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Summary. In this paper we find a one-to-one correspondence between transitive relations 
and partial orders. On the basis of this correspondence we deduce the recurrence formula 
for enumeration of their numbers. We also determine the number of all transitive relations 
on an arbitrary n-element set up to n = 14. 
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1. I N T R O D U C T I O N 

Let A be a finite n-element set. By expA we shall denote the set of all subsets of 
A. As usual a binary relation Q is called a quasi-order if it is reflexive and transitive 
and g is called a partial order or an ordering if it is reflexive, antisymmetric and 
transitive. Let T(A) denote the set of all transitive relations on A and P(A) the 
set of all partial orders on A. The number of all transitive relations on A will be 
denoted by Tn and the number of all partial orders by Pn. Further, let Qn denote 
the number of all quasi-orders on A. If n = 0, then we put T0 = P0 = Q0 = I. 

Moreover, let 2?(A) denote the set of all partitions of a set A and let P e if(A) 

be an arbitrary partition of A. The block of P containing an element x 6 A will 
be denoted by [x]. Now we recall the important notion of Stirling's number of the 
second kind and also several known results. Stirling's number of the second kind 
S(n, k) is the number of partitions of an n-set into k blocks. By convention, we 
put S(0,0) = 1. Clearly, we have S(n,k) = 0 if k > n, S(n,0) = 0, S(n, 1) = 1, 
S(n, 2) = 2 " _ 1 - 1, S(n,n— 1) = (JJ), S(n,n) = 1. In addition, there are a number of 
other possible methods in counting these numbers. Stirling's numbers of the second 

75 



kind satisfy the recursions 

(1) S(n, k) = kS(n - 1, k) + S(n - 1, k - 1), 

(2) S(n,k)= W м _ 1 W ; л - - i ) . 

We can also count S(n, k) by means of the explicit identities 

(3) S(n,*) = (*!)-! D " 1 ) * " ^ -

(4) S(n,k)= Yl l«---2*-~x • • • Jb-"*-1, 

where the sum extends over all (n

kZ\) ^-compositions of an integer n. 

It is also well known that there is a one-to-one correspondence between topologies 

on A and quasi-orders on A, and a one-to-one correspondence between partial orders 

on A and To-topologies on A. Evans, Harary and Lynn derived in [5] a formula, 

relating the number of all quasi-orders on a set of n elements and the number of all 

partial orders. They proved that 

(5) Q„ = £s(n,*)P*. 
J c = l 

Erne showed in [3] that 

(6) — -4 1 for n -4 oo. 

Further, transitive ternary relations and quasiorderings were studied by Novak and 

Novotny, see e.g. [9] and [10]. 

The structure of the paper is as follows. First we draw our attention to the 

correspondence between transitive relations and partial orders. Our correspondence 

turns out to be important for finding recurrence formulas for enumeration of the 

numbers of such relations. Then we introduce the number of all transitive relations 

for n ^ 14. These numbers will be obtained from our formula and from results in 

[4]. Furthermore we shall be concerned with the asymptotic value for Tn and in the 

end we shall present one interesting property of the sequence Pn. 
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2. T H E CORRESPONDENCE BETWEEN TRANSITIVE RELATIONS 

AND PARTIAL ORDERS 

In this section we derive a one-to-one correspondence between the transitive re­

lations and partial orders. First we introduce the following definition. Let Ta(A) 

denote the set of all transitive and antisymmetric relations on A. Let X be an ar­

bitrary subset of A and let P be a partition of the set A - X. Then we define 

T*(X VJV) = {Q e Ta(X U P);V_ £ X U P: ZQZ •» z 6 P}. The following assertion 

shows the connection between the transitive relations and the antisymmetric and 

transitive relations. 

L e m m a 1. There exists a bijection 

(7) f:T(A)^ U ( U Ta*(A'Ul 

XSexp.4 \pgP(/l-X) 

P r o o f . For every Q 6 T(A) we define the set Ae = {x £ A; [x, x] £ Q} and for 

all x,y £ Ae we put x ~ y iff [x,y] £ Q and [y,x] £ Q. It is evident that ~ is an 

equivalence relation on Ae. Now we set X = A - Ae and P = Ae/~ and for every 

Q € T(A) we define a 6 T*(X U P) as follows. Let [ar,y] 6 Q. We put [x,y] £ <x 

or [[_},y] e <r or [_,[y]] £ <r or [[s],[y]] £ a if _-,y £ X or _ € -4 - X,y 6 X or 

:c € X',(/ 6 A - X or ar,y 6 __ — X , respectively. Further, setting f(o) = a we have 

defined the mapping / . The verification that / is a bijection is elementary. • 

L e m m a 2. There exists a bijection 

(8) / : r„*(A'UP) - f P ( I U P ) . 

P r o o f . For every £ e T,*(X' U P) we put / ( f ) = QU AxuP , where A X U P = 

{[_,_];_ £ X U P} is the diagonal relation on X U P. The bijectivity of (8) is now 

evident. • 

By means of the above lemmas we have shown how the transitive relations on A 

correspond bijectively to the partial orders on sets A' U P. Now we demonstrate this 

correspondence by a suitable example. 

E x a m p l e 1. Let us consider a set A = {a,b.c,d,e, / } and the transitive re-

lation e = {[a, a], [b, b], [d, d], [e, e] , [/, / ] , [a, b], [b, a], [a, c], [b, <]. [d, e], [c, d], [d, c], [e, c], 

[d, / ] , [e, / ]} on A This relation can be expressed in a simple way by means of a 

graph, see Figure 1. 
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Figure 1 

By Lemma 1 we have Ae = {a,b,d,e,f} and X = {c}. The equivalence re­
lation ~ is {[a,a],[b,b],[d,d],[e,e],[f,f],[a,b],[b,a],[d,e],[e,d]} and the partition 
of the set Ae is P = {{a, b}, {d, e},{/}}. Furthermore, by Lemma 1 we have 
a = {[{a,b},{a,b}],[{d,e},{d,e}],[{f},{f}],[{a,b},c],[{d,e},c],[{d,e},{f}]}. The 
graph of the relation a is shown in Figure 2. 

{a,b} {d,e} {/} 

Figure 2 
The relation a is antisymmetric and transitive, but it is not reflexive. Further, 

by Lemma 2 the binary relation a U AxuP is a partial order on X U P. The graph 
of the relation a U AxuP is presented in Figure 3. In this way we can associate a 
partial order with every transitive relation. We remark that removing the loops and 
orientations of the edges from Figure 3 we obtain the Hasse diagram. 

{/} 

{a,b} {d,e} 

Figure 3 
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3. THE RECURRENCE FORMULA 

In this section we introduce the main result of this paper. Our formula makes the 
recurrent enumeration of the values P„ or Tn possible provided the members of the 
second sequence are known. 

Theorem 1. For each positive integer n we have the formula for Tn 

n k , , 
(9) Tn = YjNk(n)Pk, where Nk(n) := VJ (n)S(n - s,k - s). 

fc=l »=o w 

Proof . First by our convention Tn = \T(A) | and from Lemma 1 and 2 we have 

Tn = u ( U P{-X U P 

' X£expA \pet>{A~X) 

Since X n P = 0 we get by the rule of the sum and by the rule of the product 

I U ( U P(XuP))\ = ±(n)'Y:S(n-k,m)Pk+m. 
1 XeexpA \pep(A-X) ' ' fc=0 V ' ».=0 

Now expanding this sum, factoring all Pk out and then using a different way of 
summation we obtain 

i(nYfs(n-k,nOPk+m = ±(i:S(n-s,k-s)(n))pk, 
k=0 W m=0 fc=l V,'=0 \3// 

which is nothing but (9). This completes the proof. • 

Corollary 1. For each positive integer n we have the following formula for Pn: 

(10) Pn = ^(rn-X> f c(n)Pfc 
" ^ fc=l 

Proof . Clearly, we have £ S(n - s,n - s)(") = E (") = 2". Now (10) 
,s=0 s=0 

immediately follows from (9). O 
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E x a m p l e 2. In this example we show the enumeration of the value T4 by 

means of our formula (9). To find Stirling's numbers of the second kind we can 

use the formulas ( l ) -(4) . First we determine the values JVi(4) = 1, 7V2(4) = 11, 

JV3(4) = 24 and iV4(4) = 16. Further we suppose that the numbers Pi = 1, P 2 = 3, 

P 3 = 19 and P4 = 219 are already known. From this and from (9) we obtain 

T4 = Pi + 11P2 + 24P3 + 16P4 = 1 + 33 + 456 + 3504 = 3994. 

Now we introduce the table of the numbers P n and Tn up to n = 14. Currently 

the number Ti4 constitutes the greatest known value of the sequence Tn. 

T a b l e . Initial values of P„ and Tn for n ^ 14. 

Pi = 1 T = 2 

P 2 = 3 T2 = 13 

P 3 = 1 9 T3 = 171 

P 4 = 219 T4 = 3 994 

P 5 = 4 231 T5 = 1 5 4 303 

P 6 = 130023 T6 = 9 415189 

P 7 = 6 1 2 9 859 T7 = 8 7 8 222 530 

P 8 = 4 3 1 7 2 3 379 T8 = 1 2 2 207 703 623 

P , = 4 4 511042 511 T9 = 2 4 890 747921947 

Pio = 6 611065 248 783 T o = 7307450299 510 288 

P n = 1396 281677105 899 T n = 3 053 521546 333103 057 

P 1 2 = 414 864 951055 853 499 T12 = 1 797 003 559 223 770 324 237 

P 1 3 = 171850728381587059351 T13 = 1476062693867019126073 312 

Pi 4 = 98 484 324 257128 207 032 183 T14 = 1 679 239 558 149 570 229156 802 997 

R e m a r k . In 1977 Kim and Rush (see [6]) showed that the number of transitive 

relations on a set of n elements is asymptotically 2" times the number of partial 

orders. It may be noteworthy to mention here that the asymptotic value for T„, 

where n = 14, differs from this number by about 3.91 percent. Now we shall deduce 

this theorem by means of our formula (10). 

T h e o r e m 2. The sequences { T J ^ and {2nPn}„°=1 are asymptotically 

equal, i.e. 

(ii) ¥K^1 for n^°°' 



P r o o f . It follows from (10) that 2 nP„ ^ Tn, and moreover, we have 

Tn 
(12) 1 ^ lim 

2"P„ 

Now by virtue of (1) we have S(n - s,k- s) ^ S(n, k) for 0 ̂  s ^ A:. Combining this 

fact with (5) we obtain 

j i - i 

(13) VjA^(n)P* <2n(Qn-Pn). 
k=l 

Further, the preceeding estimate together with (10) immediately gives 

(14) nlim - J i - < 1 + Jim ( ^ - l). 

Finally, taking into account (6), we conclude that the inequalities (12) and (14) are 

equalities. This proves the theorem. • 

Coro l l a ry 2. The sequences {Tn}%Lx and {2"Qn}^L1 are asymptoticaiiy 

equai, i.e. 

T 
(15) —— > 1 for n -» oo. 

P r o o f . The assertion immediately follows from (6) and (11). 

4. O N PERIODICITY OF THE LAST FIGURES OF THE SEQUENCE Pn 

In the end we introduce a short remark on periodicity of the last figures of the 

sequence P„. Z.I. Borevich proved in 1982 a wonderful result on the sequence Pn. 

He proved the following assertion (see [2]). 

T h e o r e m 3 (Borevich). Let m be an arbitrary positive integer. Then there exists 

an index no from which the sequence {Pn mod/n}^L1 is periodical. Specifically, 

when m = p\ .. .pk, where pi,. . . ,pk are different primes, then {Pn modm}n°=1 is 

periodical and the length of its period is equal to the least common multiple of the 

numbers pi — 1 , . . . ,pk — 1. 

From the above-mentioned theorem another interesting consequence follows. The 

following fact was not explicitly emphasized in Borevich's work<[£p 66a**!N. 
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Corollary 3. For every non-negative integer k the following holds: The last 

figure of the number Pik+i is 1, Ptk+2 is 3, P^k+3 is 9 and Pik+4 is 9. Also the 

sequence of the last figures of Pn is periodical, the length of this period is 4 and the 

members of this sequence are 1,3,9,9,... (see Table). This immediately implies that 

the values Pn are odd for every positive integer n. 
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