Mathematic Bohemica

Ján Jakubík; Mária Csontóová

Convex isomorphisms of directed multilattices

Mathematica Bohemica, Vol. 118 (1993), No. 4, 359-378

Persistent URL: http://dml.cz/dmlcz/126157

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CONVEX ISOMORPHISMS OF DIRECTED MULTILATTICES

Ján Jakubfi, Mária Csontóová, Košice

(Received October 2, 1992)

Summary. By applying the notion of the internal direct product decomposition we investigate the relations between convex isomorphisms and direct product decompositions of directed multilattices.

Keywords: internal direct product decomposition, directed set, multilattice, convex isomorphism

AMS classification: 06A99

To each direct product decomposition of a partially ordered set L and each element $s^{0} \in L$ there corresponds an internal direct product decomposition of L with the central element s^{0} (for the definition of this notion cf. Section 1 below; it is analogous to the corresponding notion for groups (cf., e.g., Kurosh [7], p. 104)).

The following result will be proved. Let L be a directed set and $\varphi_{1}: L \longrightarrow A \times B$, $\varphi_{2}: L \longrightarrow A \times C$ internal direct product decompositions with the same central element. Then for each $x \in L$ the component of x in A with respect to φ_{1} is the same as the component of x in A with respect to φ_{2}.

Let us remark that an analogous result does not hold for internal direct decompositions of groups.

By applying internal direct product decompositions we shall investigate convex isomorphisms of directed multilattices. This notion was introduced for lattices by Marmazeev [8]. In [9] he studied convex automorphisms of a lattice L under the assumption that L satisfies the following conditions:
(i) Each bounded chain in L is finite.
(ii) L is a direct product of a finite number of directly indecomposable lattices.

Kolibiar and Lihová [6] investigated convex automorphisms of a lattice L under the assumption that the condition (ii) holds.

In the present paper we generalize the main result from [6] (Theorem 10) in two directions. It will be proved that this result is true in the case when L is a direct product of directly indecomposable lattices; the number of these lattices may be arbitrary. Next it will be shown that the result remains valid for the case of directed multilattices.

1. Internal direct product decompositions of a directed set

A direct product of partially ordered sets $L_{i}(i \in I)$ will be denoted by $\prod_{i \in I} L_{i}$. If $I=\{1,2, \ldots, n\}$, then we apply also the notation $L_{1} \times L_{2} \times \ldots \times L_{n}$.

If φ is an isomorphism of a partially ordered set L onto a direct product $\prod_{i \in I} L_{i}$, then we say that the morphism

$$
\begin{equation*}
\varphi: L \longrightarrow \prod_{i \in I} L_{i} \tag{1}
\end{equation*}
$$

is a direct product decomposition of L.
The existence of isomorphic refinements of any two direct product decompositions of a connected partially ordered set was proved by Hashimoto [3].

A partially ordered set K is called directly indecomposable if, whenever K is isomorphic to some direct product $\prod_{i \in I} K_{i}$, then there is $i(1) \in I$ such that card $L_{i}=1$ for each $i \in I \backslash\{i(1)\}$. In such a case K is isomorphic to $L_{i(1)}$.

Let us remark that if (1) is valid and if there is $I(1) \subset I$ such that card $L_{i}=1$ for each $i \in I(1)$, then there is a direct product decomposition $\varphi_{1}: L \rightarrow \prod_{i \in I \backslash I(1)} L_{i}$.

If we consider the direct product decomposition (1) and if $x \in L, i \in I$, then the component of x in the direct factor L_{i} will be denoted by $x\left(L_{i}, \varphi\right)$.

By simple examples we can verify that if

$$
\psi: L \longrightarrow \prod_{i \in I(1)} L^{\prime}(i)
$$

is another direct product decomposition of L and if there are $i \in I, i(1) \in I(1)$ such that $L_{i}=L_{i(1)}$, then there can exist $x \in L$ with

$$
\begin{equation*}
x\left(L_{i}, \varphi\right) \neq x\left(L_{i(1),} \psi\right) \tag{2}
\end{equation*}
$$

Let (1) be valid, card $I>1$ and let $i \in I$. Put $L_{i}^{\prime}=\prod_{j \in I \backslash\{i\}} L_{j}$. Then there is a direct product decomposition

$$
\psi_{i}: L \longrightarrow L_{i} \times L_{i}^{\prime}
$$

where, for each $x \in L, x\left(L_{i}, \psi_{i}\right)=\dot{x}\left(L_{i}, \varphi\right)$ and $x\left(L_{i}^{\prime}, \psi_{i}\right)=\left(\ldots, y_{j}, \ldots\right)$
$(j \in I \backslash\{i\}), y_{j}=x\left(L_{j}, \varphi\right)$ for each $j \in I \backslash\{i\}$.
Hence the rather "unpleasant" relation (1') can occur also for direct product decompositions with two factors.

Let s^{0} be a fixed element of L and let us consider the direct product decomposition (1). For each $x \in L$ and $i \in I$ we denote

$$
\begin{gathered}
{[x]\left(L_{i}, \varphi\right)=\left\{y \in L: y\left(L_{j}, \varphi\right)=x\left(L_{j}, \varphi\right) \text { for each } j \in I \backslash i\right\}} \\
L_{i}^{0}=\left[s^{0}\right]\left(L_{i}, \varphi\right)
\end{gathered}
$$

For each $x \in L$ and $i \in I$ there is a unique element y_{i} in L_{i}^{0} such that

$$
x\left(L_{i}, \varphi\right)=y_{i}\left(L_{i}, \varphi\right)
$$

Then the mapping

$$
\begin{equation*}
\varphi^{0}: L \longrightarrow \prod_{i \in I} L_{i}^{0} \tag{3}
\end{equation*}
$$

defined by $\varphi^{0}(x)=\left(\ldots, y_{i}, \ldots\right)_{i \in I}$ is also a direct product decomposition of L. It will be called the internal direct product decomposition of L (corresponding to φ). The element s^{0} is said to be the central element of the internal direct product decomposition φ^{0}.

It is evident that for each $i \in I, L_{i}$ is isomorphic to L_{i}^{0}. Hence if we are interested only in considerations "up to isomorphisms", then we need not distinguish between (1) and (3).

We shall prove the following result:
(A). Let L be a directed set. Suppose that two internal direct product decompositions are given,

$$
\psi_{1}: L \longrightarrow \prod_{i \in I} A_{i}, \quad \psi_{2}: L \longrightarrow \prod_{j \in J} B_{j}
$$

such that there exist $i(1) \in I$ and $j(1) \in J$ with $A_{i(1)}=B_{j(1)}$. Then for each $x \in L$ the relation

$$
x\left(A_{i(1)}, \psi_{1}\right)=x\left(B_{j(1)}, \psi_{2}\right)
$$

is valid.
We have already remarked above that this does not hold in general for direct product decompositions which are not internal.

Let us consider a direct product decomposition

$$
\begin{equation*}
x: L \rightarrow \prod_{k \in K} C_{k} \tag{4}
\end{equation*}
$$

and suppose that (under the notation as in (1))
(i) for each $i \in I$ there is a subset $K(i)$ of K and a direct product decomposition $\chi_{i}: L_{i} \longrightarrow \prod_{k \in K(i)} C_{k} ;$
(ii) under the notation as in (i), for each $x \in L$ and $k \in K(i)$ the relation

$$
\begin{equation*}
x\left(C_{k}, \chi\right)=\left(x\left(L_{i}, \varphi\right)\right)\left(C_{k}, \chi_{i}\right) \tag{5}
\end{equation*}
$$

is valid.
Then χ is said to be a refinement of φ.
While in [3] only isomorphic direct product decompositions are constructed, by applying the proof from [3] and (A) we obtain
(B). Any two internal direct product decompositions of a directed set have a common refinement.

Similarly as in the case of (A), the assertion analogous to (B) does not hold in general for internal direct product decompositions of groups.

2. Proofs of (A) and (B)

From the considerations in Section 1 (cf. (1) and (1")) we obtain that to prove (A) it suffices to take into account two-factor internal direct product decompositions.

Again, let L be a directed set. Let us have a direct product decomposition

$$
\begin{equation*}
\varphi: L \longrightarrow X \times Y \tag{1}
\end{equation*}
$$

and let

$$
\varphi^{0}: L \longrightarrow X^{0} \times Y^{0}
$$

be the corresponding internal direct product decomposition with the central element $\boldsymbol{s}^{\mathbf{0}}$.
2.1. Lemma. For each $t \in L, t\left(X^{0}, \varphi^{0}\right)$ is the unique element of L lying in the set $X^{0} \cap[t](Y, \varphi)$.

Proof. This is an immediate consequence of the definition of φ^{0}.

The following lemma is easy to verify.
2.2. Lemma. Let $x_{i} \in X, y_{i} \in Y(i=1,2), x_{1} \leqslant x_{2}, y_{1} \leqslant y_{2}$. Then $\left(x_{1}, y_{2}\right)$ is the unique relative complement of $\left(x_{2}, y_{1}\right)$ with respect to the interval $\left[\left(x_{1}, y_{1}\right),\left(x_{i}, y_{2}\right)\right]$ of $X \times Y$.
2.3. Lemma. Let $v \in L, s^{0} \leqslant v, \varphi^{0}(v)=(a, b)$. Then a is the greatest element of the set $X^{0} \cap\left[s^{0}, v\right]$.

Proof. We have

$$
\varphi^{0}\left(s^{0}\right)=\left(s^{0}, s^{0}\right), \quad \varphi^{0}(a)=\left(a, s^{0}\right), \quad \varphi^{0}(b)=\left(s^{0}, b\right)
$$

Thus $s_{0} \leqslant a \leqslant v$. Clearly $a \in X^{0}$. Let $z \in X^{0} \cap\left[s^{0}, v\right]$. Hence $z=z\left(X^{0}, \varphi^{0}\right) \leqslant$ $v\left(X^{0}, \varphi^{0}\right)=a$.

For z_{1}, z_{2} and z_{3} in L the notation $z_{1} \Lambda_{0} z_{2}=z_{3}$ means that z_{3} is the greatest lower bound of the set $\left\{z_{1}, z_{2}\right\}$ in L; the notation $z_{1} \vee_{0} z_{2}=z_{3}$ has the dual meaning. (The symbols \wedge and \vee are reserved for other purposes; cf. Section 3:)
2.4. Lemma. The set Y^{0} is uniquely determined by X^{0} and s^{0}.

Proof. Let us denote by Z the set of all $z \in L$ such that there exist $z_{1}, z_{2} \in L$ with

$$
\begin{gathered}
z_{1} \leqslant z \leqslant z_{2}, \quad z_{1} \leqslant s^{0} \leqslant z_{2} \\
z_{1} \vee_{0} x_{1}=s^{0} \text { for each } x_{1} \in X^{0} \text { with } x_{1} \leqslant s^{0}, \\
z_{2} \wedge_{0} x_{2}=s^{0} \text { for each } x_{2} \in X^{0} \text { with } x_{2} \geqslant s^{0} .
\end{gathered}
$$

Then Z is uniquely determined by X^{0} and s^{0}.
Let $z \in Z$ and let z_{1}, z_{2} be as above. By 2.1 we have $z_{2}\left(X^{0}, \varphi^{0}\right)=s^{0}$, hence z_{2} belongs to Y^{0}. Applying the duality we obtain that z_{1} belongs to Y^{0}. It is obvious that Y^{0} is a convex subset of L and hence $z \in Y^{0}$. Therefore $Z \subseteq Y^{0}$.

Now let $y_{0} \in Y^{0}$. Since L is directed, Y^{0} is directed as well. Thus there are y_{1} and y_{2} in Y^{0} such that

$$
y_{1} \leqslant y_{0} \leqslant y_{2}, \quad y_{1} \leqslant s^{0} \leqslant y_{2}
$$

Then both y_{1} and y_{2} belong to Z. It is clear that Z is a convex subset of L. Hence $y_{0} \in Z$ and thus $Y^{0} \subseteq Z$, completing the proof.

Since $X^{0}=\left[s^{0}\right](X, \varphi)$ and $Y^{0}=\left[s^{0}\right](Y, \varphi)$ and since s^{0} is an arbitrary element of L with no specific properties, we have
2.4.1. Lemma. Let $t \in L$. Then the set $[t](Y, \varphi)$ is uniquely determined by the set $[t](X, \varphi)$.
2.5. Lemma. Let $t \in L, t \geqslant s^{0}$. Then the set $[t](X, \varphi)$ is uniquely determined by X^{0} and t.

Proof. In view of 2.3 (with X and Y interchanged) there exists $b \in Y^{0}$ such that $b=\max \left(Y^{0} \cap\left[s^{0}, t\right]\right)$. Moreover, according to $2.4, b$ is uniquely determined by X^{0} and s^{0}; also $t\left(Y^{0}, \varphi^{0}\right)=b$. Clearly $b \in[t](X, \varphi)$.
(a) Pụt $A=\{x \in[t](X, \varphi): t \geqslant b\}$. For $v \in L$ we have

$$
v \in A \Longleftrightarrow v \geqslant b \text { and } b=\max \left(Y^{0} \cap\left[s_{0}, v\right]\right) .
$$

Hence A is uniquely determined by X^{0} and s^{0}.
(b) Put $B=\left\{b^{\prime} \in[t](X, \varphi): b^{\prime} \leqslant b\right\}$.

Let $b^{\prime} \in B$. Put $b^{\prime}\left(X^{0}, \varphi^{0}\right)=x$. Then $\varphi^{0}\left(b^{\prime}\right)=(x, b)$. Since $b^{\prime} \leqslant b$ and $\varphi^{0}(b)=$ $\left(s^{0}, b\right)$ we obtain that $x \leqslant s^{0}$. Thus in view of $2.2, b^{\prime}$ is the relative complement of s^{0} in the interval $[x, b]$, where $x \in X^{0}, x \leqslant s^{0}$.

Let Z be the set of all $z \in L$ such that z is the relative complement of s^{0} in an interval $\left[x^{\prime}, b\right]$, where $x^{\prime} \in X^{0}$ and $x^{\prime} \leqslant s^{0}$. From 2.2 we infer that $z \in B$.

We have verified that $B=Z$. Therefore B is uniquely determined by X^{0} and s^{0}.
(c) Let Z^{\prime} be the convex subset of L generated by $A \cup B$. Thus in view of (a) and (b), Z^{\prime} is uniquely determined by X^{0} and s^{0}.

Since $A \cup B \subseteq[t](X, \varphi)$ and $[t](X, \varphi)$ is a convex subset of L we obtain that $Z^{\prime} \subseteq[t](X, \varphi)$. Let $y \in[t](X, \varphi)$. Since L is directed, $[t](X, \varphi)$ is directed as well. Thus from $y, b \in[t](X, \varphi)$ we get that there are $y_{1}, y_{2} \in[t](X, \varphi)$ such that

$$
y_{1} \leqslant y \leqslant y_{2}, \quad y_{1} \leqslant b \leqslant y_{2} .
$$

The second relation implies that $y_{1} \in B$ and $y_{2} \in A$. Thus $y \in Z^{\prime}$ and $Z^{\prime}=[t](X, \varphi)$, completing the proof.

Similarly as in 2.4.1 we now have
2.5.1. Lemma. Let $t_{1}, t_{2} \in L, t_{1} \leqslant t_{2}$. Then $\left[t_{2}\right](X, \varphi)$ is uniquely determined by t_{2} and $\left[t_{1}\right](X, \varphi)$.

The assertion dual to 2.5 .1 is also valid.
2.6. Lemma. Let $t \in L$. Then the set $[t](X, \varphi)$ is uniquely determined by t and X^{0}.

Proof. Since L is directed there is $t^{\prime} \in L$ with

$$
t^{\prime} \leqslant s^{0}, t^{\prime} \leqslant t
$$

In view of the assertion dual to 2.5 .1 the set $\left[t^{\prime}\right](X, \varphi)$ is uniquely determined by t^{\prime} and X^{0}. Next, by 2.5 .1 the set $[t](X, \varphi)$ is uniquely determined by t and $\left[t^{\prime}\right](X, \varphi)$. Hence $[t](X, \varphi)$ is uniquely determined by X^{0} and t.

Lemmas 2.4.1 and 2.6 yield
2.7. Lemma. Let $t \in L$. Then the set $[t](Y, \varphi)$ is uniquely determined by t and X^{0}.

Proof of (A). We have already noticed above that for verifying the validity of (A) it suffices to consider internal direct product decompositions with two factors. Hence let us again deal with the internal direct product decomposition (1^{\prime}). We have to verify that for each $t \in L$ the component of t in X^{0} is uniquely determined by t and X^{0}.

The element $t\left(X^{0}, \varphi^{0}\right)$ is the unique element of L lying in the intersection

$$
X^{0} \cap[t](X, \varphi)
$$

hence in view of $2.7, t\left(X^{0}, \varphi^{0}\right)$ is uniquely determined by t and X^{0}.
If the relation (1) from Section 1 is valid and $A \subseteq I, i \in L$ then we denote

$$
A\left(L_{i}, \varphi\right)=\left\{a\left(L_{i}, \varphi\right): a \in A\right\}
$$

The set $A\left(L_{i}, \varphi\right)$ is partially ordered by the partial order inherited from L_{i}.
Proof of (B). Let us have two internal direct product decompositions

$$
\begin{equation*}
\varphi^{0}: L \longrightarrow \prod_{i \in I} X_{i}^{0} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\varphi^{01}: L \longrightarrow \prod_{j \in J} Y_{j}^{0} \tag{3}
\end{equation*}
$$

with the same central element s^{0}. In view of Hashimoto's construction (Theorem 1, [3]) we obtain direct product decompositions

$$
\begin{equation*}
\psi: L \longrightarrow \prod_{i \in I, j \in J} X_{i}^{0}\left(Y_{j}^{0}, \varphi^{01}\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{1}: L \longrightarrow \prod_{i \in I, j \in J} Y_{j}^{0}\left(X_{i}^{0}, \varphi^{0}\right) . \tag{5}
\end{equation*}
$$

Here, (4) is a refinement of (2) and (5) is a refinement of (3); both (4) and (5) are internal direct product decompositions of L with the same central element s^{0}.

In view of this fact we have

$$
\begin{equation*}
X_{i}^{0}\left(Y_{j}^{0}, \varphi^{01}\right)=Y_{j}^{0}\left(X_{i}^{0}, \varphi^{0}\right) ; \tag{6}
\end{equation*}
$$

namely, in the notation applied in the proof of Theorem 1, [3] it was proved there that $S_{i}^{j}=S_{j}^{j}$ (under different denotation of indices), and since the direct product decompositions are internal with the same central element s^{0}, the relations $S_{i}^{j}=$ $X_{i}^{0}\left(Y_{j}^{0}, \varphi^{01}\right)$ and $S_{j}^{i}=Y_{j}^{0}\left(X_{i}^{0}, \varphi^{0}\right)$ are valid. Next, by applying (A) we infer that the mappings ψ and ψ_{1} coincide. This completes the proof.

Let us remark that if we consider an internal direct product decomposition (2) and if x is an element of L, then in view of (A) the component of x in X_{i}^{0} can be denoted simply by $x\left(X_{i}^{0}\right)$; we suppose that the central element s^{0} is fixed.

Next, when considering refinements of direct product decompositions (cf., e.g.; (1) and (4) in Section 1) we shall write

$$
x\left(C_{k}\right)=x\left(L_{i}\right)\left(C_{k}\right)
$$

instead of (5) in Section 1 under the assumption that φ and χ are internal direct product decompositions.

From (B) we obtain as a corollary:
(C). Let L be a directed set and let (2) be an internal direct product decomposition of L such that all X_{i}^{0} are directly indecomposable. Let

$$
\begin{equation*}
\psi^{0}: L \longrightarrow X^{0} \times Y^{0} \tag{7}
\end{equation*}
$$

be an internal direct decomposition of L. Suppose that φ^{0} and ψ^{0} have the same central element s^{0}. Then φ^{0} is a refinement of ψ^{0}. Thus there are nonempty subsets $I(1)$ and $I(2)$ of I with $I(1) \cap I(2)=\emptyset, I(1) \cup I(2)=I$ such that there exist internal direct product decompositions

$$
\varphi_{1}: X^{0} \longrightarrow \prod_{i \in I(1)} X_{i}^{0}, \quad \varphi_{2}: Y^{0} \longrightarrow \prod_{i \in I(2)} X_{i}^{0}
$$

with the same central element $\boldsymbol{s}^{\mathbf{0}}$.

3. Auxiliary results on directed multilattices

The notion of a multilattice was introduced by Benado [1]. It is defined as follows.
Let P be a partially ordered set. For $x, y \in P$ we denote by $L(x, y)$ and $U(x, y)$ the system of all lower bounds or all upper bounds of the set $\{x, y\}$ in P, respectively. P is said to be a multilattice if, whenever $x, y \in L$ and $z \in L(x, y)$, then there is z_{1} in $L(x, y)$ such that z_{1} is a maximal element of $L(x, y)$ and $z \leqslant z_{1}$, and if the corresponding dual condition concerning $U(x, y)$ also holds.
In what follows we assume that P is a directed multilattice. For $x, y \in L \operatorname{let} x \wedge y$ be the system of all maximal elements of $L(x, y)$; similarly, we denote by $x \vee y$ the system of all minimal elements of $U(x, y)$. Both $x \wedge y$ and $x \vee y$ are nonempty.

A nonempty subset P^{\prime} of P will be called an m-subset of P if, whenever x and y belong to P^{\prime}, then both $x \wedge y$ and $x \vee y$ are subsets of P^{\prime}. Let $C(P)$ be the system of all convex m-subsets of P.

Each lattice can be viewed as a directed multilattice. If P is a lattice and X is a subset of P then X is a convex m-subset of P if and only if X is a convex sublattice of P.

In this section we shall deal with directed multilattices P and P_{1} which are defined on the same underlying set and satisfy the condition

$$
\begin{equation*}
C(P)=C\left(P_{1}\right) . \tag{1}
\end{equation*}
$$

The partial order in P or in P_{1} will be denoted by \leqslant and \leqslant_{1}, respectively. If $x, y \in P$ and $x \leqslant y$, then $[x, y]$ is the corresponding interval in P; if $x \leqslant 1 y$, then $[x, y]_{1}$ has the analogous meaning with respect to P_{1}. Next, for a and b in P the symbols $a \wedge_{1} b$, $a V_{1} b, L_{1}(a, b)$ and $U_{1}(a, b)$ have the obvious meanings.

3.1. Lemma. Let $x, y, z \in P, x \leqslant z \leqslant y, x \leqslant 1 y$. Then $x \leqslant 1 z$ and $z \leqslant 1 y$.

Proof. We consider the system $C(P)$ to be partially ordered by inclusion. The least element of $C(P)$ containing both x and y is $[x, y]$. Thus in view of (1) the relation $[x, y]=[x, y]_{1}$ is valid. Hence $z \in[x, y]_{1}$.
3.2. Corollary. Let x, y be as in 3.1. If $z_{1}, z_{2} \in[x, y]$ and $z_{1} \leqslant z_{2}$, then $z_{1} \leqslant 1 z_{2}$.

By a similar argument we obtain
3.3. Lemma. Let $x, y \in P, x \leqslant y, y \leqslant 1 x$. If $z_{1}, z_{2} \in[x, y]$ and $z_{1} \leqslant z_{2}$, then $z_{2} \leqslant 1 z_{1}$.
3.4. Lemma. Let $x, y \in P, x \leqslant y, u \in x \wedge_{1} y, v \in x \vee_{1} y$. Then $[x, y]=[u, v]_{1}$.

Proof. $[x, y]$ is the least element of $C(P)$ containing both x and y. Similarly, $[u, v]_{1}$ is the least element of $C\left(P_{1}\right)$ which contains u and v. Since $x, y \in[u, v]_{1}$, in view of (1) we obtain that $[x, y] \subseteq[u, v]_{1}$. If $X \in C\left(P_{1}\right)$ and $x, y \in X$, then u and v belong to X; thus $u, v \in[x, y]$ and then $[u, v]_{1} \subseteq[x, y]$, completing the proof.
3.5. Corollary. Let $x, y \in P, x \leqslant y$. Then $\operatorname{card}\left(x \wedge_{1} y\right)=\operatorname{card}\left(x \vee_{1} y\right)=1$.
3.6. Lemma. Let x, y, u and v be as in 3.4. Next let

$$
u^{*}, u_{1}^{*} \in[x, y], \quad x \geqslant_{1} u^{*}, \quad x \leqslant 1 u_{1}^{*}
$$

Then $u^{*} \leqslant u$ and $u_{i}^{*} \leqslant v$.
Proof. In view of 3.4 we have $u^{*} \in[u, v]_{1}$, hence $u \leqslant 1 u^{*}$. From the relations

$$
x \geqslant_{1} u^{*} \geqslant_{1} u, \quad x \leqslant u
$$

and from 3.3 (with P and P_{1} interchanged). we infer that $u^{*} \leqslant u$. The relation $u_{1}^{*} \leqslant v$ can be verified analogously.
3.7. Lemma. Let x, y, u and v be as in 3.4. Next let

$$
v^{*}, v_{1}^{*} \in[x, y], \quad y \leqslant 1 v^{*}, \quad y \geqslant_{1} v_{1}^{*}
$$

Then $v^{*} \geqslant v$ and $v_{1}^{*} \geqslant u$.
The proof is analogous to that of 3.6.
3.8. Lemma. Let $a, b, t \in P, t \leqslant a, t \leqslant b, t \leqslant 1 a, t \leqslant 1 b, t_{2} \in a \vee b$. Then $a \leqslant 1 t_{2}$ and $b \leqslant_{1} t_{2}$.

Proof. If a and b are comparable in P, then the assertion is implied by 3.1. Thus we can suppose that a and b are incomparable in P.

From 3.1 we infer that

$$
a<1 t_{2} \Longleftrightarrow b<_{1} t_{2}
$$

By way of contradiction, assume that neither $a<_{1} t_{2}$ nor $b<_{1} t_{2}$ is valid. Then in view of 3.5 there are uniquely determined elements a_{1} and b_{1} in P such that $a_{1} \in a \vee_{1} t_{2}$ and $b_{1} \in b \vee_{1} t_{2}$. Hence according to 3.4

$$
\begin{aligned}
a \leqslant a_{1}<t_{2}, & b \leqslant b_{1}<t_{2} \\
a \leqslant 1 & a_{1}>_{1} t_{2}, \\
b \leqslant 1 & b_{1}>_{1} t_{2}
\end{aligned}
$$

In view of 3.5 there are uniquely determined elements u and v in P with $u \in t \Lambda_{1} t_{2}$ and $v \in t \vee_{1} t_{2}$. According to 3.2 the relations $a_{1} \leqslant v$ and $b_{1} \leqslant v$ are valid. Next, 3.4 yields that $v \leqslant a_{1}$ and $v \leqslant b_{1}$. Therefore $a_{1}=v=b_{1}$. Then $a_{1} \in a \vee b<t_{2}$, which is a contradiction.

There are three obvious modifications of 3.8 (the first is obtained by duality, and then we obtain the other two cases by interchanging P and P_{1}). When applying any of these modifications we shall refer to 3.8 . Similarly we proceed by quotations of obvious modifications of the subsequent lemmas.
3.9. Lemma. Let a, b, t and t_{2} be as in 3.8. Let $t_{1} \in a \wedge b$. Then $t_{1} \leqslant 1 a$ and $t_{1} \leqslant 1 b$.

Proof. This is a consequence of 3.8.

4. The relations R_{1} and R_{2}

We apply the same assumptions as in Section 3. For $a, b \in P$ we write $a R_{1} b$ if there is $t \in P$ such that the assumptions from 3.8 are satisfied. Next we write $a R_{2} b$ if there is $t \in P$ such that

$$
t \leqslant a, \quad t \leqslant b, \quad t \geqslant_{1} a, \quad t \geqslant_{1} b .
$$

From 3.8 we infer that the relations R_{1} and R_{2} can be defined also by applying the corresponding dual conditions.
4.1. Lemma. Let $a, b, c \in P, a R_{1} b$ and $b R_{1} c$. Then $a R_{1} c$.

Proof. There exist elements t_{1} and t_{2} in P such that

$$
\begin{array}{ll}
t_{1} \leqslant a, & t_{1} \leqslant b, \quad t_{1} \leqslant 1 a, \quad t_{1} \leqslant 1 b \\
t_{2} \leqslant b, & t_{2} \leqslant c, \quad t_{2} \leqslant 1 b, \quad t_{2} \leqslant 1 c
\end{array}
$$

Let $t_{3} \in t_{1} \wedge t_{2}$. According to 3.9 (by applying the elements t_{1}, t_{2} and b) we obtain that $t_{3} \leqslant 1 t_{1}$ and $t_{3} \leqslant 1 t_{2}$. Thus $a R_{1}$ holds.

Similarly we can verify
4.2. Lemma. Let $a, b, c \in P, a R_{2} b$ and $b R_{2} c$. Then $a R_{2} c$.

Since the relations R_{1} and R_{2} are obviously reflexive and symmetric, in view of 4.1 and 4.2 they are equivalence relations on P. Let R_{m} be the greatest equivalence relation on P.
4.3. Lemma. $R_{1} \vee R_{2}=R_{m}$.

Proof. Let $x, y \in P, x \leqslant y$. In view of 3.4 there is $c \in[x, y]$ such that $x R_{1} c$ and $c R_{2} y$, hence $x\left(R_{1} \vee R_{2}\right) y$. Now it suffices to apply the fact that P is directed.
4.4. Lemma. Let $i \in\{1,2\}, a, b \in P, a R_{i} b$. Then there exist elements t and t^{\prime} in P such that $t \leqslant t^{\prime}, a, b \in\left[t, t^{\prime}\right]$ and $t R_{i} t^{\prime}$.

Proof. This is a consequence of the definition of R_{i} and of 3.8.
4.5. Lemma. Let $x_{0}, x_{1}, x_{2} \in P, x_{0} R_{1} x_{1}$ and $x_{1} R_{2} x_{2}$. Assume that both the pairs x_{0}, x_{1} and x_{1}, x_{2} are comparable in P and in P_{1}. Then there is $y \in P$ such that
(i) $x_{0} R_{2} y$ and $y R_{1} x_{2}$;
(ii) both the pairs x_{0}, y and y, x_{2} are comparable in P and in P_{1}.

Proof. (a) If $x_{0} \leqslant x_{1} \leqslant x_{2}$, then in view of 3.5 there is a uniquely determined element $y \in P$ with $y \in x_{0} \wedge_{1} x_{2}$. Thus according to $3.4, y$ satisfies (i) and (ii). The other cases under the assumption that the set $\left\{x_{0}, x_{1}, x_{2}\right\}$ is linearly ordered in P are analogous.
(b) Now assume that the set $\left\{x_{0}, x_{1}, x_{2}\right\}$ is not linearly ordered in P. E.g., suppose that $x_{0} \geqslant x_{1}$ and $x_{1} \leqslant x_{2}, x_{0} \neq x_{2}$. Then the set $\left\{x_{0}, x_{1}, x_{2}\right\}$ is linearly ordered in P_{1} and we can apply the same method as in (a) by using 3.4 with P and P_{1} interchanged. The remaining cases when $\left\{x_{0}, x_{1}, x_{2}\right\}$ are not linearly ordered in P are analogous.
4.6. Lemma. $R_{1} R_{2}=R_{m}$.

Proof. Let $x, y \in P$. Choose $u \in x \wedge y$. Lemma 3.4 yields that there exist elements p and q in P such that

$$
\begin{aligned}
& p \in[u, x], x R_{1} p, p R_{2} u \\
& q \in[u, y], y R_{2} q, q R_{1} u .
\end{aligned}
$$

Hence by 4.5 there is $v \in P$ such that $p R_{1} v$ and $v R_{2} q$. Thus by 4.1 and $4.2, x R_{1} v$ and $v R_{2} y$. Therefore $x R_{1} R_{2} y$.
4.6.1. Corollary. $R_{1} R_{2}=R_{2} R_{1}$.

Proof. Analogously to 4.6 we have $R_{2} R_{1}=R_{m}$, hence $R_{1} R_{2}=R_{2} R_{1}$.
4.7. Lemma. Let $a, b \in P$. Then there are $t_{1}, t_{2} \in P$ such that

$$
\begin{array}{ll}
a R_{1} t_{1}, & t_{1} R_{2} b \\
a R_{2} t_{2}, & t_{2} R_{2} b
\end{array}
$$

Proof. This is a consequence of 4.6 and 4.6.1.
4.8. Lemma. Let $a, b \in P, a R_{1} b$ and $a R_{2} b$. Then $a=b$.

Proof. In view of $a R_{1} b$ there is $t_{1} \in P$ with $t_{1} \in a \wedge b$ such that $t_{1} \leqslant_{1} a$ and $t_{1} \leqslant 1 b$. Similarly, from $a R_{2} b$ we obtain that there is $t_{2} \in a \wedge b$ such that $t_{2} \geqslant_{1} a$ and $t_{2} \geqslant_{1} b$. According to 3.9 we have, at the same time, $t_{2} \leqslant_{1} a$ and $t_{2} \leqslant_{1} b$. Hence $a=t_{2}=b$.

For $x \in P$ we denote

$$
x\left(R_{1}\right)=\left\{x_{1} \in P: x R_{1} x_{1}\right\}, \quad x\left(R_{2}\right)=\left\{x_{1} \in P: x R_{2} x_{1}\right\}
$$

Now we shall deal with the sets $x\left(R_{1}\right)$, where x runs over P. Analogous results hold for the sets $x\left(R_{2}\right)$.

For x and y in P we write $x\left(R_{1}\right) \leqslant y\left(R_{1}\right)$ if there are $x_{1} \in x\left(R_{1}\right)$ and $y_{1} \in y\left(R_{1}\right)$ such that $x_{1} \leqslant y_{1}$.
4.9. Lemma. Let $x, y \in P, x\left(R_{1}\right) \leqslant y\left(R_{1}\right)$. Then there is $x_{3} \in P$ such that $x\left(R_{1}\right)=x_{3}\left(R_{1}\right), x_{3} \leqslant y$ and $x_{3} \geqslant_{1} y$.

Proof. There are $x_{1} \in x\left(R_{1}\right)$ and $y_{1} \in y\left(R_{1}\right)$ such that $x_{1} \leqslant y_{1}$. In view of 3.4 there is $x_{2} \in P$ such that $x_{1} \leqslant x_{2} \leqslant y_{1}, x_{1} \leqslant 1 x_{2}, x_{2} \geqslant_{1} y_{1}$. Hence $x_{2}\left(R_{1}\right)=x\left(R_{1}\right)$. Choose $u \in y_{1} \wedge y$. According to the definition of R_{1} and in view of 3.9 we have $y_{1}\left(R_{1}\right)=u\left(R_{1}\right)$. Consider the elements x_{2}, y_{1} and u. Then 3.5 yields that $x_{2} \wedge u$ is a one-element set; we denote $x_{2} \wedge u=\left\{u_{1}\right\}$. Next, $x_{2} R_{1} u_{1}$ and $u_{1} R_{2} u$.

Now let us consider the elements u_{1}, u and y. By applying 3.5 we get that there is $x_{3} \in\left(u_{1} \vee_{1} y\right) \cap\left[u_{1}, y\right]$ such that $u_{1} \leqslant x_{3} \leqslant y, u_{1} R_{1} x_{3}$ and $x_{3} R_{2} y$. Clearly $x_{3} R_{1} x$.

By similar considerations we obtain
4.10. Lemma. Let $x, y \in P, x\left(R_{1}\right) \leqslant y\left(R_{1}\right)$. Then there is $y_{3} \in P$ such that $y\left(R_{1}\right)=y_{3}\left(R_{1}\right), x \leqslant y_{3}$ and $x \geqslant_{1} y_{3}$.
4.11. Lemma. Let $x, y, z \in P, x\left(R_{1}\right) \leqslant y\left(R_{1}\right)$ and $y\left(R_{1}\right) \leqslant z\left(R_{1}\right)$. Then $x\left(R_{1}\right) \leqslant z\left(R_{1}\right)$.

Proof. In view of 4.9 and 4.10 there are elements $x_{3} \in x\left(R_{1}\right)$ and $z_{1} \in z\left(R_{1}\right)$ such that $x_{3} \leqslant y$ and $y \leqslant z_{1}$. Hence $x\left(R_{1}\right) \leqslant z\left(R_{1}\right)$.
4.12. Lemma. Let $x, y \in P, x\left(R_{1}\right) \leqslant y\left(R_{1}\right)$ and $y\left(R_{1}\right) \leqslant x\left(R_{1}\right)$. Then $x\left(R_{1}\right)=$ $y\left(R_{1}\right)$.

Proof. By way of contradiction, assume that $x\left(R_{1}\right) \neq y\left(R_{1}\right)$. Since $x\left(R_{1}\right) \leqslant$ $y\left(R_{1}\right)$, according to 4.10 there is $y_{1} \in P$ such that $y_{1} \in y\left(R_{1}\right)$ and $x<y_{1}, x>_{1} y_{1}$. Next, since $y_{1}\left(R_{1}\right) \leqslant x\left(R_{1}\right)$ and $y_{1}\left(R_{1}\right) \neq x\left(R_{1}\right)$, according to 4.9 there is $x_{1} \in x\left(R_{1}\right)$ such that $y_{1}<x_{1}$ and $x_{1}>_{1} y_{1}$. Therefore $x<x_{1}$ and $x>_{1} x_{1}$. Hence $x R_{2} x_{1}$. According to 4.8, $x=x_{1}$. Thus $x=y_{1}$ and so $x\left(R_{1}\right)=y_{1}\left(R_{1}\right)=y\left(R_{1}\right)$.

Put $A=\left\{x\left(R_{1}\right): x \in P\right\}$. With respect to the relation \leqslant on A defined above (which is obviously reflexive), A is a partially ordered set (cf. 4.11 and 4. 12).

Now we denote $B=\left\{x\left(R_{2}\right): x \in P\right\}$ and define the relation \leqslant on B analogously as we did for A. Then B is a partially ordered set as well.

By a method analogous to that used for proving 4.9 and 4.10 we get
4.13. Lemma. Let $x, y \in P, x\left(R_{2}\right) \leqslant y\left(R_{2}\right)$. Then there are elements $y_{1} \in y\left(R_{2}\right)$ and $x_{1} \in x\left(R_{2}\right)$ such that

$$
\begin{array}{ll}
x \leqslant y_{1}, & x \leqslant 1 y_{1} \\
x_{1} \leqslant y, & x_{1} \leqslant 1 y
\end{array}
$$

4.14. Lemma. Let $x, y \in P, x\left(R_{1}\right) \leqslant y\left(R_{1}\right)$ and $x\left(R_{2}\right) \leqslant y\left(R_{2}\right)$. Then $x \leqslant y$.

Proof. By 4.9 and 4.13 there are elements x_{1} and x_{2} in P such that

$$
\begin{array}{ll}
x \leqslant x_{1}, \quad x \geqslant_{1} x_{1} \quad \text { and } \quad x_{1} R_{1} y, \\
x \leqslant x_{2}, \quad x \leqslant 1 & x_{2} \quad \text { and } \quad x_{2} R_{2} y .
\end{array}
$$

Then in view of 3.4 and 3.5 (with P and P_{1} interchanged) there is a unique element z in $x_{1} \vee x_{2}$; moreover, $x_{1} R_{1} z$ and $x_{2} R_{2} z$. Hence $z R_{1} y$ and $z R_{2} y$. Hence according to 4.8, $y=z$. Therefore $x \leqslant y$.

Consider the mapping $\varphi: P \longrightarrow A \times B$ such that $\varphi(a)=\left(a\left(R_{1}\right), a\left(R_{2}\right)\right)$ for each $a \in P$. It is evident that if $a, b \in P$ and $a \leqslant b$, then $\left(a\left(R_{1}\right), a\left(R_{2}\right)\right) \leqslant\left(b\left(R_{1}\right), b\left(R_{2}\right)\right)$.
4.15. Lemma. The mapping $\varphi: P \longrightarrow A \times B$ is a direct product decomposition of the multilattice P.

Proof. This is a consequence of 4.3, 4.8, 4.6 and 4.14.
By defining the relations R_{1} and R_{2} we have viewed the multilattice P as beeing basic. Let us now define relations R_{1}^{\prime} and R_{2}^{\prime} by starting with the multilatice P_{1} instead of P; i.e., when defining R_{1}^{\prime} and R_{2}^{\prime} we proceed by the same method as when defining R_{1} and R_{2} with the distinction that the relations \leqslant and $\leqslant 1$ are interchanged.

Since the assumptions of 3.8 are symmetric with respect to \leqslant and \leqslant_{1} we obtain immediately that the relations R_{1} and R_{1}^{\prime} coincide.

Next, for a and b in P_{1} we put $a R_{2}^{\prime} b$ if there is t_{1} in P_{1} such that $t_{1} \leqslant 1 a, t_{1} \leqslant_{1} b$, $t_{1} \geqslant a, t_{1} \geqslant b$. However, from the modification of 3.8 (by applying duality and by interchanging P and P_{1}) we obtain that $a R_{2}^{\prime} b$ implies $a R_{2} b$; similarly we can prove that $a R_{2} b$ implies $a R_{2}^{\prime} b$. Thus R_{2} and R_{2}^{\prime} coincide as well.

Let A and B be as above. For $i \in\{1,2\}$ we define a binary relation \leqslant_{1} on A as follows: for a and b in A we put $a\left(R_{i}^{\prime}\right) \leqslant 1 b\left(R_{i}^{\prime}\right)$ if there are $a_{1} \in a\left(R_{i}^{\prime}\right)$ and $b_{1} \in b\left(R_{i}^{\prime}\right)$ such that $a_{1} \leqslant 1 b_{1}$. The set A with this relation will be denoted by A_{1}. Analogously we define the partially ordered set B_{1}. Similarly as in 4.15 we can prove
4.15'. Lemma. A_{1}, B_{1} are partially ordered sets and the mapping

$$
\varphi: P_{1} \longrightarrow A_{1} \times B_{1}
$$

defined by $\varphi(a)=\left(a\left(R_{1}^{\prime}\right), b\left(R_{2}^{\prime}\right)\right)$ is a direct product decomposition of P_{1}.
Next, from 4.9 and 4.13 we immediately obtain
4.16. Lemma. Let $a, b \in P$. Then

$$
\begin{aligned}
& a\left(R_{1}\right) \leqslant b\left(R_{1}\right) \Longleftrightarrow a\left(R_{1}^{\prime}\right) \geqslant_{1} b\left(R_{1}^{\prime}\right), \\
& a\left(R_{2}\right) \leqslant b\left(R_{2}\right) \Longleftrightarrow a\left(R_{2}^{\prime}\right) \leqslant 1 b\left(R_{2}^{\prime}\right) .
\end{aligned}
$$

For each partially ordered set L we denote by L^{d} the partially ordered set which is dual to P. Then 4.16 yields
4.17. Corollary. $A_{1}=A^{d}$ and $B_{1}=B$.

By summarizing, from $4.15,4.15^{\prime}, 4.17$ and by constructing the corresponding internal direct product decompositions we infer
4.18. Theorem. Let P and P_{1} be directed multilattices defined on the same underlying sets such that $C(P)=C\left(P_{1}\right)$. Let $s^{0} \in P$. Then there exist internal direct product decompositions

$$
\varphi^{0}: P \longrightarrow A^{0} \times B^{0}, \quad \varphi^{0}: P_{1} \longrightarrow\left(A^{0}\right)^{d} \times B^{0}
$$

with the central element $\boldsymbol{s}^{\mathbf{0}}$.

For results related to $4.18 \mathrm{cf}$. [2] (for the case of finite lattices), [4] (for the case of distributive lattices) and [5] (for the case of lattices).
4.19. Lemma. (i) If L is a multilattice, then $C(L)=C\left(L^{d}\right)$. (ii) Let X, Y be multilattices and $Z \subseteq X \times Y$. Let Z_{1} and Z_{2} be the projections of Z into X or Y, respectively. Then $Z \in C(X \times Y)$ iff $Z_{1} \in C(X)$ and $Z_{2} \in C(Y)$.

The proof is easy, it is omitted.
Let us remark that in (ii) above the two-factor direct product decomposition can be replaced by a direct product decomposition with an arbitrary number of direct factors.
4.20. Corollary. Let P and P_{1} be multilattices defined on the same underlying set. Let $s^{0} \in P$. Assume that there exist internal direct decompositions

$$
\varphi^{0}: P \longrightarrow A^{0} \times B^{0}, \quad \varphi^{0}: P_{1} \longrightarrow\left(A^{0}\right)^{d} \times B^{0}
$$

with the central element s^{0}. Then $C(P)=C\left(P_{1}\right)$.

5. CONVEX ISOMORPHISMS

We assume that P and P^{\prime} are directed multilattices.
5.1. Definition. A mapping f of P onto P^{\prime} is called a convex isomorphism if
(i) f is a bijection;
(ii) for each $X \subseteq P, X \in C(P) \Longleftrightarrow f(X) \in C\left(P^{\prime}\right)$.

For the case of lattices, this definition is due to Marmazeev [8]. If $P=P^{\prime}$, then under the assumptions as in $5.1, f$ is called a convex automorphism.

For each positive integer n put $\bar{n}=\{1,2, \ldots, n\}$. The following is the main result of [6].
5.2. Theorem([6], Theorem 10.). Let L be a lattice which can be decomposed into a direct product $L=L_{1} \times L_{2} \times \ldots \times L_{n}$, where all L_{i} are directly indecomposable. Convex automorphisms of L are just the mappings obtained as follows: we take a permutation π of the set \bar{n} such that there exist bijections $f_{i}: L_{i} \longrightarrow L_{\pi(i)}$, each of them being either an isomorphism or a dual isomorphism, and set $f(x)_{\pi(i)}=f_{i}\left(x_{i}\right)$ for any $x \in L$.
(In 5.2, for each $x \in L$ and each $i \in \bar{n}, x_{i}$ denotes the component of x in L_{i}.)
5.3. Theorem. Let P and P^{\prime} be directed multilattices which can be decomposed into direct products

$$
\varphi: P \longrightarrow \prod_{i \in I} P_{i}, \quad \varphi^{\prime}: P^{\prime} \longrightarrow \prod_{j \in J} P_{j}^{\prime}
$$

Assume that $\pi: I \longrightarrow J$ is a bijection and that for each $i \in I, f_{i}: P_{i} \longrightarrow P_{\pi(i)}$, is a bijection which is either an isomorphism or a dual isomorphism. Then f is a convex isomorphism.

Proof. Without loss of generality we can assume that φ and φ^{\prime} are internal direct product decompositions with the same central element s^{0}. Let $I(1)$ be the set of all $i \in I$ such that $f_{i}: P_{i} \longrightarrow P_{\pi(1)}$ is an isomorphism. Put

$$
\begin{array}{lll}
A=\left\{x \in P: x\left(P_{i}\right)=s^{0}\right. & \text { for each } & i \in I \backslash I(1)\} \\
B=\left\{x \in P: x\left(P_{i}\right)=s^{0}\right. & \text { for each } & i \in I(1)\}
\end{array}
$$

Then in view of 4.19 and 4.20 (cf. also the remark after 4.19) we obtain that f is a convex isomorphism.
5.4. Definition. Let P and P^{\prime} be directed multilattices. A bijection $f: P \longrightarrow P^{\prime}$ is said to be a similarity mapping from P to P^{\prime} if, whenever P can be decomposed into a direct product

$$
\begin{equation*}
\varphi: P \longrightarrow \prod_{i \in I} P_{i} \tag{1}
\end{equation*}
$$

where all P_{i} are directly indecomposable, then
(i) there exists a direct product decomposition $\varphi^{\prime}: P^{\prime} \longrightarrow \prod_{i \in I} P_{i}^{\prime}$ such that all P_{i}^{\prime} are directly indecomposable;
(ii) for each $i \in I$ there exists a bijection $f_{i}: P_{i} \longrightarrow P_{i}^{\prime}$ such that f_{i} is either an isomorphism or a dual isomorphism;
(iii) for each $x \in P$ and each $i \in I, f(x)\left(P_{i}^{\prime}\right)=f_{i}\left(x\left(P_{i}\right)\right)$.
5.5. Theorem. Let P and P^{\prime} be a directed multilattices and let $f: P \longrightarrow P^{\prime}$ be a convex isomorphism. Then f is a similarity mapping from P to P^{\prime}.

Proof. Let (1) be valid where all P_{i} are directly indecomposable. Let $a_{\theta} \in$ P. Without loss of generality we can assume that φ is an internal direct product decomposition with the central element $\boldsymbol{s}^{\mathbf{0}}$.

For $x, y \in P$ we put $x \leqslant_{1} y$ if and only if $f(x) \leqslant f(y)$. Then \leqslant_{1} is a partial order on P; the set P with this partial order \leqslant_{1} will be denoted by P_{1}. The mapping f^{-1} : $P^{\prime} \longrightarrow P_{1}$ is an isomorphism. P_{1} is a directed multilattice satisfying

$$
C\left(P_{1}\right)=C(P)
$$

Hence for P and P_{1} we can apply the results from Section 4. According to 4.18 there are internal direct product decompositions

$$
\varphi^{0}: P \longrightarrow A^{0} \times B^{0}, \quad \varphi^{0}: P_{1} \longrightarrow\left(A^{0}\right)^{d} \times B^{0}
$$

with the same central element $\boldsymbol{s}^{\mathbf{0}}$.
In view of Theorem (C) in Section 2, φ is a refinement of φ^{0} and there are internal product-decompositions

$$
\varphi_{0}^{1}: A^{0} \longrightarrow \prod_{i \in I(1)} P_{i}, \quad \varphi_{0}^{2}: . B^{0} \longrightarrow \prod_{i \in I(2)} P_{i}
$$

with the same central element s^{0} such that $I(1) \cap I(2)=\emptyset$ and $I(1) \cup I(2)=I$.
For each $i \in I$ we put $Q_{i}=\left(P_{i}\right)^{d}$ if $i \in I(1)$, and $Q_{i}=P_{i}$ if $i \in I(2)$. We obtain internal product decompositions

$$
\varphi_{0}^{1}:\left(A^{0}\right)^{d} \longrightarrow \prod_{i \in I(1)} Q_{i}, \quad \varphi_{0}^{2}: B^{0} \longrightarrow \prod_{i \in I(2)} Q_{i}
$$

with the same central element s^{0}. By applying this and using the mappings φ^{0} and φ we get an internal direct product decomposition

$$
\begin{equation*}
\varphi: P_{1} \longrightarrow \prod_{i \in I} Q_{i} \tag{2}
\end{equation*}
$$

with the central element s^{0}. Here all Q_{i} are directly indecomposable.
Put $\left(s^{0}\right)^{\prime}=f\left(s^{0}\right)$ and $P_{i}^{\prime}=f\left(Q_{i}\right)$ for each $i \in I$. Since f is an isomorphism of P_{1} onto P^{\prime} there is an internal direct decomposition with the central element $\left(s^{0}\right)^{\prime}$

$$
\varphi^{\prime}: P^{\prime} \rightarrow \prod_{i \in I} P_{i}^{\prime}
$$

and all P_{i}^{\prime} are directly indecomposable.
For each $i \in I$ and each $y \in P_{i}$ we put $f_{i}(y)=f(y)$. We obtain a bijection $f_{i}: P_{i} \longrightarrow P_{i}^{\prime}$. If $i \in I(1)$, then f_{i} is a dual isomorphism; for $i \in I(2), f_{i}$ is an isomorphism. Next, by applying the fact that f is an isomorphism of P_{1} onto P^{\prime} and by using (1), (2) we get that for each $x \in P$ and each $i \in I$ the relation

$$
f(x)\left(P_{i}^{\prime}\right)=f\left(x\left(Q_{i}\right)\right)=f_{i}\left(x\left(Q_{i}\right)\right)=f_{i}\left(x\left(P_{i}\right)\right)
$$

is valid.
5.6. Theorem. Let P be a multilattice which has a direct product decomposition $\varphi: P \longrightarrow \prod_{i \in I} P_{i}$ such that all P_{i} are directly indecomposable. Let f be a convex automorphism of P. Then there exist
(i) a bijection $\pi: I \longrightarrow I$,
(ii) bijections $f_{i}: P_{i} \longrightarrow P_{\pi(i)}$ where for each $i \in I, f_{i}$ is either an isomorphism or a dual isomorphism, such that $f(x)_{\pi(i)}=f_{i}\left(x_{i}\right)$ for each $x \in P$.

Proof. The assertion is trivial in the case card $P=1$. Thus we can assume that card $P>1$. Then without loss of generality we can suppose that φ is an internal direct product decomposition with a central element s^{0} and that card $P_{i}>1$ for each $i \in I$.

We apply 5.3 where we put $P^{\prime}=P$. In view of the constructions in the proof of 5.4 we have an internal direct product decomposition (with the central element s^{0})

$$
\varphi^{\prime}: P \longrightarrow \prod_{i \in I} P_{i}^{\prime}
$$

such that for each $i \in I$ there is a bijection $f_{i}: P_{i} \longrightarrow P_{i}^{\prime}$, this bijection being either an isomorphism or a dual isomorphism. Hence all P_{i}^{\prime} are directly indecomposable.

According to (B) there exists an internal direct product decomposition ψ of P with the central element s^{0} such that ψ is a refinement of both φ and φ^{\prime}. Again without loss of generality we can assume that each direct factor standing in ψ fails to be a one-element set. Then, since all P_{i} are directly indecomposable, by applying (A) we obtain that $\varphi=\psi$; similarly, $\varphi^{\prime}=\psi$. Thus $\varphi=\varphi^{\prime}$.

Hence for each $i \in I$ there exists $\pi(i) \in I$ such that $P_{i}^{\prime}=P_{\pi(i)}$. Then $\pi: I \longrightarrow I$ is a bijection and the condition (ii) is satisfied. Next, in view of 5.5 and the condition (iii) in 5.4 we have (under the obvious notation)

$$
f(x)_{\pi(i)}=f_{i}\left(x_{i}\right) \quad \text { for each } \quad x \in P
$$

Theorem 5.2 is a consequence of 5.3 and 5.6.

References

[1] M. Benado: Sur la théorie de la divisibilité, Acad. R. P. Romine, Bul. Sti. Sect. Mat. Fiz. 6 (1954), 263-270.
[2] C. C. Chen, M. K. Koh: On the lattice of convex sublattices of a finite lattice, Nanta Math. 5 (1972), 93-95.
[3] J. Hashimoto: On direct product decompositions of partially ordered sets, Annals of Math. 54 (1951), 315-318.
[4] J. Jakubik, M. Kolibiar: On some properties of pairs of lattices, Czechoslov. Math. J. 4 (1954), 1-27. (In Russian.)
[5] M. Kolibiar: Intervals, convex sublattices and subdirect representations of lattices, Universal algebra and applications, Banach Center Publications, Vol. 9, Warszawa, 1980, pp. 335-339.
[6] M. Kolibiar, J. Lihová: Convex automorphisms of a lattice, Math. Slovaca, to appear.
[7] A. G. Kurosh: Group Theory, Third edition, Moskva, 1967. (In Russian.)
[8] V. I. Marmazeev: The lattice of convex sublattices of a lattice, Ordered sets and lattices No. 9, Saratov. Gos. Univ., Saratov, 1986, pp. 50-58. (In Russian.)
[9] V. I. Marmazeev: A group of automorphisms of the lattice of convex sublattices of a lattice, Vestsi Akad. Navuk BSSR, Ser. fiz. mat. navuk (1988), no. 6, 110-112. (In Russian, English summary.)

Author's address: Ján Jakubik, Matematický ústav SAV, dislokované pracovisko, Grešákova 6, 04001 Košice, Slovakia; Mária Csontóová, fakulta stavebná TU, Letná 9, 04001 Kosice, Slovakia.

