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FOURIER PROBLEM WITH BOUNDED BAIRE DATA 

MlROSLAV DONT, P r a h a 

(Received September 25, 1996) 

Abstract. The Fourier problem on planar domains with time moving boundary is consid
ered using integral equations. Solvability of those integral equations in the space of bounded 
Baire functions as well as the convergence of the corresponding Neumann series are proved. 
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MSC 1991: 31A25, 31A20, 35K05 

In [2] the Fourier problem for some regions in the plane R2 with time moving 

boundary was solved. The solution was expressed by means of a combination of 

single and double layer heat potentials (and also of the Weierstrass integral). The 

problem was considered on regions of the type 

M = {[x,t] e R2 I te (a,b),xXp(t)} 

or of the type 

M = { [ i , ( ] £ R 2 | ( £ (a,b),<f>\(t) <x< <p2(t} }, 

where (p,<p\,<p2 are continuous functions of bounded variation on a compact inter

val (a,b) [and v?i(0 < <P2(t) on (a,b)]. In [2] only continuous boundary values were 

considered. A very simple assertion from functional analysis will enable us to solve 

relevant integral equations not only in the space of continuous functions but also in 

the space of bounded Baire functions. This makes it possible to solve the Fourier 
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problem for non-continuous boundary conditions (in a sense) and also to prove con

vergence of a simple numerical method for the above mentioned integral equations 

(this will be done in a forthcoming paper). At the end of the present paper con

vergence of the Neumann series of operators corresponding to the integral equations 

mentioned above is proved. 

1. PRELIMINARY 

By *R : we denote the extended real line (that is 'R 1 = R1 U {+00, -00}) . By 

a function on a set M we mean a numerical function, that is a mapping from M 

to *R1; a real function is a mapping from M to R1. By a continuous function we 

will always mean a real continuous function. 

For a real function / on an interval J C R1, M C J, the variation of / on M will 

be denoted by var[/; M]. It is well known that var[/; •] is an outer measure and its 

restriction to var[/; -[-measurable sets is a measure. The integral of a function F: 

M -» 'U1 with respect to this measure will be denoted by 

/ F d v a r / , / E(r)d(var/(r)) 
JM JM 

(where M C J is a var[/; -J-measurable set and F is supposed to be var[/; -]-measur-

able, of course). If / is of locally finite variation on J (that is, if var[/; I] < + 00 for 

any compact interval I C J), then by 

Fàf 

we mean the Lebesgue-Stieltjes integral of F. 

Let us recall some basic notation, notions and assertions from [1], 

Let a,b 6 R1, a < b, be fixed and let <p be a continuous function on (a, b), 

varfv; (a, b)] < + 00. Denote 

(1.1) K={[V(t),t]\te(a,b)}; 

K is a compact set in R2, of course. 

For [x,t] e R2, t > a, define a (real) function ax>t on the interval (a,mm{t,b}) by 

( L 2 ) «x,((r) = -
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[T G (a,min{t, &})]. Recall that from the assumption that tp is of finite variation 

on (a,b) it follows that a,,< has locally finite variation on (a,min{i,6}) and that 

(1.3) varT l°^0X;(a,c)} <_ - ^ { v a r ^ ; (a,6)] + j u p \x - V(T)\} 

for any c G (a ,mini ,6) (the subscript r in varT indicates that the variation is con

sidered with respect to the variable r ) . 

1.1. Parabolic variation. Let [x,t] G R2. For a,r > 0, a < + oo let nx,t(r,a) 

stand for the number of all points (finite or +co) of the set 

/ - f n j [ £ , r ] 6 R2 \ t - r = ( - ^ ) ,0<t-T<r 

It is known that for any [x,t] G R2, r > 0, the function nXlt(r,a) is a measurable 

function of the variable a G (0, +co). Denoting 

(1.4) Vк(r;x,t)= Є~a nXtt(r,a)åa 
JQ 

we have 

uu{t,b} 

x{a,t-r} 

,min{t,f>} 
(1.5) VK(r;x,t)= e - ^ , , W d ( v a r a I i ť ( r ) ) 

Jm*x{a,t-r} 

whenever max{a, t - r) < min{i,6}, otherwise VK(r;x,t) = 0 (see [1], Lemma 1.1, 
Definition 1.1). Further, we write VK(+oo; x, t) = VK(x,t); the function VK(-,-) is 
called the parabolic variation of the set (curve) K. 

For any fixed r > 0 the function VK(r; •) is lower-semicontinuous on R2 and finite 
on R2 \K ([1], Lemma 1.2). 

The basic property of the parabolic variation concerns its boundedness. The 
following assertion holds ([1], Theorem 1.1). 

Let t0 G (a, b) and suppose that 

sup{ VK((p(t),t) | t G (a,b),\t -t0\ < S} < +oo 

for some 5 > 0. Then there exists a neighbourhood U of [</?(*o),<o] (in R2) such 

that 
sup VK(x,t) < +oo. 

Meu 
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sup VK(<p(t),t) = C < +00, 
t£(a,b) 

then VK is bounded on R2—we have that V;<(x,t) <. c + ^ / S for each [x,t] € R2. 

1.2. Opera tor T. We will always suppose that (a, b) is a compact interval in R1, 

ip is a continuous function with finite variation on (a,b); K is the set in R2 given 

by (1.1). 

^((a, b)) stands for the space of all continuous functions on (a,b) endowed with 

the supremum norm, that is 

ll/H = | | / | | y = sup | /( t) | 
te{a,b)' 

ior f etf((a,b)). 

Further, let SS((a,b)) denote the space of all bounded Baire functions on (a,b) 

endowed also with the supremum norm which we will denote by | | . . . \\® or simply 

by || . . . ||. Note that tf((a, b)), SS((a, b)) are Banach spaces and that <£((a, b)) is a 

closed subspace of 33((a,b)). 

For / £ SS((a,b)) the potential Tf = TKf is defined in the following way. For 

[x, t] e R2 we put Tf(x, t)=0 whenever t <. a, while 

(1'r/(M)=TK/M)=4 r { ^ w - ^ ^ d / - ^ y/UJa \ 4(t - T) J T V 2s/t^r 

if f > a and the integral on the right hand side exists and is finite (Definition 2.1 

in [1]). 

It is seen easily that if VK(X, t) < + oo then Tf(x, t) is defined and 

(1.7) \Tf(x,t)\^\\fU~VK(x,t). 

As we have noted VK(X, () < + o o o n l 2 \K (assuming var[ip; (a, b)] < +oo) and thus 

for any / € SS((a, b)), Tf is defined at least on R 2 \ / C On R2\A" the function Tf(x, t) 

is equal to a combination of a double and a single layer heat potentials and solves 

the heat equation there (see [1], Remark 2.1). 

Let [x,t] £ R2 be fixed and suppose that VK(x,t) < + oo. For / e @((a,b)) put 

(1-8) T*(f) = T*f = Tf(x,t). 
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Then T*t is a linear functional on SS((a,b)), which is continuous due to (1.7). Fur

ther, let 7 * . be the restriction of T*t to <tf((a, b)). Let \\T*t\\ denote the norm of T*t, 

1.2*. || the norm of T* , that is 

||2f.|| = suP{ T*(f) | / e ®((a,b)), | | / | | » «c l } , 

| | 2 * || = suP{ ! * , ( / ) | / 6 ^ ( (a .6) ) , ll/Hv < 1 }. 

Using (1.7) we have 

(i-9) l i r f j K l i r ^ i U - ^ ^ ^ o . 
v* 

Further we get (suppose t > a) 

^=VK(x,t) = 4 = / ' " " ' ' e - a - . ' ( T ) d(va ra , , 4 ( r ) ) 

V" 0 1 ja 

= s u p | - | ^ n , " '" / ( T ) e - ° . . ' W d ( a . , ( ( T ) ) | / e i T « a , f r » , | / | < l | 

= sup{ Tf(x, t) | / € ^ ( (o , 6)), H/ll* ^ 1 } = | | I * i]. 

Together with (1.9) we thus obtain 
(1-1°) ll-t . l l = \\T*t\\ = ^VK(x,t). 

Now let us recall an assertion concerning the limits of the potential Tf at points 

of the curve K. In this connection the point [tp(a),a] (6 K) plays a special role. One 

can see that Tf has no limit at this point if f(a) ^ 0 (and / is continuous at a). We 

shall thus restrict ourselves to the case f(a) = 0. Let us denote 

^ o « a , 6 » = { / e ^ « a , 6 ) ) | / ( a ) = 0 } , 

M(a,b)) = {feV((a,b))\f{a) = Q). 

Then the following is valid (see [1], Theorem 2.1). 

Let t0 £ (a,b), x0 = <p(t0). Then there exist finite limits 

(1.12) lim Tf(x,t), lim Tf(x,t) 
M->[*„,<„) [x,(]-[x„,(„J 

t€(a,b),x>¥,(t) te(a.b).x<v,(t) 

for each f £ ^o((a>'))) i/ and on/?/ if there is 5 > 0 suc/i i/jni 

(1.13) sup{ VK(<p(t), t)\te(t0- S, t0 + S)n (a, b) } < +oo. 
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/ / the condition (1.13) is fulfilled for some S > 0 then the limits (1.12) exist and 

are finite for each f £ @>o((a, b)) which is continuous at t0. 

Let [x, t] e K,t> a. Recall that if VK(x, t) < + oo then there exists a (finite or 

infinite) limit lim ax<t(r) [the function ax<t is defined by (1.2)]. In this case we put 

aXlt(t) = lim aXit(r); 

aX:t is thus defined on (a,t). Further, let G be the function on *R' defined by 

C t = - o o , 

e x da;, t > - o o . 

Using the function G and the value ax,t(*) one can express the values of the lim

its (1.12). If [x0,t0] e K, t0 > a, and the condition (1.13) is fulfilled (for some S > 0) 

then for any / e S9((a, b)) continuous at t0 we have (see [1], Remark 2.4) 

(1.15) lim Tf(x,t) = Tf(x0,t0) + f(t0)h-^G(aXOtto(t0))], 
[*,t]-+[*o,t„] L V 1 J 

t€(a,b),x>p(t) 

(1.16) lim Tf(x,t)=Tf(x0,t0)-f(t0)^G(axoAl(t0)). 
[»,t]-+[*o,«o] Vtt 

tS(a,6),x<»>(t) 

Note that in the case t0 = a the values of those limits are zero if, in addition, 

f(a) = 0. 

2. FREDHOLM RADIUS OF THE OPERATOR To 

The operator T0 was studied in detail in [2] but it was considered only as an 

operator on %({a,b)). Here we will deal with an extension of T0 from %({a, b)) 

onto SS((a,b)). 

As in the previous section let (a, b) be a compact interval in R1, ip a continuous 

function with finite variation on (a, b), K is defined by (1.1). For [x, t] 6 K2, t > a, 

the function ax,t is defined on (a,min{i,6}) by (1.2). Throughout this section we 

suppose that 

(2.1) sup VK(x,t) < +oo. 
[x,t)eK 

Then for any [x, t] e K,t> a, the limit 

(2.2) a,,i(«) = lim ax,t{r) 
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exists. Thus for each [x,t] £ K,t > a, the function o_j( is defined on (a,t). Note 
that one can see easily that the set of all t G (a, b) such that a^jit) = 0 is dense 
in (a, 6) [a^t),^) = 0 for almost all t G (a,b)]. 

The symbols V((a,b)), %((a,b)), @((a,b)), SS0((a,b)) and Tf = TKf will stand 
for the same as in Section 1. 

2.1. Operators T, T, T0. These operators were defined and studied in [2] as 
operators on %((a,b)); let us recall their definitions. 

Assuming (2.1) the limits (1.12) exist and are finite for each [_o,*o] G K and any 
/ G %((a,b)). One can thus define 

(2.3) f+f(t)= lim Tf(x',t'), 
[-VHMO,.] 

t'e{a,b),x'>V(t') 
(2.4) f-f(t)= lim Tf(x',t') 

[-'•*']-+[*>(*).«] 
t'S(a,6>,i'<»>(t') 

for / 6 ^b((a,6)), « 6 (a,6). It is easy to see that f+f,f-f G -_((a,6» for any 
/ G «b«o>6)) and that f+,f- are linear operators on %((a,b)) mapping %((a,b)) 
into itself. It follows from (1.15), (1.16) that 

(2.5) f+f(t) = Tf(v(t), t) + f(t) [2 - J=G(av(t),t«)], 

(2.6) f_/(t) = r/(v»(t),t) - /(*)^jG(ov(.,,t(*)) 

for / 6 %((a,b)), t G (a,b) [f+f(a) = f_/(a) = 0]. 
Further, put 

(2.7) Tf(t) = Tf(v(t),t) 

for / G 3§((a,b)), t G (a,6). In general, 7 / is not continuous on (a,6) even 
for / e %((a,b)). Since cwt),t(t) = 0 for almost all t G (a,6), one can see from 
(2.5), (2.6) and the fact that T+, f_ map %((a, b)) into %((a, b)) that Tf G %((a, b)) 
for any / G %((a, b)) if and only if av(t),t(t) = 0 for each t G (a, 6). Let _ denote the 
identity operator on %((a,b)), I the identity operator on 3B((a,b)). Let T be the 
restriction of 7 to ^o((a,6)). In the case op(t),t(t) = 0 for each t G (a,6) we then 
haveT: ^b((a,6)) -> -o((a,6» and 

T+ = T+/, f-=T-I 
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by (2.5), (2.6). But in general a9(t).t(t) = 0 does not hold for all t € (a,b). Then 
instead of T one can consider an operator T0 defined on %((a, b)) by 

(2.8) ?o = f+ - I 

or [which is the same by (2.5), (2.6)] 

(2.9) To = f_ + /. 

Since f+, f_ are defined on <ifo((a,b)) only, % can be defined by (2.8) [or by (2.9)] 
also only on ^o((a,6)). From (2.5), (2.6) we get 

(2.10) __/(*) = Tf(t) + f(t) [l - -^G(a„mit))] 

for / e «b((o,6)), * e (a, b) [and %f(a) = 0]. 
But the right hand side of (2.10) has sense for any 98((a,b)) if we write here T 

instead of T. For / £ 98((a, b)) define %f by putting %f(a) = 0 and 

(2.11) %f(t) = Tf(t) + f(t) [l - - ^ G ( a , w , t W ) ] 

for t e (a, b). Then T0 is a linear extension of T0 from %((a, b)) onto 9S((a, b)). 
Operators T0, T0 are linear, and they are also bounded as we shall see later. We 

know that T0: %((a,b)) •+ %((a,b)) but it is not clear at the first sight whether 
analogously %: 9S((a,b)) -+ 98{(a,b)). 

Recall that any linear continuous operator P: V0((a,b)) -+ 'if0((a, b)) can be writ
ten in the form 

(2.12) (Pf)(t) = Jaf(r)d(\?(T)) 

[f € 1fo((a,b)), t e (a,b)], where for each t 6 (a,b), Af is a function with finite 
variation on (a,b). Then 

(2.13) | |P| |= sup var[Af;(o,6)]. 
t€{a,b) 

Now we want to express the operator T0 and also To in the form (1.12). For t 6 (a, b) 
put 

f ~G(av{t),t(r)) fo r r€ (o , . ) , 
(2-14) At(r) = f 

[~G(^m(t)) (ovre(t,b) 
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and further let A „ ( T ) = 1 for each r G (a, b). Let us show that then for any 

/ e &((a,b)), t e (a,b), we have 

(2.15) T / ( t ) = Tf(ч>(t),t)=J /(т)d(Лt(т)) 

(the integral on the right hand side is considered as the Lebesgue-Stieltjes integral). 

For t = a the equality (2.15) is clear. Using Lemma 0.2 from [1] (substitution 

theorem) we get for t £ (a, b), c € (a,b) that 

— ^ e - a w . , . . M d K ( t ) , t ( T ) ) 

= ^[G(avm(min{c,t})) -G(a^t)tt(a))]= J\(\t(T)). 

Since 

Tf(ч>(t),t) = ^ J f(т)e-a2w{т)d(avШ(т)), 

the equality (2.15) follows. 

Now let us define functions At. Put A „ ( T ) = 1 for T = (a, b) and for t £ (o, b) let 

(2,110 A?(T) = B G ( ^ M ) f O T r e < M ) ' 
[ l for T 6 (t,b). 

Note that in general At is not continuous at T = ( and 

A ? ( 0 - lim A?(T) = l - - ^ G ( a v ( t ) , t ( 0 ) -

If ^ t is the Lebesgue-Stieltjes measure [on the interval (a, b)] corresponding to the 

function At and fj,° is the Lebesgue-Stieltjes measure corresponding to A t, then 

[ f o r t e (a,6)] 

tf = Ht+[l--j=G(avi:t),t(t))]6u 

where St is the Dirac measure supported by {t}. It follows from this fact, equal

ity (2.15) and the definition of To that 

(2.17) %f(t) = Jf(T)d(X(T)) 

for any f € @((a,b)), te (a,b). 
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It is seen from the expression (2.17) of To that if / „ e SB((a, b», fn ->• / pointwise 

on (a, 6) and | | /„ | | ^ fc for some k e R1 then To/„ -» To fjointwise on (a,&). 
Since 7 o / 6 %«a,&)) for any / e «b((o,6)) it follows that 7o/ € ^o((o,6)) for 
any / e ^ 0 ( (a ,&)) . Given / € SS({a,b)) let / 0 e J*o«a,b» be such that / 0 ( t ) = /(<) 
for . e (a, b). Then To/ = 7o/o and we see that 

T0: S8{(a,b)) -> «( (o ,b) ) 

[even T0 : ^ « a , & » -» ^b((a,&))]. 
It is seen easily that 

var{X(;(o,6>] = ^ y K ( V « ) , . ) 

and 

var[A?;<o,&>] = - |-Vir (*»(*),*) + | l - -^=G(a», ( t ) i t( .)) • 

This last equality enables us to express the norms of the operators T0, 7o [norms 

with respect to %((a,&)) and SS((a,b)), respectively]: 

(2.18) UTOII = ||To|| = sup \^VK{^(t),t) + \l-^G(a^m(t))\}-
t£(a,b) IV11 I V7 1 IJ 

Since the function G is bounded, it follows from the assumption (2.1) that the oper

ators T0, To are bounded. 

2.2. Operators H. In this section let ijihe a given function continuous on (a, &). 
For r > 0 define an operator TH* = W* on SB ((a, b)) by 

(,«) -«J'<"={0^/;-'/We-.,,<,d(«,(,,,w) I ' ,*" , 
for / e .#((o,&», t e (o,&). Denote further 

•H* = Ut= °Ht-

Lemma 2 .1 . Let i/> e V((a,b)), r > 0. Then 

(2.20) T-H%: S3((a,b))^%((a,b)) 

and "Tf* is a compact operator on SB((a, &)). 
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P r o o f . If r >• b - a then all is clear because then rH* is the zero operator. 

Suppose that 0 < r < b ~ a and denote 

-»=- { / | / e # ( M » , | | / | | < 1 } . 

We have to prove that rW^(3i) is a relatively compact subset of %((a,b)). In order 

to do that it suffices to show that rH*(3>) is a set of equicontinuous and uniformly 

bounded functions on (a, b) vanishing at a. 

In [2], Lemma 1.2, it was proved that rH$—the restriction of rU* onto %((<*, &))— 

is compact on the space %((<*, &))• In particular, it was proved that if SB is the unit 

ball in ^o((a, b}) then rH*(S8) is a set of equicontinuous and uniformly bounded 

functions from lg0((a,6)). In exactly the same way we can prove this for TH*(3>) 

writing everywhere 3 instead of 3) and rH* instead of rH*. D 

L e m m a 2.2. Given ip S ^((a,b)) suppose that ip't) ^ <p(t) for each t £ (a,b). 

Then 

(2.21) H+:*((a,b))-*W(a,b)) 

and W* is a compact operator on SB((a, b)). 

P r o o f . We know that for each r > 0 the operator T~H* is compact and that 

(2.20) is valid. As the limit (in the norm) of compact operators is compact it suffices 

to show that 

lim \\Ht-THi\\ = 0. 
r->0+ v V 

But this can be done in exactly the same way as \\H* - TH^\\ -4 0 (for r -4 0+) was 

proved in the proof of Corollary 1.1 in [2]. • 

2 .3 . The Fredholm r a d i u s . Let us note that Lemmas 2.1, 2.2 are valid without 

the assumption (2.1)—this assumption was not used in the proofs. Throughout this 

section we will suppose again that the condition (2.1) is fulfilled. Let us recall that 

then the value 0^(4),t(t) is defined for any t S (a,b). Let us define a function ax 

on (a, b) by 

(2.22) aKW = | l -4= G Kw, tW) | -

Lemma 2 .3 . For each r > 0 the function 

(2.23) t^-^zVK(rMt),t)+aK(t) 
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defined for t e (a, b) is lower-semicontinuous on (a, b). For f e SS((a, b)) put 

(2.24) %f = Tri%f 

and let Tr be the restriction of% onto %({a, b)), & the unit ball in 8§((a, &)), §a the 
unit ball in &o((a, b)). Then for any t e (a, b) (and r > 0) 

-^VK (r; <p(t), t) + aK(t) = sup [%f(t) - %f(t)] 
(2.25) ^ >** _ 

= sup [T0f(t)-Trf(t)]. 
fes>„ 

Proof . Let r > 0. For / e %((a,b)) we have TTf e V0((a,b)) by 
Lemma 2.1 [even Trf e %((a,b)) for any / e SS((a,b))\. Further, %f 6 %((a,b)) 
for / e tf0((a,b)) and thus 

(T0f-Trf)e%((a,b)). 

Since the least upper bound of a family of continuous functions is a lower-semicon
tinuous function it suffices to show that (2.25) is valid. 

Given t e (a,b),t> a + r, f e SB((a, b)) then 

%f(t)-Trf(t) = J f(T)d(t(r))~J T f(r)d(X(r))= J_ f(r)d(t(r)) 

by (2.17), (2.19). Using the definition of A( we see now that 

sup [7o/(*)-T r /W] = sup [T 0 / ( . ) -T r / ( t ) ] 
/e® /s®„ 

= var[A?; <*--,&>] = ^VK(r;V(t),t)+aK(t). 
V11 

If t 6 (a,a + r) (and t s= b) then Trf(t) = 0 and thus %f(t) - Trf(t) = %f(t) and 

SUP [%f(t)-Trf(t)] = SUP [T0f(t)-Trf(t)] 
/e® /€®0 

= var[A?;(a,6>] = l;VK(<p(t),t) +aK(t). 

V 1 1 

But in this case VK(<p(t),t) = VK(r;ip(t),t) and the assertion is proved. Q 
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Assuming that the condition (2.1) is fulfilled define for r > 0 

(2.26) Җ.K = sup Ą=Vк(r; >(ť),t) 
tЄ(a,Ь) VK 

and 

(2.27) &K = lim &TK 
V ' r-»0+ 

(this limit clearly exists as &TK is non-decreasing with respect to r). 

Let B be a Banach space, P: B -*• B a continuous linear operator. Then by u>P 

we denote the essential norm of P, that is 

uP= inf | | P - A | | . 

where SOT is the set of all compact (linear) operators on B. 

L e m m a 2.4. For eacii r > 0, 

(2.28) &TK = sup \^FVK(r;^{t),t) + aK(t) \. 

t£(a,b) LV71 J 

Further, we have 

(2.29) UJTO ^ &K, 

(2.30) UJT0 <: &K. 

P r o o f . Equality (2.28) and inequality (2.30) were proved in [2], Lemma 1.4. 

But inequality (2.29) can be proved in exactly the same way as (2.30) was proved if 

we use Lemma 2.1. • 

Let us note that by Theorem 1.1 in [2] even u>T0 = &K. We do not know if the 

same is valid for 7o-
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3 . T W O LEMMAS 

A natural way of solving an integral equation is to consider it as an equation in an 

appropriate function space. In [2] some integral equations derived from the Fourier 

problem were investigated in tf0((a,b))—this corresponds to the Fourier problem 

with continuous boundary values. In this part we introduce only two auxiliary as

sertions coming from [7]. These assertions enable us to extend relevant results to the 

space SS((a, b)) and thus to solve the Fourier problem (in a sense) for non-continuous 

(bounded) boundary values. 

First let us recall one known and simple but useful assertion concerning the ex

pression of the inverse of an operator by the Neumann series. By / we denote the 

identity operator. 

Let L be a Banach space, A: L —> L a linear operator and let \\A\\ < 1. Then 

(I - A) has the inverse operator on L 

(3.1) ( / - i 4 ) - - = ^ . 4 » 
71 = 0 

and 

(3.2) IKz-zirMU 
i - iiAii 

If B is an operator on a normed space L then | |B| | denotes the corresponding 

operator norm of B. For xn,x € L we mean by xn -» x that lim xn = x in the 

norm. 

Lemma 3 .1 . Given a normed linear space L let 

Bn:L->L, B:L^L (n = 1,2,3, . . . ) 

be linear operators. Suppose that B " 1 , B'x exist, B~l are bounded and there is 

M 6 R1 such that \\B~-\\ < M. Suppose that 

(3.3) Bnx -+ Bx 

for each x ~ L. If xn,x ' L, xn —I x, then 

(3.4) B - 1 * - . -> B-'x. 

In particular, let L be a Banach space, An, A: L -> L bounded linear operators and 

suppose that there is A 6 R1, A < 1, such that 

(3.5) H A n K A , \\A\\ 4 A. 
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Suppose that 

(3.6) Anx -> Ax 

for each x e L. Then 

(3.7) (I-An)-
1xn^(I-A)-1x 

whenever xn, x 6 L, xn -* x. 

P r o o f . It is seen easily that 

B ^ 1 - B * 1 = B'^B - B „ ) B " 1 . 

Let i e I , E > 0. By the assumption (3.3) there is n 0 such that 

\\(B-Bn)(B-ix)\\<± 

for n > n0 . Hence for n > n0 we get 

IIB-1* - S - ^ | | = H B - 1 ^ - BnKB-^W < IIB-'IUKB - BnJCB-1*)! < e 

and thus 

B^x -> S " 1 * 

for any x & L. If now a;n —> x then 

HB-'i-n - B -1a;|| s= \\Bn
1xn - B~lx\\ + \\B~lx - B^xW 

< M\\xn - x\\ + \\Bn
lx - B~''x\\ -> 0 

and the first part of the lemma is proved. 

The second part follows immediately from the first using the fact that (/ —A„ ) _ 1 , 

(I — A)-1 exist (under the given assumptions) and that 

l i a - A o - l ^ . 

The assertion is proved. • 

L e m m a 3.2. Let X be a Banach space, X0 C X its complete subspace. Let 

Q, B be bounded linear operators, 

Q-.X-+X, B:X->X0, 
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let ||<5|| < 1, and suppose that Q: X0 -> X0. Then 

(3.8) ( / - * 5 - B ) - 1 ( 0 ) c X 0 . 

Suppose in addition that B is compact. If for each f € X0 the equation (with 

unknown g) 

(3.9) (J-Q-B)g= f 

has a unique solution in X0 then for each f e X, (3.9) is uniquely solvable in X. 

P r o o f . Let x £ X be such that 

(3.10) (I -Q-B)x = 0. 

Since ||<5|| < 1 by assumption and Q: X0 -> X0 we have also 

(3.11) (I - Q)-1: X0-> X0. 

Equality (3.10) can be written in the form (/ - Q)x = Bx, that is in the form 

x = (I- Q)~lBx. 

Since by assumption Bx e X0, it follows from (3.11) that x 6 X0 and thus (3.8) is 

proved. 

The second part of the lemma follows from (3.8) and the Riesz-Schauder theory. 

Since ||*5|| < 1 and B is compact, by the Riesz-Schauder theory it suffices to verify 

that the null space of (I — Q — B) is trivial. But if (3.9) is uniquely solvable over X0 

then we get from (3.8) that 

{x e x | (/ - <5 - B)x = o} = {x e x01 (/ - <5 - B)x = o} = {0} 

and the assertion is proved. • 
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4. BOUNDARY VALUE PROBLFMS 

In the paper [2] the Fourier problem for continuous boundary values was solved. 

Using lemma 3.2 we can now extend those results into the case of bounded Baire 

boundary values. Analogously to [2] we shall distinguish cases of unbounded and 

bounded regions. 

4 . 1 . T h e case of u n b o u n d e d reg ion . In this section we will use the following 

notation. Let (a, b) be a compact interval in R1, <p: (a, b) -> R1 a continuous function 

of finite variation on (a, b) and denote 

(4.1) K={[<p(t),t]\t€{a,b)}. 

Further put 

(4.2) M = {[x,t] | te(a,b),x ><fi(t)}, 

(4.3) B = Ku{[x,a] \x ><fi(a)}. 

In Section 2 functions T+f, T-f were defined for / _ %((a ,6)) by 

(4.4) f+f(t)= Um Tf(x',t'), 

[x',.'HMt),t] 
t'£(a,b),x'>p(t') 

(4.5) f-f(t)= lira Tf(x',f) 
[«',.']-.M0.«] 

t'e(a,b),x'«p(t') 

(t e (a,b)) assuming 

(4.6) sup VK(x,t) <+oo; 
[x,t]eK 

in this section we will always suppose that (4.6) is fulfilled. 

By (4.4), (4.5) f+f, f.f can be defined only for / e - o ( M » . As we have seen, 

(4.7) T+f(t) = Tf(<p(t),t) + f(t) [2 - ~G(avm(t)) 

(4.8) f-f(t) = Tf(<p(t),t) - ^f(t)G{avm(t)) 

[recall that for [x,t] 6 K,t> a, the value of ax,t(t) is defined by (2.2)]. 

Further, we have defined an operator T on £8((a,b)) by 

(4.9) Tf(t)=Tf(<p(t),t) 
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[/ £ S8((a,b)), t e (a,b)]. The operator T is then the restriction of T on «o((a,6». 
Let us recall also the definition of the operator 7o on 3S((a,b)). If / 6 3&((a,b)) 

then we put Tof(a) = 0 and 

(4.10) T0f(t) = Tf(t) + f(t) [l - ~G{av{t)it(t))] 

for t 6 (a, b). The operator T0 is then the restriction of 7o onto %((a, 6)) and 

T0: %({a,b))-¥ %((a,b)), %>: SS((a,b)) -* 9S((a;b)) 

(see Section 2.1), %, To are bounded linear operators. Further we have [if I is the 
identity operator on %({a, b))} 

% = f+-I = f-+I, 

that is 
f+ = % + /, f- = % - I. 

Now we define operators T+, 71 on SS((a,b)) by 

(4.11) 7 + = T 0 + J , 71= To -1 

[where 1 is the identity operator on SS((a,b))}. By (4.10) and (4.7), (4.8), (4.9) 
[using the fact that %f(a) = 0] we obtain the following expression of values 7+/, 71 / 
for / e SS((a, b)). If / £ SS((a, &)) then 

%f(a) = /(a), 71/(a) = -f(a) 

and 

(4.12) 7+/W = Tf(9(t),t) + /(.) [2 - ^=G(avm(t))\ , 

(4.13) 71/W = Tf(v(t),t) - 4 = / W G K < ' M W ) 

V11 

for t £ (a, b). If we put formally 

<Mo),o(«) = 0 

then (4.12), (4.13) are valid for any / e 3B((a,b)), * G (a,fc). 
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Let us recall that aj<(t) has been defined for t e (a, b) by 

(4.14) aк(t) = 1 - Ą=G(avШ(ť)) 

Theorem 4.1. Suppose that 

(4.15) lim sup \-^=VK(r;<p(t),t)+aK(t) < 1. 
r->0+ (g(o,6> LV71 J 

Then for each g e ^ ( ( a , 6)) the equation 

(4.16) 7+/ = a 

(and also the equation Tf = g) has a unique solution f e SS((a, &)). 

P r o o f . For r > 0 we have defined in Section 2.2 operators %• = 7"H% by 

!

0 if t < a + r, 

2 rt'r 2 , , 
•fa J / ( r ) e - ^ < ' ) . . M d ( ^ ( t ) , t ( r ) ) i f . > a + r 

for / e ^ ( ( a , 6)), t e (a, b). For r > 0 the operator %• is compact on 38((a,b)) and 

T r : ^ ( ( a , 6 ) ) - r ^ o ( ( a , 6 ) ) 

(see Lemma 2.1). By the assumption (4.15) we can choose r > 0 such that 

(4.18) sup \-^=VK(r;<f(t),t)+aK(t) < 1. 
(£(a,6> LV71 

Let ^ be the unit ball in S§((a,b)). Using (2.25) we get 

H7o-Til = sup| | r0 / -T/l! = SUP{ SUp [%f(t)-Trf(t)]\ 
fe@ fe3>vte(a,b) ' 

= sup { s u p [ T o / ( t ) - T r / ( 0 ] } = sup \~VK(r;<p(t),t)+aK(t)\. 
te(a,b) L/6® > K(a,b) Lv71 J 

Let us denote for a while 

X = 38((a,b)), X0 = tf0((a,b)), 

B = -%r, Q =-(%>-%-)• 
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Since 7+ = 7o + T the equation (4.16) can be written in the form 

(4.19) (1-Q-B)f=g. 

We know that Q: X -> A , Q: X0 -> A 0 and if r > 0 is such that (4.18) is valid then 

IIQH < 1. The operator B is compact and B: X -> A"0. It was shown in [2] that 

under the assumption (4.15), for each g e X0 = ^o((a,b)) the equation (4.19) [i.e. 

the equation (4.16)] has a unique solution in A0 . Now it follows immediately from 

Lemma 3.2 that for each g e X the equation (4.19) has a unique solution in A , i.e. 

(4.16) has a unique solution in Hd((a,b)). • 

L e m m a 4 . 1 . Suppose that (4.6) is fulfilled. Given f e ii$((a, b)), t0 e (a,b), 

suppose that f is continuous at t0. Then T0f is continuous at to-

P r o o f . Let us first take notice that if / is continuous on a relatively open 

interval J C (a, b), then T0f is continuous on J. Indeed, by Section 1 for each t e J 

7 + / ( t ) = lim Tf(x',t'), 
[x',f'HMt),t] 

[*',f]6M 

which implies that 7+/ is continuous on J. Since 

To/ = f+f + f, 

also To/ is continuous on J. 

If / ( to) # 0 then 

To/ = 7 o ( / - / ( * o ) ) + / ( < o ) r 0 l 

(where 1 denotes the function which equals 1 on (a, b)). By the above consideration 

7ol is continuous on (a, b) and it is seen that it suffices to prove the assertion for the 

case /(*o) = 0. Let us thus suppose that f(t0) = 0. 

Denote 
2 

c = -= sup VK(x,t) + l; 
V* [x,t]eK 

c < +oo by the assumption. 

Recall that for t € (a, 6) the function A( was defined by 

I ^ G k w . t W ) f o r r e ( a , f ) , 
A( (r) = { V* 

for r e (t, 6) 



[see (2.16)], and A0(T) = 1 for r e (a,b). For t e (a, 6) we then have 

^=vK(<p(t),t)+ i - 4 = var[Ã?; (a, Ь)] = ~Ş_Vк (V(t), í) + ll - -ţ=G(avШ(t)) I 

Since 

^ G ( a ^ ) i t ( 0 ) | < l , 1 -

we see that 

(4.20) var [A?; (a,&)] s£ c 

for each t 6 (a, 6). 
Let e > 0. Since / is continuous at t0 [and f(t0) = o] there is r > 0 such that 

to - r > a and 

(4-21) l / ( r ) l ^ 

for each T & (t0 - r, t0 + r) n (a, b). Then [see (4.20)] 

(4-22) | ^ ^ / ( T ) _ $ { » ) | < J var[^ ; (a, 6)] < £ 

for each i € (to - r, to + r) n (a, b). Put 

f m _ J I W forte(a,t0-r)i 

\ o forte ( to-r ,6). 

By the above consideration 7o/i is continuous on (t0 - r M Thus there is <5 > 0, 
5 < r, such that 

| ^o / i (* ) -7o / i ( to ) |< | 
o 

for t £ (t0 - o, t0 + <5) n (a, b>, that is 

(4-23) | £ " ' f(T)d(?t(T))-J*° r / (T)d(A? o ( T ) ) |<£. 

Consider t e (to - o, t0 + o) n (o, b). Since (for such t) 

To/W = jT" /(r) d(A?(r)) + f /(T) d(^(T))> 



it follows from (4.23) and (4.22) that 

\%f(t) -%f(to)\ ^ |jf° rf(r)d(ft(r))-£' r/(T)d(^,(r))| 

+ \f f(r)d(t(r))\ + \f f(r)d(t0(r))\ 
\Jt0-T I \Jt0-T I 

s e e 
< 3 + 3 + 3 = £ -

Thus we see that %f is continuous at t0. D 

Lemma 4.2. Suppose the condition (4.15) is fulfilled. Let f e SS((a,b)) be the 

solution of the equation 

%f = g 

for a given g £ SS((a,b)). If g is continuous at t0 g (a,b) then also f is continuous 

at to. 

P r o o f . Choose r > 0 such that 

sup 
;up \-^VK(r;ip(t),t)+aK(t) < 1. 
(a,b) LV* J 

Using the notation from the proof of Theorem 4.1 the equation 7+/ = g can be 

written in the form 

(4.24) (1-Q-B)f = g, 

where B = -%., Q = -(To -%)• We know that 

Q:a((a,b))-*a((a,b)), Q- «&(MM -+ «b«o,6)), ||Q|| < 1, 

fl:*((o,6»-+ifo((o>6)) 

and the operator B is compact. The equality (4.24) can be written in the form 

(I-Q)f = g + Bf, 

i.e. 

f = (l-Q)-\g + Bf}. 

Since ||<2I| < 1, we have 

(l-QT1 = YiQ
n 



and thus 

(4.25) / = f , Q n [ 9 + B / ] . 
n=0 

Since B: 38((a,b)) -+ %((a,b)), the function Bf is continuous on (a,b). The func

tion g is continuous at t0 by assumption and thus g + Bf is continuous at t0. The 

series in (4.25) converges in the norm in 3B((a,b)), that is, as a function series, it 

converges uniformly on (a, b). To prove that / is continuous at t0 it suffices to show 

that for each n G N the function Qn[g + Bf] is continuous at t0 and to see this it 

suffices to show that if h G SS((a,b)) is continuous at t0 then Qh is continuous at t0 

as well. But this follows from Lemma 4.1 since 

Qh = -(% - T)h = -(f+-X- Tr)h = -f+h + h + Th, 

Trh G %((a, b)) and T0h is continuous at t0 by Lemma 4.1. • 

Corollary 4.1. Let / G 3&((a,b)) be the solution of the equation 

f+f = g 

for a given g G SS((a, b)). Then the potential Tf solves on M [M is defined by (4.2)] 

the first boundary value problem with zero initial condition and with the boundary 

condition g on K in the sense that 

(4.26) lim Tf(x,t) = g(t0) 
[-,.]-+[¥>(*o),to] 

Mew 

for each point t0 G (a, b) at which g is continuous. 

P r o o f , It is clear that 

lim Tf(x,t) = 0 
lx,t]-r{x0,a] 

for each x0 > <p(a)-
Let to G (a,b) and suppose that g is continuous at t0. Then by Lemma 4-2 also 

/ is continuous at t0 and by Section 1 [see (1.15)] the limit 

(4.27) lim Tf(x,t) = Tf{v(t0),to)+f(t0)\2-^G(aip(tohtB(t0))\ 
M-*[¥>(t0),to] L v11 J 

[x,t)eM 

exists. But by (4.12) the value of the right hand side in (4.27) is equal to T+f(t0) 

and since jf-/(to) = s(*o) we see that (4.26) is valid. • 
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R e m a r k 4.1. In the case of the first boundary value problem with non-zero 

initial condition one can use the Weierstrass integral similarly to [2]. Let F be a 

bounded Baire function on B. A solution of the boundary value problem on M with 

the boundary condition F on B can be found in the form 

(4.28) u(Xtt)=Tf(x,t) + ~ J ' 
2v/i Ja s/t-a 

where / G SS((a, b)) is the solution of the equation 

%f = g, 

g(a) — F(ip(a),a) and 

for t G (a, b). It follows from the well known properties of the Weierstrass integral 

that 

(4.29) lim u(x,t) = F(x0,a) 
M->[*„,«] 

[x,t]GM 

for almost all x0 £ (<p(a), +oo) (in the sense of linear measure). Corollary 4.1 yields 

(4.30) lim u(x,t) = F(x0,t0) 
[x, tH[* 0 , t 0] 

[x,t]€M 

for those [:r0,£o] £ K, t0 > a, at which F is continuous. 

We do not know if (4.30) is valid in general for almost all [,T0, t0] e K (for example 

in the sense of linear measure on K). In [6] I. Netuka has proved an analogous 

assertion in the case of the Dirichlet problem in Rn (for the Laplace equation); the 

solution was expressed by means of the double layer potential. Instead of limits 

with respect to the given region the so-called non-tangential (angular) limits were 

considered (in the proof the non-tangential limits were investigated in detail for the 

case of discontinuous densities of the double layer potential). Analogous results for 

the heat potential Tf are not known yet and the question concerning the existence 

of limits of the form (4.30) or some analogues of angular limits almost everywhere 

on K is still open. 
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4.2. The case of bounded region. Now let (a, b) be a compact interval in R1 

and let <fii, <fi2 be two continuous functions with finite variation on (a, b) such that 

<fil(t) < <fil(t) for each t 6 (a,b). 

Let us denote 

Ki = {[ifii(t),t] \te (a,b)} fori = 1,2, 

M = {[x,t] | te (o,6),¥>x(t) <x<<fi2(t)}, 

B = KiU K2 U { [x, a] | <pi(a) <C x <. <fi2(a) } . 
For i = 1,2, t € (a, 6), x e R1 define 

(4.31) ^ = XT0 

for r 6 (a,t). Parabolic variations corresponding to the functions ifii, <fi2 (that is to 
the curves K\,K2) will be denoted by VKX, VK2, respectively. We will suppose that 

(4.32) sup VKi(<fii(t),t) <+oo (t = l,2) 
t£(a,6) 

and for t G (a, 6) define 

iaMt)At)=T^_^m (i=i,2), 

and further 

aKi(t) = ll - •^G(ialpi{t),t(.t))\ (i = 1,2). 

For / e 08((a,b)) let TV,/ be the heat potential corresponding to the density / 
considered on -K"; (i = 1,2), that is 

TKJ(x,t) = ~ £" " f(r)e--a'^ d( iQl, t(r)) 

(i = 1,2) for [x,t] e R2, t > a. 
Further, for / £ 3S((a, b)) let us define functions ff, f2f such that we put ff(a) = 

ff(a) = f(a) and 

ff(t) = TKJ(Vl(t),t) + f(t) [2 - ^G(xav i ( f ) , f(*))] , 

75/(t) = - T K . / ^ J W , * ) + /(t)4=G(2a^(f)it(t)) 
v11 
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for t e (a, b). We know that if t g (a, 6) and / is continuous at t then 

(4-33) TJ(t)= lim TKJ(x',t'), 
[xVH^ .w . i ] 

[*',.']eM 

(4-34) %f(t) = - lim T,<J(x',t'). 
[.'..']-»[*..(.)..] 

[z'.t'jeM 

Let us denote 

» = {[/i./a]|/i./ie*((o,6))}, 
Co = { [ / i , / 2 ] | / i , / 2 e % ( ( a , 6 ) ) } . 

In the space 93 let us consider the norm 

||[/i./-]|| = ||[A./a]|U«-ll/ilU + ll/-ll-f 

([/l > /a] e ®) a n f l analogously in €0 

| | [ / l . /2 ] | | = | | [ / l , / 2 ] | | e o = l | / l l k + l l / 2 | k . 

One can easily verify that any linear operator P : £0 -> Co can be written in the 

f o r m ( [ / 1 , / 2 ] e C 0 ) 

P(h,h) = [ P / i + Pih,P3h + P*h], 

where P. (i = 1,2,3,4) are linear operators acting on tf0((a,b)), P ; : %((a,b)) -> 

%({a,6)) . The operator P is bounded on €0 if and only if all the operators P,-

are bounded on %((a, b)); P is compact if and only if all the operators P,- are. 

Analogously for operators on 23. 

On 93 we define an operator 1Z, 

K(h,h)(t) = {fih(t)-TKJ2(<Pi(*),t),%h(t)+TKJi(<P2(t),t)] 

( [ / l . /a] 6 93, t € (a, b)). Further put 

rc0 = n - x, 

where J is the identity operator on 23. 

Theorem 4.2. Suppose that 

(4.35) max I lim sup - - - .V .Y.(- ;w(0.0 + «*.(*) f < -• 
,= 1,2 \r^o+teiaib) Lv/S J J 
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Then for each [gi, 92] € 93 the equation 

(4.36) ft(/i,/a) = [ffi,<fe] 

has in 03 a unique solution [h, /a] . 

P r o o f . The proof is analogous to that of Theorem 4.1. For r > 0, i = 1,2 put 

( 0 if i ^ a + r, 

^ " / ( r ) e - < - M d ( , a „ ( 1 ) , i ( r ) ) if . > a + r 

for / e 0S((a,b)), t € (a,b). For r > 0. [/i,/2] G 93, f 6 (a,b) then put 

« r ( / i , / 2 ) W = = [ r ^ ; / i ( * ) ~ T A - 2 / 2 ( v i ( t ) , t ) , - r ^ / 2 W + r A - 1 / i (v2( t ) ,*) ] . 

Using the notation from Section 2.2 we can write Hr in the form 

w(h,h) = [Tu%\h -Kifa-wzth+Klhl 
The operators TW^\, "H^ [considered as operators on the space @((a,b))] are com

pact by Lemma 2.1 while the operators " H ^ ' , 7 ^ a r e compact by Lemma 2.2 [as 

fi(t) ^ PaW for each t £ (a,b)]; each of those four operators maps SS((a,b)) 

into %>((a, b)). It means that 

Hr : 93 -+ £0 

and Hr is a compact operator on 23. 

Denote further 

K7 = 1Z0- Hr. 

Choose r > 0 such that 

(4.37) max I sup \~VK,(r;^(t),t) + aK,(t)\ \ = c < 1. 
•=*•- [te(a,b) IVK J J 

Then 

| | / C 1 < 1 . 

For [/1, h] S 93 we have 

* 7 ( / i , /») = [7i/i - /1 - r r ^ ; / , , 72/2 - / 2 + r 7 ^ ^ / 2 ] . 
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F b r / j 6 39((a,b)), t€ (a,b) 

(th - A - r«^/i)(t) = ^= j m m a t r} A W e " < ( " ' ' W d(i<V(0,'to) 

+/i(*)[i-^c(iW))] 

and for £ = a 

( 7 I / i - / 1 - r ^ ; / i ) ( a ) = 0 . 

Hence we see that for / i e ^((a,b)) 

(4.38) | | 7 I / i - / i - X ; / i | K | | / i | | sup 4-Vj f . (« i (*) .* )+oi fx(*) • 

In the same way we get for fi 6 SS((a,b)) 

(4.39) \\%h- h+rU%lh\\^\\h\\ sup \~VK2(V2(t),t)+aK2(t)\. 
t£(a,b) | V71 I 

Consider now [fi,h] £ <B. If (4.37) is fulfilled then (4.38), (4.39) imply 

||/Cr(/i, h)\\ = \\fih - A - r ^ ; / i | | + ||75/2 - /2 + "Kg/all 

CHAD sup - s V i f t ^ W . t J + o j f . W 
te fa^ lV 1 1 I 

+ II/2H SUP 4 = F ^ M*). *) +1ff2(() 
<€(a,6>|V* I 

<c(||/1|| + ||/2||)=c||[/1)/2]||. 

Now we see that 

| | £ 1 < C < 1 

(it is not difficult to show that even \\KT\\ = c). 

The equation (4.36) can be written in the form 

(4.40) V + Kr + Hr)[h,h] = [9i,cnl 

It was proved in [2] that for each [91,92] £ <£0 the equation (4.36) and hence (4.40) 

are in €0 uniquely solvable. The assertion follows now from Lemma 3.2. • 



L e m m a 4 .3 . Suppose that the condition (4.35) is fulfilled. Given [gi,g2] £ 93 let 

[/i, {2] 6 93 be the solution of the equation 

n(fuf2) = [gi,92]. 

Let t0 e (a, b). Ifgx or g2 is continuous at t0 then fx or f2, respectively, is continuous 

at to-

P r o o f . Choose r > 0 such that 

max!^ sup \vKi(r\Vi(t),t) + aKi(t)] \ < 1. 
, = 1 '2 [ l6(», t )L J J 

Like in the proof of Theorem 4.2 we will write the equation 1Z(fi,f2) = [51,92] in 

the form 

(l + Kr + nr)[fi,f2] = [9i,92], 

where 

, C : 9 3 - > 9 3 , Kr:Co->£o, l |£ r | | < 1, Ur: 93 -» £0 

and W is a compact operator. We then have 

(1 + K.r)[h,f2] = [gi,92]-Hr[fi,f2], 

that is 

[/1,/2] = (2 + / C T 1 {[9i > 9 2 ] - « ' • [ / ! , / 2 ] } • 

Since ||/Cr|| < 1 we have 

(i + x;T"1 = £(-i)n(/cT 
n=0 

and hence 

(4.41) [/i,/2] = £ ( - l ) n ( / C T { [ 9 i , 9 2 ] - ^ [ / i , / 2 ] } . 
n=0 

Since W: 93 -4 Co both components of 'H r [ / i , /2] are continuous on (a,b). If </; is 

continuous at £0 then the i-th component of 

{{91,92} -Hr[fuh}} 
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is continuous at t0. Analogously to the proof of Lemma 4.2 it now suffices to show 

that if [h\,h2] e 23 and h\ (or h2) is continuous at t0 [t0 e (a,6)] then the first (the 

second, respectively) component of Kr[h\,h2] is continuous at t0. Then the assertion 

follows from the fact that the series (4.41) converges uniformly (in each component). 

Let [h\,h2] e 25 and suppose, for example, that h\ is continuous at t0. The first 

component of Kr[h\,h2] is of the form (see the proof of Theorem 4.2) 

f\h\-h\-rH^h\. 

Here rrH^,\h\ is continuous even on (a, b) and the continuity of T\h\ at t0 follows from 

Lemma 4.1. D 

R e m a r k 4.2. Given [g\, g2] e 25 let [f\, f2] e 25 be the solution of the equation 

ft(/l,/2)= [31,92]. 

For [x,t] € M put 

u(x,t) = TKJ\(x,t) ~TKJ2(x,t). 

For x e (ifi\(a),ip2(a)) surely 

lim u(x',t')=Q. 
[*',fM-,«] 

[x',t']eM 

It is seen from the definition of 1Z, Lemma 4.3 and Section 1, that if g\ is continuous 

at to £ (a, b) then 

lim u(x,t)= g\(t0), 
[x,t]-^[vl(to),to] 

[x,t]£M 

and analogously 

lim u(x,t) = g2(t0) 
[x,t]-»M<o),*o] 

[x,t]ЄM 

if g2 is continuous at t0. In this sense u can be considered a solution of the first 

boundary value problem of the heat equation on M with zero initial condition and 

the boundary condition g\ on K\ and g2 on K2. In the case of non-zero initial 

condition one can use the Weierstrass integral analogously to Section 4.1. 

4 .3 . C o n v e r g e n c e of t h e N e u m a n n ser ies . In Sections 4.1, 4.2 solvability of 

the equation (under appropriate assumptions) 

(1 + T0)f = g 

434 



and of the equation 

(i + n0)[h,f2} = [91,92] 

was proved. If X is a Banach space, B: X -> X is a bounded linear operator, 

| |B| | < 1, then (I - B)~l exists and 

(I-B)-^ = Y,Bn-
n=0 

In particular, the series on the right hand side converges. If | |B| | > 1 and (I—B)~l ex

ists, a question arises whether the series 

±B-
n=0 

or at least for x € X the series 

f>"z 
converges. In the case of our equations we would like to know whether the series 

E(-irT0
n9 

n=0 

converges for 9 £ SS((a,b)) or whether the series 

£ ( - l ) " 7 ^ [ g i , 9 2 ] 
r»=0 

converges for [91,92] 6 2*. 

In the following we will use the notation from Section 4.2. Let us prove the 

following assertion. 

m a x i Um s u p \-^VKi (r; Vi(t),t) + aKi(t)}\ < 1. 
• -1.2 ^r-+0+te(a,6) LV* J J 

T h e o r e m 4 .3 . Suppose that 

(4.42) 

Then for each [91,92] S © the series 

(4.43) £ ( - l ) n f t " [ < / i , 0 . ] 

n=0 
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converges (in the norm in 93 j . If[gi,g2] e 93, 

lfl,h] = Jt(-l)n1Z5[9i,92], 
n=0 

then 

niuh] = [gu92]. 

P r o o f . Given [31, g2] 6 93 let us prove that 

(4.44) TZS[9i, 92] -> [0,0] for n -» 00 

in the sense of the norm in 93, that is. the components of 7?.0
t[</1, g2] converge to zero 

uniformly on (a, b). 

In the proof of Lemma 2.2 we have noted that if ip e V((a,b)), ip(t) ^ ip(t) 

on (a, b), then 

lim^\\H*-T7i*\\ = 0. 

Using the notation from Section 4.2 we thus have 

rijm n«« - rn$\ || = 0, rHm ||W« - - H * 11 = 0. 

Since (4.42) is valid there is r > 0 such that 

(4.45) m a x i sup \-rVKi (r;<fii(t),t) + aKi(t) \ \ = Ai, 
i = 1-2 [t€(a,6> I V * J J 

(4.46) m«-{ll«S - "HRII, ll«R - "«w||} = A2 

and 

(4.47) At + A2 = A < 1. 

Define an operator S: 93 -* 93 by 

S[h,h] = fHR/i - "Kg/a, -"«gA + "W£?/i] 

for [/1, /a] 6 93 and put 

W = 7l0 - 5 . 
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For [/i, h] 6 © we then have 

w[/i,/.] = [fih - h - Tu*\h - n%\h + Tn%\h, 

%h ~h + TH%h + « « / i - TUl\h\ 

We have shown in the proof of Theorem 4.2 [see (4.38)] that 

l |7 i . / i - / i - r«£/ i | |< | | / i | | sup \±VK,^1(t),t)+aKl(t)\; 

hence 

l|7I/i - /, - TU*\h - U%\h + Tn%\h\\ < AiH/iH + A-||/-||. 

Using (4.39) we analogously get 

1171/2 - h + r ^ / 2 + W » / , - rU%\h\\ ^ \x\\h\\ + A2 | | / i | | . 

Altogether we thus have 

| N / i , / 2 ] H A 1 | | / 1 | | + A 2 | | / 2 | | + A 1 | | / 2 | | +A 2 | | / 1 | | = A | | [ / 1 , / 2 ] | | 

and hence 

(4.48) ||W|| s= A < 1. 

Let us denote 

(4.49) ^ = m a x { l , | | 5 | | } . 

It is seen from the definition of S, U that for [/i ,/2] € 25, t e (a,a + r) (suppose 

that r < b - a) we have S[h,h](t) = [0,0] and thus 

Tl0[gi,g2}(t)=U[gug2](t). 

Now it is seen easily that for t € (a,a + r), 

n0
l[g1,g2](t)=Un[gl,a2](t) 

for any n e N and it follows from (4.48) that the components of 7?o [51,52] converge 

on (a, a + r) uniformly to zero. 

Let t0 be the supremum of such t 6 (a,b) for which the components of fto [51,52] 

converge on (a, t) uniformly to zero—clearly t0 ^ a + r. 
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Choose h < t0 such that t0 - t\ < r and let us show that the components 
of 7Z%[gi, g2] converge on (a, ti + r) n (a, 6) uniformly to zero; it will follow then that 
t0 = b and (4.44) is valid. 

Let e > 0. Since the components of Tl0[gi,g2] converge on (a,ti) uniformly to 
zero there is n0 such that if 

[/",/?] = ftotfli.Jfe] 

then 

(4.50) | / n W | + |/n(t)|<iZ^s 

for n >. n0, t 6 (a,ti). Denote 

(4.5i) «=l|[/r,/2"°]||. 

Put 

[hi, Aa] = K0"
o+1 [9i, 92] = Tlo [f?, /2

n"] • 

Since [huh2] = [f±0+\f2
a+l], it follows from (4.50) that 

(4.52) \hi{t)\ + |Aa(*)| < i—^e 

fo r t e (a,ti). 
If we denote 

[AJ, h\] = U[f?, f?°], [h\, h\] = 5[ / r , /2"°] 

then 

[A1,A2] = [Ai,A2] + [A?,hl]. 

It follows from (4.48), (4.51) that 

(4.53) ||[Al,Aa]||<A«. 

One can obtain from the definitions of S and 7"H* that for [fi, f2] e <8 and t £ (a,b), 
t> a + r 

(4.54) 5[/i,/a]W=5[71,72], 
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where 
f [ / i , M r ) i f a < T ^ « - r , 

[ / l ' / 2 ] ( T ) = { [0 ,0] : f t - r < T O . 

Hence and from (4.50), (4.49) we get for t € {h,h + r) 

\h\(t)\ + \hl(t)\^n—e = (l-X)e. 
A * 

Together with (4.53) we now get that 

(4.55) \hi(t)\ + \h2(t)\ <, \K + (1 - A)e. 

Let us take notice of the fact that here (4.53) is not necessary but suffices to ensure 

that 

\h\(t)\ + \h\(t)\ sC XK 

for t e (<i, h +r) n (a, b). For this (4.51) is not necessary, it suffices to suppose that 

(4.56) l / r « i + |/2no(*)i<K 

for t € (a,h +r) n(a,b). 

Let us recapitulate that we have shown that if 

l/r«i+|/rM|<iz^ 

for (a, t i) and if (4.56) is valid for t E (a, tt + r) n (a, b) then 

| / r + 1 W | + |/2"0+1W|<AK + ( l - A ) £ 

for t e (ti,h + r) n (a,b). Since (4.50) is valid for any n ^ n0 we get by induction 

that for m eN, 

| /1"°+ m(*) | + | / 2 " 0 + m ( i ) | <. XmK + (1 - A)£(Am"1 + A"1"2 + . . . + 1) <_ Am
K + e 

for t e (*i,ti +r) n (a, 6). If we choose m such that A'"K < e then 

| / r + m w| + l/2"o+mw|<2e. 

Now we see that (4.44) is valid. 

D. Medkova proved in [5] that if T is a bounded linear operator on a Banach 

space X, the Fredholm radius of T is greater than 1, then for x G X the series ^2 Tnx 
71 = 0 
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converges if and only if Tnx -+ 0. The Fredholm radius of the operator TZQ is greater 

than 1 by the assumption (4.42). We have just proved that (4.44) is valid (for each 

[91,92] £ 93) and thus the series (4.43) converges. 

The second part of the assertion is clear. Indeed, if 

[/i,/2] = £( - in^[9 i ,92] 
n=0 

then 

fclA,/a] = (I + ̂ oH/1,/2] = £(-l)"ft"L5i.Sa] +^o{£( - l ) n ^[ 9 l , 5 2 ] 
n=0 ^n=0 

= [91,92] -llo[gi,g2] +n2
0[gug2} 

+ Ko\$l,9a] - nl[gi,g2] + n3
0[gug2] 

= [9i,92]-

The assertion is proved. D 

Note that in a similar way one can prove an analogous assertion for operators 7+, T 

in the case of an unbounded region. We will not repeat here the proof (which is more 

lucid in this case) but only formulate the assertion. 

T h e o r e m 4.4. Suppose that 

lim sup 
r-Иl+tЄ(a 

ip \-^VK(r;<p(t),t) +aK(t)] < 1. 
a,6> L V * J 

Then for eacn g e SS((a,b)) the series 

E(-irT0

n

9 

converges. If 

then T+i = g. 
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