ii) there is a constant M > 0 such that for each u,v € [a, b], t e I, if u ^ v then 
f(t,v)-f(t,u) ^-M2(v-u), 

(iii) the function f(t,.) is nonincreasing in the variable x for a <, x < 6. 
Using the existence result and the method of Lakshmikantham and Leela [8] we 

obtain that under the assumptions (i), (ii) there are maximal and minimal solutions 
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r(t), g(t) of the boundary value problem (1), (2), and that for each rj £ [0,6] C C(I) 
the linear problem 

(3) -u" + M2u = f(t, V) + M'rj, 

«(0) = «(2JI), U'(0) = W'(2K), 

has the unique solution 

„M( (t e-Mt (t 

u(t) = Cle«* - c2^
Mt - ~ j a(s)e~Ms ds + — J a(s)eMs ds, 

where 
e2M% r2% 

C^2MW^T)L ff(s)e_M'ds' 
C2 = 

and 

= 2m^T)Ca{a)eMsds> 

a(t)=f(t,V) + M2
V. 

The operator A = V -+ V, V = [a, b] C C(I) defined by A(V) = u, u being a 
solution of (3), (2) is relatively compact and strictly monotone [8]. 

Let x(t) be a fixed point of A and let S be a constant. We denote 

A(x(t) + S) = x(t)+e(t). 

Rom the definition of A we obtain that e(t) is a solution of the boundary value 
problem 

-e(t)" + M2e(t) = F(t), 

e(0) =e(2%), e'(0) =e'(2n), 

where F(t) = f(t,x + S) - f(t,x) + M2S. 
The assumption (iii) implies that |e(t)| ^ |<5| and that each fixed point of the 

operator A is stable. Theorem 3 implies that the set of solutions of the boundary 
value problem (1), (2) is connected. 

R e m a r k . Our example is only an illustrative one. The direct computation yields 
that r(t) — g(t) = Go, where Co is a nonnegative constant and the solution set has the 
form S = {g(t) + c; c e [0,c0]}. See [9, Theorem]. 
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As our second application we give the result concerning the structure of the set of 
solutions x(t) 6 C(I), I = [0,1]) of the integral equation 

(4) x(t) = IK(t,s)f(s,x(s)) ds. 

We assume that 
(i) the function K(t, s): I x I -+ R is continuous and 0 sg K(t, s), 

(ii) the function fit,.) is increasing in the variable x, 
(iii) there is a lower solution a and an upper solution 0, a,0 6 C(I), a(t) ^ P(t), 
(iv) the function / is continuous and there is S > 0 such that 

f(t,u + S)-f(t,u)<^ 

for each t 6 i" and u G [a(t), f3(t)\, where me R and 

m = / K(tus)ds = ma.x K(t,s)ds. 
Jo t^1 Jo 

(v) K(t,s) is not identically zero in any subset / x [s1;s2], si,S2 € I. 
The operator A: V -» V, V = [a,/3] C C(I) defined by A(rj) = u, where 

U(ŕ) = ^ i Ц ŕ , s ) Ж Ф ) ) d s , 

is relatively compact and strictly monotone. 
Let x(t) be a fixed point of A, and let S > 0 be a constant. 
Then ' 

A(x(t)+S) = x(t)+s(t). 

where e(t) is given by 

e(t) = [ K(t, s)F(s) ds, 

F(i)=f(i,x(t)+S)-f(t,x(t)). 
The assumption (iv) implies e(t) < 5. 
Thus the solution x(t) is stable. Theorem 3 implies that the set of solutions of the 

integral equation (4) bounded between a(t) and 0(t) is connected. 
In the paper [3] it is proved that under assumptions somewhat weaker then (i)-

(iii) the set of solutions is a complete lattice. Adding the assumptions (iv), (v) we 
obtain that this lattice is connected (in topology of C(I)) and is either a singleton 
or a union of totally ordered continuous curves. 
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