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SOME APPLICATIONS OF KURZWEIL-HENSTOCK INTEGRATION 

RUDOLF VÝBORNÝ,1 Kennmore 
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Summary. Applications of ideas from Kurzweil-Henstock integration to elementary anal
ysis on R, mean value theorems for vector valued functions, PHospital rule, theorems of 
Taylor type and path independence of line integrals are discussed. 

Keywords: Perron integral, KH-integral, fundamental theorem, PHospital, Taylor, differ
entiation of series. 

A MS classification: 26A39, 26A24 

1. INTRODUCTION 

One of the main features of the Perron integral is that it integrates every derivative 
without any restriction. It seems that this property was not fully exploited e.g. in 
teaching of analysis, because of the nonelementary character of Perron's definition. 
In 1957 Kurzweil [K], in connection with research in differential equations, gave an 
elementary definition equivalent to the Perron one, moreover the proof of the fun
damental theorem became then extremely simple. For KurzweiVs own presentation 
of the theory see [Kl]. Henstock later [H] independently rediscovered Kurzweil*s 
approach and advanced it further [Hl-4]. It is the aim of this paper to give sev
eral applications of these ideas in elementary analysis. Only the most rudimentary 
knowledge of K-H integration is needed for understanding of this article. 

1 This work was partly done while working at UBC and supported by a NSERC grant. 
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2. NOTATION, BASIC FACTS 

A partition of a compact interval [a, b] is a set of couples ((*, J*) such that the 
points (* € [a,t], the intervals Ik are non-overlapping and 

(1) lJ / * = [o,6]. 
1 

The set of couples (&, Ik) satisfying all the above properties except (1) is called a 
subpartition. A partition is, of course, also a subpartition. A subpartition with the 
additional property that £* € h is a P-subpartition. We shall be dealing only with 
P-subpartitions and shall omit the qualifying letter P. Often it will be convenient to 
have the intervals, /* =- [ufc,t>*], ordered hence for a partition II 5 {&, [ft*, v*]} we 
have 

II S a = Ui ^ & ^ Vi = U2 ^ 6 ^ ^2 < • • • < in ^ *n - &. 

U6: [a, 6] .—• (0, oo) then a partition II for which 

Si - 6(Si) < m ^ & ^ Vi < ̂  + 6(Si) 

for all j with 1 ^ t ^ n is called a 6-fine partition of [a, 6]. It is obvious what 
we mean by a 6-fine subpartition. The set of all tf-fine partitions will be denoted by 
9*(6). Hence, instead of saying that II is tf-fine, we write II € &(6). For any positive 
function 6 and any compact interval [a, 6] a 6-fine partition of [a, b] always exists. The 
existence and the use of j-fine partitions has been traced by Mawhin [Ma] to Cousin 
in the last century. We shall refer to the statement guaranteeing the existence of a 8-
fine partition for any positive function 6 as to Cousin's lemma. The contrast between 
the early discovery of Cousin's lemma and rather late arrival of Kurzweil-Henstock 
integral is a bit surprising. As Hadamard once said: "In mathematics simple ideas 
come late." 

3. REAL LINE APPLICATIONS 

It has been shown, for instance in [VI], that £-fine partitions can be used advan
tageously in teaching analysis on the real line. 

As a a first example we prove the Bolzano-Cauchy convergence principle. The 
usual argument can be used to show that a Cauchy sequence must be bounded. 
Next we show that if n H-> xn is a Cauchy sequence and x is not a limit of n .-• xn 

then there exists 6 > 0 such that the interval (x — 6, x + 6) contains only a finitely 
many xn. Indeed, there exists a subsequence ib *-+ xnk and a positive £o such that 
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\x - Xnk\ ^ So for all k. Since n i-> xn is Cauchy there is an integer iV such that 
\xn - x m | < eo/2 for n > N and m> N. Consequently, for some xnh with n* > N 

and all n > N we have |x — xn\ ^ |a? — x n J — \xn% —xn\> eo/2 = 6. Assume now, 
contrary to what we want to prove, that no a: € [—K, K] is a limit of our sequence 
and that the interval [-K,K] contains all xn. By Cousin's lemma there exists a Wine 
partition of [—K,K]. This partition has finitely many intervals and each of them 
has in turn only finitely many xn. This contradicts the fact that [—K, K] contains 
all xn. 

Cousin's lemma has been shown to be equivalent to the least upper bound axiom 
and has been used in the proofs of the following theorems: Bolzano-Weierstrass, in
termediate value theorem, uniform continuity, uniform approximation of continuous 
functions by piecewise linear functions, Weierstrass' theorems on boundedness and 
extreme values of continuous functions and others. We shall not repeat these proofs 
here but refer to articles by Botsko [Bo], [Bol], Bullen [B] and the author [VI]. Be
sides all this there is a host of theorems asserting something about the increment of 
a function from some information concerning the derivative. The simplest example 
is: f > 0 =-> / increasing, a more sophisticated example is: / absolutely continuous, 
g increasing and | / ' | ^ g a.e. implying |/(6) - f(a)\ ^ g(b) - g(a). We shall prove a 
most general theorem in this direction but we need some definitions first. We shall 
say that F: [a, 6] «—• C varies negligibly on a set M C [a, 6] if for every e > 0 there 
exists a 6: [a, 6] H-> (0,OO) such that for every 6-fine subpartition II, with all & €E M 

we have 

(2) j2\F(v<)-FM\<e-
n. 

Examples of F varying negligibly on M are: 

(1) M countable and F continuous on Af; 
(2) M of measure zero and F absolutely continuous; 
(3) M = [a,fJ] C (a, 6) and F constant on M and continuous at or and /?. 

We shall say that F has the strong Lusin property if it varies negligibly on every set 
of measure zero. Instead of saying that F varies negligbly on M or that F has the 
strong Lusin property we shall say that F € VNM or F € SL, respectively. 

Theorem. Substitute for the Cauchy Mean Value Theorem. IfF: [a, 6] H-> 
R varies negligibly on M, g is increasing and 

(3) \F'(x)\^g'(x)torxtM 

then 

(4) \F(b)-F(a)\<g(b)-g(a). 

427 



Corollary. Inequality (3) implies (4) if 

a. F has the strong Lusin property and M is of measure zero; 
b. F is absolutely continuous and M is of measure zero; 
c. M is countable and F is continuous on M. 

Proof of the t h e o r e m . For every e > 0 and every £ £ M there is a 
positive 6 such that 

(5) \F(v)-F(u)\<([F'(0\ + e)(v-u) 

and 

(6) g'(0(v - ti) < g(v) - g(u) + e(t> - u), 

for 

(-*<tt<£0<( + «. 

By (3), (5) and (6) we have 

\F(v) - F(u)\ < g(v) - g(u) + 2e(v - u). 

We define 5 on M by using the fact that F G VNM then we have (2). If now 
II € &{$) we obtain 

\F(b) - F(a)\ = £ |F(nO - F(u,)t ^ £ |F(*,) - F(«,)| 
t= l C.€A# 

+ £ w».) - *•(«.)..< £ !*(•») - *(«<)+2e<u« - u<)i+e 

tiiM (if* 
<g(b)-g(a) + e[2(b-a) + l] 

a 
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4. A MEAN VALUE THEOREM 

The Mean Value Theorem is, generally speaking, not valid for complex or vector-
valued functions. There are two types of valid generalizations. In the first the 
equation f(b)-f(a) = / ' ( c ) (6 -a) is replaced by an inequality, for a complex-valued 
/ this inequality reads \f(b) - f(a)\ ^ \f'(c)\(b - a). This was already known in 
1876 to Darboux and was extended to linear normed spaces by Aziz and Diaz. The 
assertion in the second generalization states that the quotient [f(b) — f(a)]/(b — a) 
lies in the convex hull of the range of the derivative. For linear normed spaces this 
theorem is due to Wazewski but for complex valued function goes back as far as 
Weierstrass. Both generalizations can be established by the same method used in 
the proof of the Cauchy mean value theorem below. For sake of simplicity we restrict 
our attention to a normed space X, denote the norm by | • | and extend the notion of 
a vector valued F varying negligibly on M by interpreting | . | in (2) as the norm. If 
A C X then cl_4 and co_4 denotes the topological closure and the convex hull of A, 
respectively. The clco A stands for closed convex hull of A which is both the closure 
of co _4 and the smallest closed convex set containing A. 

The Cauchy Mean Value Theorem. If 

(a) F:[a,b]~X; 

(b) g is strictly increasing on [a, b]; 

(c) there is a set M such that F'(x) and g,(x) exist with §'(x) £ 0 for x £ M, 

moreover [a,b]\M ^ 0; 
(d) both F and geVNM; 

(e) S> = {F*(z)tf(z);xe[a,b]\M} 

then 
F(b)-F(a) 
9(Ъ)-9(a) 

Є clcoS). 

R e m a r k . A statement similar to the Corollary holds, in particular, the theorem 

remains valid if (d) is replaced by 

(d ;) both F and g are continuous on [a, b] and M is countabie. 

P r o o f . Choose S € [a,&]\ M. Let e > 0. By using (d) we define 6 on M in 
such a way that 

J2\F(vi)-F(ui)\<ey(b)-g(a)] 
n. 

v ) F'C^\ _ 

• Ek(«o - *(«oi < em -»(«)) 
n, 

4m 
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for any 6-fine subpartition II, for which all £ € M. It follows from the definition of 
derivative by simple calculation that for every £ g M there exists a positive 6 such 
that 

(8) 

for 

F(v)-F(u)-^Q(g(v)-g(u)) < є(9(v) - »(«))• 

Let II e &(6) and define 

7 - SГ Г W z*- Ъ~ж 
^(6)gK)-g(«.) , ^(5) v g(vi)-g(ui) 
*(&) g(b)-g(a) g'P) /-< g(b)-g(a) • 

Clearly Zn G coO. We complete the proof by showing that Zn comes arbitrarily 
close to (F(b) - F(a))/(g(b) - g(a)). Firstly we have 

F(b)-F(a)= £ F(vi)-F(щ)+ £ F(vf) - F(щ) 
CiЄAf UІM 

and then by (8) 

Y, (HVÍ) - HUÍ) - J§^^(VÍ) - </(«.))) | < e (g(b) - g(a)) 

This together with (7) gives 

F(b)-F(a) 

g(b)-g(a) 
-Z„ <3є. 

D 

C o m m e n t s , c o u n t e r e x am p ies . The theorem can be extended to locally 
convex topological spaces but not much further. There is an example of a function 
F and a linear topological space X such that F: [a, 6] .-• X, the derivative F' equals 
zero everywhere on [a, 6] and F is not constant. See [R] or [Ya, p. 14]. 

Let 

^{JШ^^У 
It is a direct consequence of the above Cauchy Mean Value theorem that Q C clco 3) 
and hence clcoO C clco 2). On the other hand 2) C clfl C clco.Q, consequently 
clco 2) C clco £2. Hence we have: 
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Corollary to CMVT. clcoS) = clcofl. 

If X is finite dimensional then there is a linear variety of smallest possible dimen
sion containing coS), call it H. Then (co©)°, the interior of coS) relative to /f, is 
not empty and we show that 

9(b) - ff(a) 

Assume now, contrary to what we want to prove, that q is not in (coD)°. Then 
there exists a supporting linear variety at q, i.e. there is a linear functional p and a 
real a such that p(q) — a and p(x) ^ a for all iGcoS). However, there must be at 
least one interval [u,v] such that 

,F(v)-F(u). 

otherwise H would not be minimal. Now we have2 

«*-«. - g(°)-g(a)~ p{q)-wrw)p (F(u)-F(á)\ 
\9(u)-9(a)J 

9(v)~ g(u) (F(v)-F(u)\ 
g(b)-g(a)P\g(v)-g(u)J 

g(b)-g(v)jF(b)-F(v)\ 
g(b)-g(a)P\g(b)-g(v))<a' 

a contradiction. 
If X is not finite dimensional then q need not lie in coD, the closure is essential. 

An example showing this is again in [Ya]. The CMVT can be further generalized, 
any limiting value of (F(v) - F(u))/(g(v) - g(u)) can be used in the definition of © 
instead of F'(Z)/g'(£)y see e.g. [Mel]. Unfortunately, our method does not seems to 
be easily adaptable to such an extension. 

5. FUNDAMENTAL THEOREM 

/ : 

In Kurzweil-Henstock theory the formula 

F' = F(b) - F(a) 
fa 

holds for a continuous F if 

(i) the derivative F' exists except possibly a countable set M\ 
(ii) the derivative F' exists almost everywhere on [a, 6] and F G SL. 

1 If u == a or b SB v the undefined terms should be omitted 
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There are other conditions under which the equation above holds but these two suffice 
for our purposes. Of course, if (i) holds then so does (ii), we stated (i) because of its 
frequent use. 

5.1. Differentiation of series. The general theorem on term by term differen
tiation of series is usually considered to be out of reach of an average undergraduate. 
For instance, E. Landau—who certainly would not exaggerate difficulty—says in his 
book [La] that the proof of the theorem on differentiation of series term by term is 
one of the most difficult in the whole book. We are going to give a simple proof of 
the following 

Theorem. Let us assume that 

(A) the condition (ii) is satisfied with F replaced by Fn} for every n 6 N; 
(B) for some c £ [a, b]9 the sequence n »-> Fn(c) converges, say to F(c); 

(C) the sequence n *-• Fn converges uniformly almost everywhere to g} say. 

Then the sequence n •-* Fn converges uniformly on [a, 6] and the limit function F is 

differentiate at every x for which lim Fn(x) exists and then F'(x) = g(x). 
n—foo 

R e m a r k . The most important case is, of course, when lim F' exists every-
n—»-oo 

where on (a, 6); the function F is also differentiate everywhere on (a, 6). 

P r o o f . Firstly 

Fn(«) = F(c) + jTfi. 
By uniform convergence 

F(x) = F(c) + jXg. 

Moreover the convergence of Fn to F is clearly uniform. Assume now the existence 

of 
lim Fn(x). 

n—>oo 

For a positive e there is a natural n such that Fn(x) exists and 

ft+h 
\Fn(x)-g(x)\<e and 

1 гs+л 

Ц (g(t)-Fn(t))dt <є. 

Since 

F(x + h) - F(x) . _ 1 Ѓ+h 

h 
-9І*)±ïJ (g(t)-Fn(t))dt 

+ fi('łt|-R(<) - F'(x) + F'(x) - g(x), 
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we obtain 

F(x + h) - F(x) 
-g(x) <2є + 

Fn(x + h)-Fn(x) 
-K(*) 

By the choice of x and n there exists a positive S such that the last term is less than 

e for 0 < \h\ < 6. Consequently 

F(x + h)- F(x) 
-g(x) <3e. 

D 

5.2. L'Hospital rule. This rule is not valid for complex valued functions. For a 

counterexample define 

f(x) = y/x, gi(x) = y/x + xsinx *, g^(x) — y/x+ xcosx - ì 

and have 

lim/(x) = 0, 
arjO 

lim(gi(x) + ig2(x)) = 0i 
j?io 

л«) i 
lim • , x # __ 
*A0 0i(s) + *02(-c) l + i 

lim „ {'(*) „ x = 0, 
*|o 0i'(x) + i$f2'(*) 

Using the Fundamental Theorem, we prove below a theorem which states the ad

ditional conditions under which ^Hospital's rule remains valid for complex valued 

functions. 

T h e o r e m . If /, g: (0, b) t-» C are continuous, 

\imf(x) = \img(x) = 0, 
ar|0 arj.0 

the inequality g(x) ^ 0 hoick for all x € (0,6), the derivatives / ' and #' exist on [0,6] 

except a countable set M, 

(9) r J? 1 (̂01^ ^ 
hmsup JV , •;• . , — = A < oo, 

*i0 |jf(*)l 
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and for every sequence xn —• 0 with xn £ M we have 

(io) lim 4 r 4 = L e c, 
0'(*n) 

then 

rjo flf(x) 
шm.L. 

R e m a r k . If Af is empty then (10) can be rephrased in the usual way as 

\imf'(x)/g'(x) = L. 

P r o o f . It follows from (10) and (9) that for every positive e there is a positive 

6 such that for 0 < x < 6 

\f'(x)-Lg'(x)\<e\g'(x)\, x$M 

and 
('\g'(t)Ut 

J o | y v n— < K + 1 
W-)l 

Consequently, for every x with 0 < x < 6, we have 

' < * > - ! 
.?(» 

|J?(Г(Q-if>(«))d.| cff 1̂ (01 di 
W«)l ^ lf(«)l < e ( K + 1)-

D 

C o m m e n t s . The limit passage x [ 0 can be replaced by any of the following: 

ic | o, x | a, a: -• o, x ->oo and a, —* —oo with obvious changes to the theorem. 

The Fundamental Theorem was used in the proof of l'Hospital rule first probably by 

Huntington [Hu] and advocated by Boas [Bs]. The assumption (9) was introduced 

by G. Szabo [S] in case of real and absolutely continuous / and (/. A discussion for 

one-sided derivatives is given in [VN]. As with many other theorems in mathematics, 

1'HospitaPs rule is wrongly named—the theorem was discovered by Johann Bernoulli 

who communicated it in a letter to marquis l'Hospital. 

5.3. The Taylor Theorem. It is sometimes stated even in very good texts that 

the Lagrange and Cauchy form of remainder are more general than the integral form. 

This is not as much a statement about the nature of the theorem as it is about the 

concept of the integral used in these formulae. Let us denote 

T» = /(a) + f'(a)(b -«) + ... + r ( « ) ^ r ~ 
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and 

(11) Rn+l= f^+^lzJLdt. 
Ja n! 

The usual Taylor's formula with integral remainder 

(12) f(b) = Tn+Rn+l 

holds under the mere assumption that / ( n ) is continuous on [a, 6] and / ( n + 1 ) exists 
on (a, b) except possibly a countable set. However, the integral (11) ought to be 
interpreted as a Kurzweil integral. With our fairly general assumption on / ( n + 1 ) , 
the identity (12) is valid neither with Lebesgue nor with Riemann integral. Since the 
derivative need not exist everywhere on (a,b) the Lagrange (or Cauchy) remainder is 
not valid either. On the other hand it is possible to prove the mean value theorem of 
integral calculus for the KH-integral and use it to deduce the Lagrange (or Cauchy) 
remainder under the additional assumption that / ( n + 1 ) exits everywhere on (a, b). It 
is therefore fair to say that the integral form of the remainder is more general than 
either Cauchy's or Lagrange's. For proofs and details we refer to [T] or [Tl]. 

Our aim is to estimate the difference 

<? - tm T *K») fna + b\ (*-«)" 

Assuming continuity of / ( n+ 2 ) , Poffald [Po] obtained the formula 

for some f £ (a, 6). We give a different (simpler) proof and remove the continuity 
assumption. We now have 

Modified Taylor's formula. There exists a positive continuous function Kn, 

n G N with 

(14) fhK - " ( 6 Z f T + 2 

such that if / ( n + 1 ) is continuous on [a, 6] and /(*+2) exists on (a, 6) except possibly 

a countable set then 

(15) S n + i = / Kn(t)fl«+*\t)dt. 
Ja 
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R e m a r k . Let H denote the Heaviside function, i.e. let H(t) = 0 for t < 0 and 
H(t) = 1 for t > 0. Explicit formula can be given for Kny namely 

(16) Kn(t) = j^jy \(b - <)n+1 + (b - a)nH (I£±-* - 1 ) ((» + 1)< -, „a - 6)]. 

Accepting (16) as the definition of Kn, it is easy to verify (14). Equation (16) shows 
that Kn is continuous on [a, 6]. By using the formula [H(a — t)(t — a)]' = H(a — tf) 
for t:/ a we see that 

(17) Kn(t) = l[-(b-tr + H(^-t)(b-ar}. 

Clearly,.#£ > 0 on (a, *$£) and KTn(a) = 0, consequently A'„ ^ 0 on [a,6]. If 
f(n+2)(t) exists for every t 6 (a, 6) then as a derivative it has the intermediate value 
property. Hence we can use the mean value theorem of integral calculus on the 
integral in (15) and (14) leads directly to Poffald's result (13). The example of 
f(t) -=z \tfl%\ with a = - 1 , 6.= 1, n ±= 1 shows that if /<n+2) does not exist at one 
point then formula (13) may fail. 

R e m a r k . For the proof we need integration by parts. It follows from the 
Fundamental Theorem that the the usual formula 

(18) / Fg = F(6)G(6) - F(a)G(a) - / fG 
J a Ja 

holds if F and G are continuous on [a, 6], F' = / and G' = g on [a, 6] except a 
countable set and one of the integrals in (18) exists. 

P roo f . We employ the definition of Tn and (12) and obtain 

(•9) Snw = ̂  + 1_ [/«> ( ^ ) -,<»>«] < t i ; 

and with the use of the fundamental theorem, (11) and (17) 

(20) 5n+1 = Rn+i -V^J^fW :- - jT>+l>JC 
Since Kn(a) a Kn(b) -== 0, integrating the last integral in (20) by parts completes 
the proof. D 
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6. A LINE INTEGRAL 

In this section the letters G and 5 will stand for an open set and an open star-
shaped set in Rn, n ^ 2, respectively. We denote by d(M), A(M) and p(M) the 
diameter, the two dimensional area and the perimeter3 of M, in that order. A 
generic point in Rn will be denoted by (xl

yx
2>.. . , s n ) , hence for a mapping F: 

G >-+ Rn we have F = (F\F2
} ...Fn) with F4: G H R 1 . Partial derivatives will 

be denoted by subscripts, consequently d/dxiF* = F\. The word path will be used 
for a continuous map of bounded variation from an interval in R into Rn. We shall 
allow a slight abuse of notation and use the same symbol for a closed path and 
its geometrical image (correspondingly oriented). By a line integral f F(x)dx or 

n 
/ YL Fx(x) d-P* we understand the Kurzweil-Henstock limit of the Riemann sums 

l 

EE^CvfeWK)-^'^)). 
k t.=i 

It is a classical result that if F has continuous partial derivatives in S and 

(21) fyx) = Ffa) 

for all x E S then the line integral is independent of the path and there exists a 
function U with Uti(x) = F*(x) for all x £ S. Moreover U is obtained by choosing an 
arbitrary point x0 in 5 and integrating F from XQ to a variable point x along any path 
in 5. Our aim in this section is to reduce the assumption of continuous derivatives 
to mere differentiabilty of F. Results of this nature can be also obtained by using 
the work of Jarnik, Kurzweil, Schwabik, Mawhin and Pfeffer, however proving the 
Stokes theorem in sufficient generality is a rather sophisticated matter (perhaps 
not quite necessary for this purpose), whereas our approach is fairly simple and 
straightforward. We shall need the following generalization of Cousin's lemma: If T 

r 
is a triangle and T*; k = 1, . . . , r are nonoverlapping triangles with \jTk = T, points 

l 
yk belong to Tk and 6: T •-• (0, oo) then we say that the set {(yk, Tk); k = 1 ,2 , . . . , r} 
is a 6-fine partition of T if d(Tk) < 6(yk). For a triangle T € Rn there always exists 
a 6-fine partition consisting of triangles similar to T. An indirect proof can be given 
which follows the usual pattern of the one-dimensional bisection argument except 
that now T would be divided into four similar triangles formed by mid-points of 
sides of T. We shall say that assumption & is satisfied in G if F is continuous in G 

s in the elementary geometrical sense 
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and there exists a countable set M such that F is differentiate and satisfies (21) in 
G\M. 

Lemma. Jf & is satisfied in G and the triangle T C G then 

(22) / F(x)dx = 0. 
JT 

P r o o f . The elements of M can be enumerated and for wm G M and for 

arbitrary e > 0 there exists a 6 > 0 such that 

(23) \F(x)-F(wm)\<^ 

whenever \x — wm\ < 6. For y G S\M there is a S > 0 such that for i = 1 ,2 , . . . ,n 

(24) \F*(z) - F'(y) -J2F*j(y)(xi - y>)\ < i |» - x\ 
i= i 

whenever \x — y| < 6. Let T C G and {j/*,T;b} a 6-fine partition of T with triangles 

similar to T. If 2/* G M then t/j, = ^m for some m and we obtain from (23) 

(25) / F(x) dx < ^p(Tk) < ±;p(T). 

If t/jb £ M then because of (21) 

(26) / J2 {**&)+E^(»)(^ - *0)d**' = °-
J T* 1=1 i = l 

This can be seen most easily by realizing that the integrand in (26) has a 'primitive' 

U, where U(x) = £ F*(y)x* + i J Fj.(y)(a^ - y^)(x{ - t/'")- For yk <£ M we get 
t = l i,j = l 

from (24) and(26) that 

(27) \Lm* < €d(Tk)p(Tk). 

The triangles Tk are similar to T, therefore there exists a constant C depending only 

on T (and independent of k) such that d(Tk)p(Tk) < CA(Tk) for all k. Consequently 
(27) becomes 

(28) 1 / F(x)dx <CeA(Tk). 
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Obviously 

/ F(x)dx = J2 I F(x)dx> 

which finally by (25) and (28) gives 

J F(x)dx<e(CA(T) + p(T)). 

0 

Theorem. Path independence. If 0 is satisfied in S then there is a function 
U: 5 •-• R such that 

n 

(29) dU(x) = J2fi(x)dxi 

t=i 

for all x in S. If <p: [a, 6] »-* S is a path lying in S then 

(30) f F(x)dx = U(<p(b))-U(<p(a)). 

Proof . It suffices to prove (29), equation (30) then follows by an argument 
similar to that one used in the proof of the Fundamental Theorem in K-H theory. To 
see this choose e > 0. For every £ 6 [a, 6] there is a positive 6 such that if \z — £| < 6 
then 

\u(<p(z)) - u(<p(0) - it -'"(rtOX^to - *>'(0)| < -M*).- v(0)l-
1 

Consequently, if£ — 5 < u . ^ £ ^ t ; < £ - M then 

n 

(31) W(<p(v)) - U(<p(u)) - VJ F'(rtO)(«>'(tO " ¥>'(«))! < e Var <p. 
1 

For II a 6-fine partition of [a, 6] we obtain with the help of (31) 

\U(<p(b)) - U(<p(a)) - S E ^ ^ * ) ) ^ ^ * ) ~ *>>*))• < * V*r^ 
n I 

This establishes the implications (29)=>(30). We denote by l(x) the path whose 
geometrical image joins the centre of the star-shaped region 5 with x and define 

U(x)= [ F(z)dz 
JiM 
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It follows from the Lemma that 

U(x + h) - U(x) = ( F(z)dz, 
Jtp 

where %l>(t) = x + th, with 0 •$ t .^ 1, Routine continuity argument now gives (29). 

• 
G e n e r a l i z a t i o n s . If >̂i and <p2 are two paths homotopic with fixed ends in 

G and assumption & is satisfied in G then 

f F(z) áz = i F(z) áz 

This can be proved in two different ways. Firstly the integral f F(x)dx is inde
pendent of the path locally, i.e. in some neighborhood of every point in G. Using 
this one can employ the usual homotopy argument (see e.g. [C]) to obtain the result 
in the large. Alternatively, one can use Cousin's lemma (with squares rather than 
triangles) for the homotopy square and proceed similarly as in the Lemma. This 
would necessitate the use of a differentiable (compare [V2]) homotopy, the general 
result must then be obtained by an approximation argument. 

R e m a r k . The assumption Of can be weakened without essentially changing the 
proofs. One needs to assume the differentiability on two-dimensional planes only, 
the modified assumption reads as follows: We say that weak-0 is satisfied in G if F 
is continuous in G and for every two-dimensional plane P there exists a countable 
set Mp such that for every x G GC\(P\Mp) there exists a symmetric n by n matrix 
[o,- j] with the following property: Given e > 0 and x G P fl G there is a positive 6 
such that for every y and z in P with \x — y\ < 8 and \x — z\ < 8 we have 

\í < e\y - z\ max(|:p - y|, \x - z\). 

The lemma and the theorem on path independence remain valid if the assumption & 
is replaced by weak-.^. This allows the set where F is not differentiable or equation 
(21) is not satisfied to be uncountable. It is an interesting problem to determine how 
big (say in measure theoretic terms) this set can be and still have the theorem on 
path independence valid. 
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