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Summary. Based on some earlier findings on Banach Category Theorem for some "nice" 
cr-ideals by J. Kaniewski, D. Rose and myself I introduce the h operator (h stands for "heavy 
points") to refine and generalize kernel constructions of A. H. Stone. Having obtained in 
this way a generalized Kuratowski's decomposition theorem I prove some characterizations 
of the domains of functions having "many" points of /i-continuity. Results of this type lead, 
in the case of the a-ideal of meager sets, to important statements of Abstract Analysis such 
as Blumberg or Namioka-type theorems. 
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1. INTRODUCTION 

Given a topological space ( A ' , T ) , let T Q V(X) be an ideal of subsets of X. 
For any subset A C AT, let A*(T,T) or simply A* if r and T are understood, be 
the adherence of A modulo T. In particular, A* = {x E X: x e U £ r implies 
U n A £ T). Observe that A* is a closed subset of clA. For convenience A°(T, T) 
or simply A0, if T and T are understood, denote the set A \ A*. In the terminology 
of A. M. Stone, A n A*(T, T) is the kernel of the subspace (A, r\A) (relative to the 
ideal T\A = TnP(A)). 

The following three conditions have been intensively studied in [Kaniewski, Pi-
otrowski and Rose, 5]. 

By. Let D C X. Suppose that for every 0 ^ Uopen there is a nonempty open 
V C U such that V n D is an /-set in A'. Then D is an /-set in X. 
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B2: Let D C X. The set of all points x of D for which there is an open nbd U 3 r 
such that (U C\D) e / , is an /-set. Actually, B2 may be formulated as follows: 

(1) VD C X, the set AT/(£>) = Dn \J{Uopen C X: (VC\D) e 1} € I 

B3: In a topological space X, the union of any family of open /-sets is an /-set in 
X, or equivalently Ki(X) € / . 

2. K U R A T O W S K I ' S D E C O M P O S I T I O N T H E O R E M AND T H E h OPERATOR 

As was already noticed in Introduction, the set A* is a closed subset of cl A, the 
closure of A in X. So, if A = X, we derive that the set X*, the kernel of X, is closed 
in X. Now, since X°, the co-kernel of X, is defined as the complement of X* in X. 
we conclude that X° is an open subset of X. 

Summarizing, we have 

General ized Kuratowski 's Decompos i t ion Theorem—first version. Let 
(X, r ) be a topological space and let 1 C V(X) be a o -ideal of subsets of X satisfying 
B2. Then X can be uniquely decomposed into a closed subspace A*, possibly empty, 
which is the adherence of A modulo X, and an open subspace A0, possibly empty, 
where A0 e I . 

The original decomposition theorem, due to K. Kuratowski, formulated for the 
cr-ideal M(T) of meager sets, can be easily obtained from the following version of 
the Banach Category Theorem [Blumberg, 1]. 

(*) If A" is a metric space, D C X and 5 C D is the set of points in D which are 
meager relative to D, then S is meager in X. 

It is easy to see that (*) above is a special case of B2, see Introduction. Also, it 
can be easily checked that B2 suffices to derive this version of the decomposition 
theorem. 

We shall now exhibit an example from which the reader will see the need of further 
refinement of the notion of the ( - )* operator. 

E x a m p l e 2.1. Let (X,r) be the closed upper half-plane with the Euclidean 
topology and I = M(T). Further, let 

A+ = {(x, y): (x 6 Q A x > 0) A (y 6 Q A y > 0)}, 

(2) A„ = {(x,y):x<0Ay>0A[(xe R \ Q) V (y 6 R \ Q)]}. 

Define A = A+ U A_. 
Observe that 

A0 = {(x,y): x>0Ay>-0} and A* = {(x,y): x^OAy^O}. 



The fact that A* (resp. A0) is a closed (resp. open) subset of the closed upper 
half-plane illustrates only the general situation, where A* (resp. A0) is a closed 
(resp. open) subset of clA, the closure of A in X. 

What about the open subspace i? = { ( I , I / ) : I < 0 A J ^ 0 } made of the "true," 
deep-inside non-meager points? Observe that while the points of H do have the 
property (V) below, none of the points of the "border"—the non-negative part of 
the y-axis, has the property (V). 

First, we need the following definition: Let X be a space and let A C X . A point 
x e X is said to be non-meager relative to A if every open neighborhood U of x 
contains a subset B of A which is non-meager in X. 

And now the promised property: 
(V) Let X be a space and let AC X. Let x e X be arbitrary. Then there is an open 
neighborhood V of x such that every point y e V is non-meager relative to A. 

We shall now formulate a general case of a "good" property of all points of H. 
As in Section 1, (X, r ) denotes a topological space, Z C V(X) is a <r-ideal of 

subsets of X . Let AC X; associate with A the set Ah, the heavy part of A defined 
by 

Ah = {xeX:3U &T such that x e U and U C A'}. 
The reader will notice 

F a c t 2.1. Ah is an open (possibly empty) subspace. 

Using quite elementary properties of the relative topology we deduce that Ah is 
the maximal open subset contained in A*, that is : 

Propos i t ion 2.1 . Ah = IntA*. 

Let us turn to another version of the decomposition theorem. 
Observe that A* \ Ah = A* \ Int A* is nowhere dense in X. So, if we assume that 

nowhere dense sets are in the cr-ideal I, then we can "shift" A* \ Ah to >10(!) 
In view of Theorem 1 of Part 1, an ideal I satisfies B\ if and only if Af(r) C X 

and Z satisfies -62-
We are now ready for 

General ized Kuratowski's Decompos i t ion Theorem—second version. 
Let (X, T) be a topological space and let I C V(X) be a cr-ideal of subsets of X 

satisfying B\. Then X can be uniquely decomposed into an open subspace Ah, a 
possibly empty, the heavy part of A, and the closed subspace A0 U (A* \ Ah) which 
is an element of X. 

P r o o f . Consider the first version of Generalized Kuratowski's Decomposition 
Theorem. By earlier remarks, the set Ah is open, and it is the maximal set with this 
property. So, A* \ Ah is nowhere dense. 

Now, by Theorem 1 of Part 1—the equivalence of B^— the set A* \ Ah e Z. Thus 
A0 U (a*Ah) e Z, the subspace A0 U (A* \ Ah) being closed in X, as the complement 
olAh. D 
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R e m a r k 2.1. Observe that the second version of the decomposition theorem 
requires the stronger condition By rather than J52. 

3. F U N C T I O N S ON (X,T,1) 

Let (X,T) be a space and let J be a cr-ideal of subsets of X. 

Throughout this section we will need the following definitions. 

Given a set A C X. Every element x £ Ah, the heavy part of A, will be called a 
heavy point relative to A. 

In other words, x G X is a heavy point relative to A if and only if there is an open 
neighborhood U of x such that U C A*. 

Let / : X -4 Y be a function. We say that / is h-continuous at XQ, if for every 
open set G containing f(xo), the set f~1(G) has i a s a heavy point relative to X. 

E x a m p l e 3.1. The "salt & pepper" function, / : R -4 R defined by f(x) = 0, 
if x is rational and f(x) = 1, if x is irrational, is /i-continuous at every irrational X 
being the cr-ideal of countable sets. 

This type of "almost continuity" is very strong. For a fairly large class of spaces 
and a-ideals (or just ideals) on them, if / is /i-continuous at every point of the do
main space, then / is continuous—see [Kaniewski and Piotrowski, 5] for appropriate 
generalizations. 

If both the domain and the range of / is the set of reals, then /i-continuity of / at 
xo can be characterized by: 3 5 : X \ 5 G J and lim f(x) = f(xo). 

i e s , i - «o 
The following result is found in [Thomson, 10], see [Kaniewski and Piotrowski, 5] 

for generalizations. 

P r o p o s i t i o n 3 . 1 . ([Thomson, 10], Thm 34.1, p. 78) Let 1 be an ideal of sets 
in U which does not contain an open nonempty set. If a function f: M. —» IR is 
h-continuous at every point of f, then f is continuous. 

In what follows a network M for a space X is a collection of subsets At of X such 
that whenever x G U with U open, then there exists At G M with x € At C U. 

So, a network is like a base, but its elements need not be open. In some cases a 
network can be "fattened up" to a base for a space, e.g., a compact space with a 
countable network has a countable base [Engelking, 4], 

Given a space Y having a network J\f, let / : X ->• Y be a function. 

Define Ch(f,N) (or Cn(fM)) to be the set of all points x e X such that for every 
At G M we have: 

(3) f(x) G At implies x G [f~1(N)}h (or x G Int cl f~1(N), respectively). 
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Since for every S C X we have S" C cl S we have 

(4) Ch(f,Af)QC„(f,Ar). 

When At" is a base for T then Ch(f,Af) (or C„(f,Af)) stands for the set Ch(f) (or 
Cn(f)) of points o; h-continuity (or near continuity) of / . 

For any network A/" the following relations are true: 

(5) Ch(f,Af) C Ch(f) and C n ( / , A 0 C C n ( / ) . 

Theorem 3 . 1 . Let 1 be a o-ideal satisfying B\ and let Af be countable. Then 
Cn(f,Af) is "almost everywhere" in X, i.e., 

(6) X\Ch(f,Af)el. 

P r o o f . By the definition of Ch(f,Af) we have 

x\Ch(/,AO= lj {rl(N)\[r\N)]h}. 

By the Decomposition Theorem—second version, f~\N) \ [f~1(N)]h G 1, N e Af. 
So, the countable union of elements f'1(N) \ [f~~(N)]h of the u-ideal is in the 
a-ideal, so X \ Ch(f, Af) € 1. D 

The same assertion for C„(f,Af) does not require the strength of the Banach 
Category Theorem, since for any S C A', S \ Int cl S is nowhere dense. Clearly, 
C(f) C Cn(f), where C(f) stands for the set of points of continuity of / . 

Proposi t ion 3.2. Assume X = X*. Then C(f) C Ch(f). 

P r o o f . The proof of this claim is routine and as such is left to the reader. The 
fact that X = X* is necessary in Proposition 3.2 easily follows from Example 3.2. 
Let A4(T) be the a-ideal of meager sets in Q (the rationals) and let / : Q —> R be 
any constant function, i.e., f(x) = c. Clearly, C(f) = Q, whereas Ch(f) = 0. D 

Before we elaborate on the consequences of Theorem 3.1 and its importance in 
General Topology and Real Analysis, let us consider a simple condition which implies 
the converse of the statement made in Proposition 3.1. 

Proposi t ion 3 .3 . Let (Y, 7) be a regular space with a topology 7 and a network 
Af. If for every V G 7 and y 6 V there is N e A' such that y G TV C V and 
[f-l(N)Y C / " ' ( c l V), then Ch(f,Af) C C(f). 

P r o o f . Let x G Ch(f,A
r) and y = f(x) £ V0 G 7. Let V 6 7 be such that 

y ~ V C cl V C Vo- Further, let N be as in the assumption of our Proposition. Then 
x G [ r U A O f C / - ' ( c l V) C f~l(V0), which shows that x G C(f). D 
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The following result may be also viewed as a converse to Theorem 3.1. 

T h e o r e m 3.2. Let Y contain a countably infinite discrete subset N. Then, if 
every function f:X-*Y has a dense set of h-continuity, then X = X*. 

P r o o f . Suppose X C X*, that is, there is an open nonempty set U s.t. U e 1, 

i.e., U = \jFi, Fi e 1, i = 1 ,2 ,3 , . . . . Let N = {n0,nx,n2,...}. Define / : X -» Y 
;= i 

as follows: 

[m, if xe Fi 
W /(-) = .. 

[ n0, if x € X \ U. 

We claim that / does not have a dense set D of ^continuity, more specifically / 
does not have a point of /i-continuity in U. 

If D is dense in X, then there is an x 6 U such that x £ D n U, U being open in 
X. Then x 6 E; for some i. So, /(a;) e {";}• The set {ni} is open in Y, so let us 
consider / _ 1 { n ; } . Observe that / _ 1 { n ; } = i~; recall i~'s belong to the cr-ideal 1. 
This indicates that / is not nowhere /i-continuous in U. D 

The following characterization of spaces that are equal to their kernels easily fol
lows from Theorems 3.1 and 3.2, namely: 

T h e o r e m 3.3 . Let 1 be a o-ideal of subsets of X satisfying B\, and let Y be 
an infinite, second countable, Hausdorff space. Then X = X* if and only if every 
function f:X-*Y has a dense set of points of h-continuity. 

P r o o f . The range space Y has a countable infinite discrete subset N as an 
infinite Hausdorff space; being second countable it has a countable network. So, the 
assumptions of Theorem 3.1 and 3.2 are met. The conclusion of Theorem 3.3 follows 
easily as a corollary from the above two theorems. D 

Recall that / : X -> Y is called categorically almost continuous at x0 if / is h-
continuous at xo and M(T) is the c-ideal of meager sets in X. 

Corollary 3 .1 . A space X is Baire if and only if every function f: X -¥ N has 
a dense set of points of categorical almost continuity. Here hi stands for the set of 
natural numbers with the Euclidean topology. 



4. C O N C E R N I N G T H E O R E M 3.1 

A special case of Theorem 3.1, namely the one for the cr-ideal of meager sets is 
known in literature since 1922 [Blumberg, 1]; we shall refer to this special case as 
the Lemma on the existence of a residual set of categorical almost continuity points. 

Its original statement, see [Bradford and Goffman, 2], asserts that if X is any 
topological space and Y is second countable then every function / : X —> Y has a 
residual set of points of categorical almost continuity. 

In other words, if the domain space X is Baire and the range space is second 
countable, then any function has a "thick," in fact a dense Gs set of points of almost 
continuity. 

We now exhibit Example 4.1 showing that the assumption that Y has a countable 
network (or a weaker assumption that Y is second countable) in Theorem 3.1 cannot 
be weakened. 

E x a m p l e 4.1. Let £ and V denote the Euclidean and the discrete topology, 
respectively. Consider the identity function F: (R, £) -4 (R, V) defined by f(x) = x. 
With the cr-ideal M(£), we see that Ch(f,N) is empty. 

We shall now exhibit Example 4.2 proving that the requirement of Theorem 3.1 
that Y is second countable can not be relaxed to one such that Y has both an open-
hereditarily countable pseudo-base and is hereditarily Lindelof, see [Piotrowski, 8] 
for further results. 

E x a m p l e 4.2. Let £ and S denote the Euclidean and Sorgenfrey topology, 
respectively. Consider the identity function / : (R,£) -*• (U,S) given by f(x) = x. 
Again, with M(£) being the cr-ideal of meager sets in the domain space we see that 

ch(f,U) = %. 
The Lemma on the existence of a residual set of categorical almost continuity 

points—not surprisingly—led in the past to two important results of Abstract Analy-

Blumberg Theorem. (See [Bradford and Goffman, 2]; see also [White, 11].) Let 
X be a metric Baire space and let f: X —> U be a function. Then there is a dense 
subset D of X such that f\D is continuous on D (in the relative topology), and 

S e p a r a t e and Joint Continuity Theorem . ([Ke], where one needs to prove 
an analogue of the lemma for multivalued functions (= relations) first.) Let X be 
a space, let Y be second countable and let Z be a regular, second countable space. 
If f: X x Y —> Z is separately continuous, i.e., is continuous in one variable, while 
the other is fixed, then there is a residual subset A of X such that f is (jointly) 
continuous at every point of the set A x Y. 

R e m a r k 4.1. There have been studies [Brown, 3] or more recently [Reclaw, 9], 
of Blumberg theorem vis-a-vis various cr-ideals in the domain space. 
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All interested reader is especially urged to consult a work of B.S. Thomson [10] 

who proves 

Theorem 4.2. ([10], Theorem 34.2, p. 79.) Let 1 be a a-ideal of sets that contains 
no interval. Then, if f: R —> R is h-continuous except at the points of a set N0 that 
belongs to 1, then there is a set M, whose complement is in 1 and f is continuous 
relative to M at each point of M. 

The proof clearly uses the Lindelofness of the domain space. It would be inter
esting to get a generalization of the just quoted result of [Thomson, 10] to general 
topological spaces. 

In conclusion, one can now apply Theorem 3.1 to obtain appropriate analogues of 
Blumberg's Theorem or Kenderov's theorem on separate and joint continuity. 

The author acknowledges the support from Youngstown State University; when 
this article was written he was 1993-94 YSU Research Professor. 
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