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BOCHNER PRODUCT INTEGRATION
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Summary. A new definition of the product integral is given. The definition is based
on a procedure which is analogous to the sum definition of the Bochner integral given
by J. Kurzweil and E.J. McShane. The new definition is shown to be equivalent to the
seemingly very different one given by J.D. Dollard and C.N. Friedman in {1] and [2]. .

Keywords: Bochner integral, Bochner product integral
AMS classification: 28B05

The concept of product integration goes back to V. Volterra {18]. In 1931
L. Schlesinger published the paper [14] where the case of product integration based
on exponential factors of the form eA(Y) 9t with an n x n matrix A(t) with Lebesgue
integrable entries is extensively studied. The case of Bochner integrable operator
valued functions instead Schlesinger’s matrix case is treated in the paper [15] of
G. Schmidt and also in the known monograph (1] of J. D. Dollard and C. N. Fried-
man. The product integral for this case is defined via the L!-approximations of
a Bochner integrable bounded operator valued function by step-functions. Here
we give an alternative definition using the concept of gauge integration which was
created by J. Kurzweil, R. Henstock and E. J. McShane for the case of ordinary
integrals. We show that this concept is equivalent to the concept given in [1]. In [1]
also an excellent bibliography on the problem is given.

*This paper was supported by the grant No. 11928 of the GA of the Academy of Sciences
of the Czech Republic
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THE BOCHNER INTEGRAL

Let an interval [a,b] C R, —00 < a < b < +00 be given. A pair (7, J) of a point
7 € R and a compact interval J C R is called a tagged interval, 7 is the tag of J.
A finite collection {(7j, J;), j = 1,...,k} of tagged intervals is called an L-partition
of [a, b] if
Int(J;) NInt(J;) =@ fori#j

and
k
U Jj = [a, b]
j=1

(Int(J) denotes the interior of an interval J.)
An L-partition {(7j,J;), j = 1,...,k} for which

Tj € Jiyji=1,...,k
is called a P-partition of [a, b]. :
Clearly every P-partition of [a, b] is also an L-partition of [a, b].
Sometimes it is useful to denote
J,' = [a.-_l,a,-], i= 1,.. .,k
for a given L-partition of [a, ], where
a=ap<a; <...<ag=hb.
In other words we will assume in the sequel that the partition {(r;, J;), i = 1,...,k}
is ordered in such a way that
supJ; =inf Ji4q, 1=1,...,k—1.
Given a positive function §: [a, b] — (0, +00) called a gauge on [a, b], a tagged interval
(7, J) with 7 € [a, b] is said to be J-fine if
CJC[r=48(7), T+ 6(7)).

Using this concept we can speak about §-fine L-partitions and d-fine P-partitions
{(m5,J5), 3 = 1,...,k} of the interval [a,b] whenever (7}, J;) is d-fine for every j =
1,...,k.

It is a well-known fact that given a gauge ¢: [a,b] — (0, +00) there exists a é-fine
P-partition of [a, b].

This result is called Cousin’s lemma, see e.g. [11, Theorem on p. 119].

Assume that Y is a real Banach space with the norm || - |ly = - ||

Let us consider a function f: [a,b] & Y and assume that u is the Lebesgue measure
on the real line.
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Definition 1. Denote by L([a,b];Y) the set of functions f: [a,b] = Y for which
to every € > 0 there is a gauge J on [a, b] such that

kol
(1) Y SO = fsp)llvw(inLy) <&
i=1 j=1
for every é-fine L-partitions {(t;,Ji), ¢ = 1,...,k} and {(sj,L;),j = 1,...,1} of
[a, b].
The set L([a, b]; Y) is introduced in [10, Chap. 14]. The notation in [10] is different

from ours.
Proposition 2. To every f € L([a,b);Y) there is an element S; € Y such that
for every € > 0 there exists a gauge 6 on [a, b] such that

J)-—Sf <E€

2)

for every é-fine L-partition {(t:, J;), i = 1,...,k} of [a,}].

Proof. Let f € L([a,b];Y), for a given € > 0 let § be the gauge which corre-
sponds to £ > 0 by Definition 1. Then by this definition we have

Zf(t Yu(Ji) ~
i=1 j=1
k 1
= [ 222 ftmuEnL; )—ZZf(sJ u(Ji N Lj)
i=1 j=1 i=1 j=1
k ]
(3) < DO YA = F(si)llv (s N L) < =
=1 j=1

for any two d-fine partitions {(¢;,J;), i = 1,...,k} and {(sj,L;), j = 1,...,1} of
[, b].
Denote by S(e) C Y the set of all integral sums

k
S, D)= Y f(t)u(J) €Y

i=1

where D = {(ti, J;), i = 1,...,k} is an arbitrary é-fine L-partition of [a,b], i.e-

S(e) = {S(f,D) € Y; D is a 6-fine L-partition of [a,d]}.
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Since by Cousin’s Lemma the set of §-fine L-partitions of [a, b] is nonempty, we have
S(e) #  and clearly also S(n) C S(¢) provided 17 < €. By (3) we get diam S(¢) < £,

diam M being the diameter of a set M C Y. Therefore the intersection [} S(e) of
e>0

the closures S(e) of all sets S(e) consists of one point

s;=NF@ ey

>0

because Y is complete and therefore

€
<'2'7

k
> fam ) - S
=1

Y

i.e. (2) is satisfied. From (3) it is also clear that there is exactly one Sy € Y
satisfying (2). a

Definition 3. The element Sy € Y given by Proposition 2 for a given function
f € L([a,b];Y) is called the S-integral of f over [a,b] and we use the notation
b .
Sy = (S) [2 £(t) .

In (10, 14.7] the following interesting result is shown.

Theorem 4. A function f: [a,b] = Y is Bochner integrable if and only if f €
L([a,b];Y) and in this case we have '

b b
(B) f By dt = (5) / F(t)at,

where (B) [, : f(t)dt denotes the Bochner integral of f over [a,b].

In the sequel we use the notation f: f(t)dt instead of (S) f: f(t)dt. For the
notion of the Bochner integral see e.g. [3], [7], [20].

Theorem 4 shows that the set L([a,b];Y) of Y-valued functions defined on [a, b]
coincides with the set of Bochner integrable functions and Proposition 2 yields the
fact that if the Bochner integral (B) [ : f(t) dt exists, then it can be approximated
by Riemann type integral sums of the form

.
3 ftu).
i=1

R eniafk 5. It is well-known that in the case Y = R the Bochner integral of a
function f: [e,b} = R coincides with the Lebesgue integral. Therefore Definition 1
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and Theorem 4 give also a characterization of Lebesgue integrable real functions.

More precisely g: [a,b] = R is Lebesgue integrable over [a, ] if and only if for every
€ > 0, there is a gauge 4 on [a, b} such that

k1

DD gt = glsplm(En L) <e

i=1 j=1

for every é-fine L-partitions {(t:, i), = 1,...,k} and {(s;,L;),j = 1,...,1} of
[a,b]. See again [10] for more details.

Proposition 6. If f € L([a,b};Y) then |f||: [a,b] = R is Lebesgue integrable
and

@ u / " fyar “ </ “Wone.

Proof. Let toa given € > 0 the gauge § be given by Definition 1. Given é-fine
L-partitions {(t;, J;), i = 1,...,k} and {(s;, L;), = 1,...,1} of [a,b] we have

F@II = I sl < HFE) = fF(sl
foreveryi=1,...,k,j=1,...,l. Hence

L

ST AEN ~ Uf (sl N Ly)

i=1 j=1
L

< SN - FeludinLy) <e

i=1 j=1

and by Theorem 4 this inequality immediately yields the Lebesgue integrability of
£ @)Il over [a, b].

To show the inequality (4) assume that e > 0 is arbatra.ry Let 6 be a gauge on
[@, b] such that—by Proposition 2—

“ S (k) - / fityat

i=1

and

[ S A G ~ [ bl at

=1




for every é-fine L-partition {(ti, Ji), i = 1,...,k} of [a, ).
Then we have

b b k k
[ 10a| <] [ s@ae -3 s + | S stanon)
a a i=1 i=1 E
k
<e+ Y IFE)ln()
i=1
k b b
<o+ | LW - [ urona|+ [ s
i=1 a a
b
< 2€+/ If (@)l de
and therefore (4) holds because € > 0 can be taken arbitrarily small. a

Remark. The result given in Proposition 6 is well known for the Bochner
integral (see e.g. [7, Theorem 3.7.6]).

THE BOCHNER PRODUCT INTEGRAL

Assume now that X is a real Banach space. Denote by B(X) the Banach space of
bounded linear operators on X with the usual operator norm given by

Al =l Allsx) = Sup, Azl x

for A € B(X). The identity operator in B(X) will be denoted by I.

Let J be the set of all compact subintervals in [a, b]. Assume that a B(X)-valued
point-interval function V': [a,b] X J — B(X) is given.

For a given L-partition D = {(¢;, J;), i = 1,...,k} of [a, )] define

P(V,D) =V (7, J&)V (Tk-1, kal) V(&)

the ordered product of elements of B(X).

Definition 7. A function V: [a,b] X J = B(X) is called Bochner product in-
tegrable if there exists Q € B(X) such that for every ¢ > 0 there is a gauge 4:
[a,b] = (0,+00) on [a, b] such that

(5) IP(V,D)-Q| <e
for .every §-fine L-partition D = {(¢t;, Ji), i = 1,...,k} of [a, b].
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Q € B(X) is called the Bochner product integral of V over [a,b] and we use the
b
notation @ = [[V (¢,dt) € B(X).

Remark 8 A similar concept of product integration was introduced by
J. Jarnik and J. Kurzweil in [9] (see also [16], [17]) for the case of n x n-matrix
valued point-interval functions V when instead of L-partitions in the Definition
7 P-partitions are used. The corresponding product integral is called the Perron
product integral in [9]. ' ' '

This terminology originates in the well known fact that a real function g: [a,b] & R
is Perron integrable to the value [ : g(t)dt € R if and only if to every € > 0 there is
a gauge 6 on [a, b] such that

k b
Zg(ti)l"(Ji) —/ g(t) dtl <e
=1 a

for every d-fine P-partition D = {(ti, J;), i = 1,...,k} of [a,b].

Proposition 9. Let V: [a,b] x J = B(X) be given. Then V is Bochner product
integrable if and only if for every € > 0 there is a gauge é on [a, b] such that

(©) IP(V,Dy) = P(V, Dy)|| < ¢

for every é-fine L-partitions D;, D, of [a,b].

Proof. If V is Bochner product integrable then the condition (6) is clearly
satisfied (see (5) in Definition 7). .

Assume that (6) holds. Let dn: [a,b] = (0,+00) be the gauge on [a,b] which
corresponds to e = L, n =1,2,... by (6) and assume that dn41(t) < dn(t) for every
t€fa,blandn=1,2,... :

Denote

P, ={P(V,D) € B(X); D is an 4,-fine L-partition}.

Clearly P,+1 C P, for every n by the choice of 4, and also

S

diam P, = sup{||[A — B||; A,B € P,} <

oo —
Since the space B(X) is complete, the intersection (| P, consists of exactly one

n=1
point Q € B(X) (P, is the closure of the set P, in B(X)) and ||P(V,D) - Q| < L
for every 0,-fine L-partition D of [a,b]. This proves the statement. 0O
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The following result holds.

Theorem 10. Let V': [a,b] X3 — B(X) be Bochner product integrable over [a, b],

b
let H V{t,dt) = Q € B(X) where Q € B(X) be an invertible operator. Assume that
| 4 satzsﬁes the following

Condition (Cp). There exist B < oo and a gauge 5: [a, b — (0, +oo) such that
V(t,J) € B(X) is invertible for every 3-fine tagged interval (t, J) and

@ max(V (¢, ) IV, ) M) < B

s b
Then for every s € [a,b] the Bochner product integrals [ V(t,dt), [V (t,dt)
exist, the equality : )

b s b
(8) [[vt.a) [ ve,at) = [ v at)

holds and there exists a constant M > 0 such that
E] s ;1
HV(t,dt)ﬂ <M (HV(t,dt )) H <M,
b b -1
. “HV(t,dt)" <M (HV(t,dt)) " <M

for all s € [a,b).

Remark. Letusintroduce the following condition concerning the point-interval
function V: {a,b] x 3 — B(X).

Condition (C). Let there exists r € (0,1) such that for every t € [a,b] one can
find o = o(t) > 0 such that

) wi,J) -1l <r

for any interval J C [a,b] N (t - 0,t +0).

If the condition (C) is satisfied for V: [a,b] x 3 = B(X) then the condition (Co)
holds for V.

Indeed, let 3 be a gauge on [a,b] such that J C (¢t — o(t),t + a(t)) for all 3-fine
tagged intervals (¢, J).
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If the tagged interval (7, J) is 3-fine then by (9) the inverse [V (1, J )~! exists and

NV (DI = Z(I - V(r,J))*
k=0
< iuz- Vi Dk < ir" =L ¢
k=0 k=0 l1-r

Moreover
WEDN <V ) = I+ 1 | <1+

Typical cases of V satisfying condition (C) are for example
Vit J) = I+ A(t)u(J)
or
Va(t,J) = eAt)n(J)

where A: [a,b] & B(X), p being any non-atomic Borel measure on [a,b] (e.g. the
Lebesgue measure on [a, b).)

Proof of Theorem 10. Let d: [a,b] = (0,00) be a gauge on [a,d] such
that

(10) 1PV, D) - Qll < 5 Q|1

holds for every do-fine L-partition D of the interval [a,b]. Assume further that 6y < 8
on [a,b], & being the gauge from the condition (Co).

The proof of the theorem will be divided into several steps. First we prove the
following assertion.

For every T € [a,b] there is a K1(7) > 0 such that if s € (7 — do(7),7] N [a, ]
and D, is a do-fine L-partition of [a, s] then
(11) max{||P(V, D1)Il, I(P(V, D1)) "I} < Ka(7),

and
if s € (1,7 + 8o(7)] N [a,b] and D; is a 8-fine L-partition of [s,b] then

(12) max{[|P(V, Da)ll, I(P(V, D2)) {1} < Ka(7).
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In order to prove e.g. the estimate (11) let D3 be an arbitrary fixed do-fine L-
partition of the interval [7,b]. Let

Dy ={ag,m1,01,...,a1-1,7,2u} = {(74,[@j-1,05]),i =1,...,1}
be a do-fine L-partition of [, s] and let D3 has the form
D3 = {au41, Tig2, g2y - - k-1, Tey ok } = {(75, [oj-1,05)), 5 =1+ 2,.. .k}
Set
D = {00, T1,00,. .., Qu—1,T1, 0 = 8, Ti41 = Q41 = T, T142, 042y - - - y Ck—1, Tky Ok }
={(n[@j-1,]),5 =1,..., 1} U (7[5, 7)) U{(7, [@j-1,5]),d =1 +2,...k}.

We use the notation D = D; o (7,[s,7]) o D3 for this construction of a partition
of the interval [a,b]. It is evident that D is a do-fine partition of [a,b] and that
V (7, [@i-1,a:]) € B(X) is invertible for every i = 1,..., k. Therefore

P(V,Dy) = V(m,[ai—1, )V (11-1, [@1—2, 21-1]) . .. V (11, [0, 21]) € B(X)
and
P(V,D3) = V(1i, [ak-1, ak))V (Tk-1, [@k—2, ak-1]) . . . V (142, [u41, @u42]) € B(X)
are invertible and also the inequality (10) holds where by definition we have
P(V,D) = P(V,D3)V(r,[s, 7)) P(V, D1)
and by (10), (Co) we obtain

1PV, D) - (V{7 [s,7)(P(V; Ds)) Q|
= IV (r, s, 7)™ (PLV, D)) [P(Y, D)V (1, s, 7D P(V; D) Q|
< BI(P(, Ds) ™| 5 1@,

Consequently, using again (Cp) we get

1P, Do)l < IP(V; D) = (V (r, s, )™ (P(YV; Ds))
IV [s,7D) PV, D) Q)
< Z1Q I IRV, D) M+ IV (o, ) PV, D)
(13) < (Z1@ 11" + BIQI)IP(V, Do) | = Ko(r).
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On the other hand, we have

I(P(V, D1))™ = Q=1 P(V, Dy)V (r, s, 7]
= 1Q7[Q ~ P(V, Ds)V (1, [s, 7)) P(V; D)I(P(V: P~y
< Q7' Q - P, D)V, D)
<IQ- 3 1™ (B, D)l = S IV D)=

and by (Cp) also

1PV, D1) =!Il < IP(V, D))" — Q= P(V, Da)V (T ls, )
+HIQ PV, D) IV (s, 7Dl
< % I(P(V, Dy))~"|| + BIQ || I|P(V, D)l

i.e. we obtain the inequality

(14) I(P(V, D)7l < 2BIQ || IP(V, Ds)l| = K°() > 0.

Taking K_ (1) = max(Ko(r), K°(r)) > 0 we conclude by (13) and (14) that
max{||P(V, Dy)||, | (P(V, D1))*[I} < K-(7)

holds. Analogously we can show also that if s € [r,7 4 do(7)) N (a,b] and D, is a
do-fine L-partition of the interval [s,b] then

max{||P(V, Da)Il, Il(P(V, D2)) ||} < K+(7)
where K (1) > 0. Putting K1(7) = max(K_(7), K+()) we obtain (11) and (12).

Now we show that the following holds.
For every T € [a,b] there is a K3(T) > 0 such that

(15) max{||P(V, Dy)Il, l(P(V, D))" Il IP(V, D2)lI, I (P(V; D2)) "1} < Ka(r)
if s € (1 — 60(7),7 + 80(7)) N [a,b] and Dy, D, are arbitrary do-fine L-partitions of
[a,s], [s,b], respectively.

Let us take for example s € 1,7 + do(7)) and set D = D; o D2. Then evidently

P(V,D) = P(V, D)P(V,Dy)
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and P(V,D,), P(V,D;) € B(X) are invertible because every factor in these products
is invertible. Since (7) is assumed we get

IP(V, D2)P(V, D) - QI < 51Q I~
and

IP(V, D1) = (P(V, D2)) ' Qll = I(P(V, D2)) ™ (P(V, D) P(V, Ds) - Q)|
< 3 P, D) IR

Hence

IP(V, D)l < IP(V, 1) — (P(V, D2) @Il + (P, D2)) 1@
(16) <P, D) (5 117" + Q).

On the other hand, we have

I(P(V,D1))™! = Q'P(V, D2)|| = IQ™(Q — P(V, D2) P(V, D1))(P(V, D)) ||
<IQMIIQ = P(V, D2) P(V, D) I(P(V, D1)) 7! < %II(P(V, Dy))~*|.

Hence

1PV, D)1l < WPV, D)™ = @™ PV, Do)l + 1@ | IP(V; Do)
<3 P, D))+ 1Q IV, Do)

and finally
(17) N(P(V,Dy))~ | < 21Q I P(V, D)l

Since s € [r,7 + 6o(7)] we can use (12) for P(V,D;) and by (16) and (17) we
obtain the estimate

max{{IP(V; Do), I(P(V, D)) )
< Ea(n)[21QM1+ 3117 + llQll] = Ko(r) >

If 3 < 7 then in a similar way it can be proved that

max{||P(V, Da)l, I(P(V, D2))*|I} < Kr(7)
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where K g(7) > 0. Putting now K5(7) = max{K(7), Kr()} we obtain (15).
Intervals of the form (7—do(7), 7+00(7)) with 7 € [a, b] represent an open covering

of the compact interval [a, b]. Therefore there is a finite set {t1,...,t} C [a,b] such
that

l
[a,8] € |J(t; — do(t;), t; + o(ts))-

=1

Define K = max{1, K2(t1), K2(t2), ..., Ka2(t:)} where K2(7) is given by (15). Then
the estimate (15) implies the following statement.
There ezists a constant K > 1 such that

(18) max{||P(V, D1)|l, I(P(V, D1)) I} < K
if s € (a,b] and D, is an arbitrary do-fine L-partition of [a, s] and
(19) max{||P(V, Do) ||, I(P(V, D2)) I} < K

if s € [a,b) and Dy, is an arbitrary do-fine L-partition of [s,b].
Now we prove the following statement.

Assume that € > 0 is given and let & be a gauge on [a,d] such that (1) < 6o(T)
for 7 € [a,b] and

IP(V,D) -Qll <e

for every é-fine L-partition D of [a, b].
If s € (a,b] and D,, D3 are arbitrary é-fine L-partitions of [a, s, then

(20) lP(V, D) — P(V, Ds)|| < 2Ke.
If s € [a,b) and D3, D4 are arbitrary é-fine L-partitions of [s,b], then
(21) |P(V, Dz) — P(V,Dy)|| < 2Ke.

K is the constant from (18) and (19).

Let us prove (21) only; the proof of (20) is similar. Assume that s € [a,b). Denote
by D; an arbitrary -fine L-partition of the interval [a, s] and let us put D5 = Dy oD,
and D¢ = D, o D4. Evidently Ds and Dg are é-fine L-partitions of the interval [a, b].
Hence

(|1P(V, D2)P(V, D) — P(V, Ds)P(V, D1)||
< ||P(V,Ds) = Q| + lIP(V, D) — Q|| < 2¢
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‘and

|P(V, Da) = P(V, Dy)ll = |I[P(V, D2)P(V, D1) — P(V, Ds)P(V, D1))(P(V, D1)) ||
< IP(V, D2)P(V, D) — P(V, Da)P(V, D) I(P(V, D1)) ! || < 2Ke

by (18). This yields (21).
Using (20), (21) and Proposition 9 we have the following result.

If s € (a,b) then there exist Q—, Q% € B(X) such that for every € > 0 there is
a gauge 6y : [a,b] = (0,+00) on the interval [a,b] such that

(22) IP(V,D1) -Q7 || <e
for every 6,-fine L-partition D, of [a,s] and
(23) IP(V,D;) - Q*|| <

for every 6;-fine L-partition Dy of [s, b].

This means that the product integrals H V(t,dt) = QT, H V(t,dt) = Q~ exist.
By (18) and (19) it is easy to see that the estxmates

)| =i <x

)|| —l < K

hold. Now we are able to complete the proof of the theorem.
Assume that s € (a,b) and that € > 0 is given. Let us choose a gauge d2 on [a, b]

such that 2(7) < min(6(7),01(7)), where for € the gauges §, §; are given as above
for the estimates (20), (21) and (22), (23).

By (18) and (19) we have for §,-fine L-partitions D of [a,b], Dy of [a,s] and D,
of s, b] the inequality

IlP(V, D) - Q*Q~|| < |P(V, D) - P(V, D2)P(V, D))
+|P(V, D2)P(V, D1) - Q*Q|| < |P(V, D) — P(V, Dy)P(V, D)
+I|P(V, D2)P(V, D1) - Q*P(V, Dy) + Q*(P(V, D1) - Q)|
< |P(V, D) = P(V, D3)P(V, Dy)|| + ||[P(V, D2) — Q*|| | P(V, Dy)]|
+1Q I IP(V,D1) - Q™|
‘ < |P(V, D) - P(V, D;)P(V, Dy)|| + 2Ke
(24) = ||P(V,D) — P(V,D; 0 D,)|| + 2Ke < 2¢ + 2KE.
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Because € > 0 can be chosen arbitrarily small we finally obtain
(25) Q=0Q%Q,
i.e. the equality
b 8 b
[Ive.da) [ vt.ae) =] vt.dt)

given in the statement of the theorem holds. Since Q@ € B(X) is invertible, we have
by (25) the identity
QlQtQ =1
and this means that Q~1Q* € B(X) is the inverse to Q. Similarly it can be also
shown that Q* € B(X ) is also invertible with (Q"’)‘ =Q- QL.
Hence the product integrals HV(t dt) = HV(t dt) = Q* € B(X) are

invertible operators.
" Further by (18) we have

(1)

and similarly by (19) also

(1)

Setting M = max(K, K||Q!||) we obtain the statement of the final part of the
theorem. a

-1 -1 b

<SKIQ7H

[(fo)

<KIQ7.

SOME AUXILIARY STATEMENTS

Lemma 11. Assume that A;,B; € B(X),i=1,2,...,m. Then

(26) i]j[lAi-il":[lBFg(Jﬁl )[A B,](HB,)
and
e I flae R (1 2)u-mi(I)
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m
where all the products are ordered according to descending indices, i.e. [] A; =
i=1

q
ApmAm—1 ... A, etc. and where the convention [[ A;j =1 for p > q is used.
j=p
Proof. The equality (26) evidently holds for m = 1. We prove it in general by
induction. Assume that (26) holds for m. Then

m+1 m+1

IT4-]I]B-= AmHHA BmHHB

i=1 i=1 i=1 i=1

—Am“HA AmHHB +Am+1HB BMHB

i=1 i=1 i=1 i=1
m m m

=Am+1 (H Ai - i) + (Am+1 — Bmya) [ Bs

=1 1—1 i=1

1)
= Ams1 Em: ( II A,)[A, B.](I_IiB ) + (Amy1 —Bm+1)HB
("IB

i=1 “j=i+l
m
= (Am+1 H A'j)[A - By )+(Am+1— m+1)HB
i=1 j=i+l1 =1 i=1
m m+1 1

=E( H A)[A B](HBJ>+(Am+1 m+1)i]_;IlB.'

=§(ﬁ1A)A B](J—IIIB)

i=1 j=it+l

This shows that (26) is true for m + 1 and the formula (26) is proved.
The equality (27) can be proved analogously. O

Remark. Lemma 11 can be found e.g. in [1] or [4].

Corollary 12. If A,B € B(X), then

m—1
(28) . A™-B™=) A™*'[A-B|B*
k=0
and
. m—1
(29) A™—B™ =Y B™*lA- B]A"
k=0
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Proof. Using (26) we have

A™ — Z( H A){A B](

j=i+l

I15)

Jj=1

— ZAm—a[A B]Bs—l Z Am—k— I[A B]Bk

i=1 k=0

and (28) is proved. The equality (29) can be shown similarly from (27). a
Lemma 13. If A, B € B(X), then
(30) lle? —eB|| < |4 — Blle™>UI4ILIBI) < 4 — BljellAlHIBI,

»Proof. We have
e — B Z (A7 - BY).

q=l

Hence by (28) we get

oo 1 oo 1 q—-1
le* —eBIl <D Sll47 =B =Y —|| Y A"*"'[4A - B|B*
= q—l i) peert
(31) <lA-BIY 5 Z lAllT=*=*11B]*.

g=1 1" k=0

Clearly

ZHAH""" HIBI* < ZmaX(llAll IBII)*~* = gmax(l|All, || BI))*~*

k=0
and by (31)
le* — 2]l < |14 - Buz( s max(lAl, 1B~ = 4~ Bllem=141120),

g=1
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THE CASE OF THE EXPONENTIAL PRODUCT INTEGRAL

Theorem 14. Assume that A: [a,b] — B(X) is Bochner integrable, i.e. A €
L([a,b]; B(X)). Let us set V(t,J) = eA®¥() for a tagged interval (t, J) where p is
the Lebesgue measure on [a,b]. Then the Bochner product integral

b b
[[e*® =] v, dt) € B(X)

exists and is an invertible operator in B(X).

Remark. It should be mentioned that the result given in Theorem 14 holds
also for the case when p is an arbitrary non-atomic measure on [a, b].

Proof. Assume that to a € > 0 the gauge 9 is given such that (by the Defini-

tion 1) we have
ko1

YN NA) - Alspllspu(Jin Ly) <

i=1 j=1

for every d-fine L-partitions Dy = {(t:,J;), ¢ = 1,...,k} and Dy = {(s;,L;),j =
1,...,1} of [a,b] and that

S At () ~ / 1A@)l dt‘ <1

i=1

and consequently also

EllA(t)llB(x)p(J <1+ / Al dt

i=1

for every é-fine L-partition Dy = {(ti, /i), i = 1,...,k}. Then for V(r; J) = eA("r())
we have

k ko1
P(V,D;) = HeA(ta)#(Ji) = H H eAt)u(JinL;)

i=1 i=1 j=1
because clearly

]
eA(t.‘)u(Ji) - HeA(li)M(JinL,’)
i=1

and similarly also l
k
P(V,D,) = H HeA(‘i)M(J.'nL,-).

j=1i=1
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Assume that Kg, ¢ =1,...,m is the ordered system of intervals which consists of
k groups of ordered systems of intervals

JiNLj, Janj,...,JkﬂLj, i=1...,1

where the ordering of intervals in each of these groups is induced by the ordering in
the system Ly, Lo, . .., Li. Denote further 7, = t;forg =1,...,m when K, = J;NL;.
It is easy to see that {(74,Kg),q =1,...,m} is a §-fine L-partition of [a, b] since the
L-partition D, = {(t;, Ji), ¢ = 1,...,k} is assumed to be d-fine. Then we have

P(V,D,) = H eA(Ta)n(Ky)
q=1

Using the same procedure for | groups of ordered systems of intervals
JiNnLy, J;NLy, ..., J;NL, i=1,...,k

where the ordering of intervals in each of these groups is induced by the ordering in
the system Jy, Jz, ..., Jx we get the same ordered system of intervals K, as before.
Taking 04 = s; for ¢ = 1,...,m when K, = J; N L;, we obtain a ¢-fine L-partition

{(0¢,Kq),q =1,...,m} of [a,b] since the L-partition Dy = {(s;,L;),j=1,...,l}is
assumed to be d-fine and

P(V,D,) = H eAloa)u(Ky)
q=1

Using these relations we obtain by Lemma 11

m m
[] 0wt — [ eAtcamtra n

|\P(V, D) = P(V,D)|| = \
g=1 q=1

m m q-1
‘Z ( I eA(n)p(Kr)) AT _ Ak ( 1 eA(o.‘)n(KT)>

g=1 “r=q+1

|

||eATan(Ka) _ gAloa)n(Ka)) .

r=1
m

<

q=1

m q—1
\ I eA(Tr)n(Kv-)\ ‘ TJ e*eormxo

r=q+1

m
< H enA(T")““(Kr) < e::-’;:g-kl “A(T")"“(KY')
r=q+1

< eZrm 1A(m)Is(Kr) « el+SolAMIat _ g

r=1

Further we have

m m .
I eA(Tr)#(Kr)“g I fleAtmceny

r=q+1 r=q+1
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and similarly also

< eI NAmla _ g

g—1
H H eA(e)u(K.)

Using the estimate from Lemy, 13 we have

[[eA(Ta)n(Ks) _ eAl7a)n(Ka)|| < (A7) — A(oq)) (K, [le™>*UAT) I Alea)l)u(Ka)

and therefore (because clearly emax(l1A(ma)llllA(c)Dr(Ks) ¢ 1 +/7 HAMIIdE — K) we
obtain

. k1
IP(V, D1) = P(V, Do)l S K333 || A(t:) — A(ss)lsexyu(Ji 0 L) < K3

i=1 j=1

for every 6-fine L-partitions Dy = {(t;,/;),i = 1,...,k} and D, = {(s;,L;), j =
.,1} of [a,d]. Using Proposition 9 we conclude that the Bochner product integral

He"“‘) 4t ¢ B(X) exists.
Recall again that the Lebesgue integral f |[A(s)]lds =S € R exists and that

k
> A () -
i=1

for every é-fine L-partition D = {(t;, Ji), i = 1,...,k}.
' b
From the existence of the Bochner product integral []eA(®dt ¢ B(X) we obtain
that there is a gauge J; on [a, b] such that 6, (t) < §(t) for all t € [a,b] such that

< e—(S+l)

: b
(32) ‘ ”p(y’ D) - 1:[eA(t) dt

for every &;-fine L -partition D = {(t:;, Ji), i =1,...,k}.
It is evident that P(V, D) is invertible with

[PV, D))"t = e~ AR || o= Alt)nli)

and
NPV, D)2 £ lle™ AR jle=Am(au)

k
< JI MM = X AN ¢ oS,

i=1
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Hence
—(S+1) 1

¢ S PV, D

and by (32) we obtain

: 1

b
- Aty ft o =
llP VD) - [1* | < yw oy

b

for a given d;-fine L-partition D. Therefore the Bochner product integral [ e4(®at ¢
a

B(X) is an invertible operator (see Lemma VIIL.6.1 in [3]). ]

ALTERNATIVE DESCRIPTIONS OF THE EXPONENTIAL
BOCHNER PRODUCT INTEGRAL

In the monograph [1] alternative descriptions for the product integrals of the form

b
[1e4) 9 are mentioned for continuous n x n-matrix valued functions 4 (see in
a

[1, p. 51]). These definitions give alternative Bochner product integrals for the case
A € L([a, b]; B(X)), too.
The following definition is presented in [I, p. 51].

Definition 15. Let f be a complex-valued function defined on an open disc
D,={z€C;|z|<p}, forp>0

in C. f is called a P-function if
(i) f is analytic in the disc D,, ¢ > 0,
(ii)
fO)=fO=1

A P-function f has a series expansion of the form

fiz)=1 +z+§:cnz”,

n=2
convergent for |z| < .
If B € B(X) and ||B|| < ¢ then we define
f(B)=I+B+)Y_ c.B™ o
n=2 PR
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Assume that [|B|| < 79 < o. Then

f(B)-1=B+) c,B" =B(1+i‘c,.+13")

n=2 n=1

and

I58) 11 < 51 | + chﬂBn

<11l (1 +3 fen] uBu")

n=1

<8I (1 > lcn+1lr6‘) = 1B,

n=1

where we denote N =1 + § [ent1]rd.
n=1
Assume that operators B,,...,B,, € B(X) are given such that IIB;]| < ro for
j=1,...,m. Then

IF B < 11f(Bs) ~ Il +1 < 1+ N||By|

and

m

m m
<T@ < [T+ NIB;l) < T VB = N Sima 151
j=1 i=1 j=1

Using this inequality we get by Lemma 11

|t - L] - £ 1T e - o (T o)

=1 i=1 “j=i4l

<3 T e e - reon fIf(Bj)l
=1 " j=i41 j=1
<3 Hl 1o%41) e — 2o ( TL hrceyn)

A
NIE

'I_I.
N /‘\

1
I1

e"Bf") le® — £(By)| (ﬁ )
i=1

oS hisn 1B; u) e — £(By)| (ezv Tl umu)

m
< emax(LN) T, 1B5]) > lleB — £(By)].

i=1

.
I
—-
u
..
...

i
-

A
M3
Ve
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Further we clearly have

-2
ro " IBill?

e — 7B < 30| —en
n!

n=2

and therefore

m m ' m
(33) HeB" - Hf(B,-)“ < emax(L,N) TjZ, 115l MZ B; 12,
i=1 =1

i=1 j=

where

1
M=3 e

n=2

o2,
Now we are in the position to prove the following result.

Theorem 16. Assume that A € L([a,b]; B(X)). Let f be an arbitrary P-function.
Then to every € > 0 there is a gauge § on [a, )] such that

<eg

k b
I1 feAct)u() - [T er®
=1 -

provided D = {(t;, J;); i =L..., k} is a d-fine L-partition of [a, b].

Remark. The statement given in Theorem 16 leads really to alternative de-
scriptions of the Bochner product integral l_bIeA(‘) dt because if f is an arbitrary
P-function and if we set V(¢,J) = f(A(t)ua(J)) for a tagged interval (t,J) then
’ ﬁV(t,dt) = f[eA(t) 4t Since evidently f(z) = 1+ z is a P-function, we have the

a a
special formula

b b
H(I + A(t)dt) = H QA dt

b
for every A € L([a,b]; B(X)). The case of product integrals of the form [J(/+A(t) dt)
was extensively studied e.g. in [4]. Theorem 16 shows that even in the Bochner case

b
" these product integrals are the same as the exponential product integrals ] e4()d¢.
o . a

b
Proof of Theorem 16. The existence of []e#(*)4* was shown in Theorem

14. Assume that € > 0 is given. By the definition of ‘the Bochner product integral
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there is a gauge J on [a, b] such that

] H eAlt)n(d:) _ H eAlt)dt

i=1

for every d-fine L-partition {(;, J;); i = 1,...,k} of [a, b].
Fix ro < ¢ (o is given by the Definition 15 of the P-function f). Then for any
given 5 < ro we can assume that the gauge 4 satisfies

n
0 < FMamn+ D

and that
zm () <1+ / A de

i=1
for every d-fine L-partition {(¢:;, J;); i =1,...,k} of [a,b)].
If the tagged interval (¢, J) is é-fine, then pu(J) < ﬂﬂ?}m because

JC(t—6(t),t+6(t) and [JA@I() < _____"Z'égl('tﬁl_l <n

The result given in (33) can be used for the following inequality.

k
At)n(J:) _ H f(A(ti)ll(Ji))”
i=1

k
< emax(L,N) T, 1A I8(J5) pr Z NAEN ((J;))?

=1

k
< et N) Tiar 1A Is(I;) MZ NAE) ()
J=1

b
(34) < nMemaX(l,N)(Hf: IIA(t)lldt)(l +/ AN dt),

(o
where M = § |4 —cnlgrg~? and N = 1+ 3 |ca41|r§. From (34) we obtain finally
n=2 n=1

)y(.],)) _ HeA(t) dt

” H eA(t.)p(J. fI eA(t) dt

i=1

i=1

)#(J.)) He"(‘-)u(l.

i=1 i=1
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whenever 0 < 1 < rg is chosen sufficiently small, e.g. such that

b
MmN+ uA(t)n«u)(H / IA@)I dt) <z

EQUIVALENCE OF THE BOCHNER PRODUCT INTEGRAL
AND THE CLASSICAL PRODUCT INTEGRAL

Assume that B: [a,b] = B(X) is a step-function, i.e. that there is a finite system
of points :
a=5<8<...<8m-1<Sm=20

such that B is constant on each (sx—1, Sx) with the value B, € B(X), k=1,...,m.
For a given step-function B: [a,b] = B(X) define

EB — ern(srvn—snt—l)ern—1(3m—1"3rn-2) o eBl(B] —50)'

In this way the product integral of a step-function is defined. In the monograph
[1, p. 54] the following definition of the product integral is given.

Definition 17. Assume that A € L([a, b]; B(X)) is given. The (Lebesgue type)
b
product integral (L) []eA(®)4¢ is defined by

n—o0

b
(35) (@) [[e*P 4 = lim E,4,

where An, n = 1,2,... is any sequence of step-functions convergent to A in the L!
sense, i.e.

b
lim / [l 4n(s) — A(s)|lds =0
n—00 a

and Eg4, is the product integral of the step-function A,,.

It should be mentioned that if A € L([a,b]; B(X)) then there exists a sequence
b
of step-functions converging to A in the L' sense and therefore (L) [] eA(®*) 9 is well

a
defined since in this case the sequence of products E4, converges for n — oo (see
[1, pp. 54, 83] for more details).
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Now we will show that the product integral given by Definition 17 for A €
L([a,b]; B(X)) is equivalent to the Bochner product integral given by Definition 7
for the case

V(t,J) = eAWRU),

First let us prove the following result.

Lemma 18. Assume that Ay, A; € L([a,b]; B(X)) are given.
Then for every [c,d] C [a,b] the inequality

d
(36) <K / I 4a(s) — As (s)]] ds

d d
H eAa2(t)dt __ H eA1(t)dt
(4 (4

holds, where
K = (2 141(9l1de +1)2 (o [ | Aa(o)ll ds +1) 2

Proof. By Proposition 6 the functions ||A4;],]|Az2|l: [a,b] = R are Lebesgue
integrable over [a,b]. Since Ay — A; € L([a, b]; B(X)) we get by Proposition 6 that
also the function ||A2(s) — A1(s)|] is Lebesgue integrable over [a, b].

Let us fix an interval [c,d] C [a,b]. The functions ||Aill, ||A2||: [a,b] = R are
Lebesgue integrable over the interval [c,d] C [a,b]. Therefore by Definition 3 (see
also Remark 5) there is a gauge é; on [a, b] such that

<1

m d
S A ;) - / Ai(s)l| ds
j=1 ¢

for [ = 1,2 and every d;-fine L-partition {(7j,J;),j = 1,...,m} of [c,d]. Hence we
have g

m d b
@) AN < [ 1AGds +1< [1As)ds +1
j=1 c a
for | = 1,2 and every d;-fine L-partition {(7j, J;),j = 1,...,m} of [c,d].
Assume that € > 0 is given.
Since the Lebesgue integral [ : llAz(s) — Ai(s)||ds exists, there exists a gauge
83 < 8; on [c,d] such that

m d
IZ"Az(Tj) — A1 () lu(J;) —/ l42(s) — A1(s)|ds | < e

j=1
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and therefore also
m d
(38) 3 Ma() = 1)) < [ 1142(0) = Ar(a)lds +e
i=1 c
for every 8,-fine L-partition {(1;, J;),j = 1,...,m} of [c,d].
d
By Theorem 14 the Bochner product integral []e4!()4¢ € B(X) exists for | = 1,2.
Hence there is a gauge é < d2 on [a, b] such that

<eg

m d
(39) n H eAl(Tj)}l(J,‘) _ H eA,(g) dt
i=1 c

for I = 1,2 and for every é-fine L-partition {(rj,J;),j = 1,...,m} of [c,d]. Hence
by (39) we get

d d
H eAz(t) dt _ H eAl(t) dt

d m
< eA2t)dt _ TT eA2(ms)ulJ;)
e -1
m m m d
4| [T etatmen — T etstmmeon] + “ [] e — [[ et
j=1 ji=1 j=1 c
m m
(40) < H eA2(mi)u(J;) _ H eAr(m)eli |l 4 2¢
j=1 j=1

for every 0-fine L-partition {(7}, J;),j = 1,...,m} of [c,d]. For the first term on the
right hand side of (40) we have by Lemma 11

H eA2(m)ul;) _ H eA1(ri)rlJ;)

i=1 i=1
m m i—-1
(a) =% ( 10 eAz(fj);t(Jj)) (AR _ gAr(ru(i)] ( I em(mu(m)
i=1 \j=itl j=1
Further by (37)
i-1 i1 -
’ T[ et )| T el = eZizt M lcs)
Jj=1

j=1
< eZim1 1A1m)InI) ¢ 2 NI ds+1 ¢ oJ7 ANl ds+1

|

and analogously

H eAi(73)u(J;)
j=i+1

b1A ds+1
sef,. [14i(s)ll ds
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for ! =1,2 and every i = 1,...,m and therefore (41) yields

m ‘ m
H eA2(min(Ji) _ H eA1(m3)r(J;)

ji=1 j=1

(42) < eJa 141(D ds +1,[* | A2(s)] ds +1 Z ”eAz(T.')#(-’-') - eAx(Ti)#(Ji)”_

i=1
Using the estimate given in Lemma 13 we have

[[eA2(TIn(J:) _ gAr(m)n(Ji))

< N A2(m) () — Ay () (i) |[eN A2 I A (o)l (i)
< NAz(m) = Ar(ms)l|u(Ji)ela 141 ds 16 [ 1 a()ll ds +1

for every i = 1,...,m. Hence by (42) we get

m m
H eA2(m)uJs) _ H eA1(m)ulJ5)
j=1 i=1

< (ef,f I}lAl(s)ll ds+1)2 (efi’ ||A2(S)l|d3+1)2 Z | A2(7:) — A1 ()|l p(Js)

=1

(43) =K ||4s(r) — Ai(m)ln(J:),

=1

where
K= (ef: A1)l ds+1)2(ef: ||Az(s)||ds+1)2_

Finally the relation (38) yields

T] =9 — T[ et
i=1 i=1

d
(44) <K / I 42(s) — Ay (s)[| ds + Ke.

Therefore by (40) we get
d
< K/ [|A2(s) — A1(s)||ds + (K + 2)e

d d
H eA;(t) dt _ H eA1(t)dt
c (4

and this proves (36) because € > 0 can be taken arbitrarily small.
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b
Theorem 19. If A € L([a, b]; B(X)) then both the product integral (L) [ eA(t)dt
a

b
and the Bochner product integral []e#® 4t exist and
a

b b
(O [#0% < [[eA0.

Proof. The existence of the product integrals is clear by Definition 17 and by

Theorem 14.
Assume that € > 0 is given and let An, n =1,2,... be a sequence of B(X)-valued

step-functions such that
b
lim / Il 4n(s) — A(s)]|ds =0

and ,
lim E4, = (L)He’“t)dt

n—oo

(see Definition 17).
There exists an ng € N such that

b
(45) / 4n(s) = A(s)llds < e

and
<e

“(L) IjIeA‘" % — Ea,

for every n > ng. From the definition of E4_ it is easy to observe that

b b
EA,, — (L) HeA,.(t) dt _ H eA,.(::) dt

for every n € N.
Then

b b
” (L) H eA(t) dt _ H eA(t) dt

<e+

b
+ EA,. _ HeA(t) dt

b
< ”(L)HGA(t)dt "‘EA..

ﬁeA,.(t) dt __ f[eA(t) dt
a a
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for any n > ng. Using Lemma 18 for the second term on the right hand side of this
inequality we get

b b
”(L) H eAlt)dt _ H eA(t) dt

b
(46) <e+K, / 1 4n(s) — A(s) ds

where
K, = (eJa 14n ()l ds +1)2 (o [ A()ll ds +1y2

Since clearly
[114n ()l = 1A(s)I| < 1| An(s) = A(s)I]
for every s € [a,b] we obtain that by (45)

b b
/ [l 4n ()Nl = llACs)Il] ds S/ l4n(s) — A(s)llds <e,

holds for all n > ng, therefore

b b
/ lAn(s)|l ds </ lA(s)||ds + ¢

and
ela lAn()llds +1 o o [2A(s)l ds +14¢

This inequality yields
K, < (ef: HA(s)II ds+1)4e2e =L

for every n € N, n > ng. Hence by (45) and (46) we get

b b
" (L) H eA(t) dt __ H eA(t) dt
a a

b
<e+L / 1 4n(s) — A(s)[|ds < (L + 1)e.

This inequality leads to the conclusion of the theorem because ¢ > 0 can be chosen
arbitrarily small. O
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