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Abstract. Some decompositions of general incidence structures with regard to distin-
guished components (modular or simple) are considered and several structure theorems for
them are deduced.
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Definition 1. Let G and M be non-empty sets and I C G x M. Then the
triple 7 = (G, M, I) is called an incidence structure (a contest). [ AC G, BC M
are non-empty sets, then denote

AV i={me M; gIm Vge A},
B = {9€G;gIm Vme B}
Further notation: #t := M, ¢% := G,
ot = {g}T forall g € G,
m! = {m}! for all m € M,

A% = (A" forall AC G,
B .= (BY forall BC M.

(See [3]).

This paper was supported by GACR Grant 201/95/1631
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Definition. 2. Let J = (G, M,I) be an incidence structure. If Gy C G,
M, C M are non-empty subsets and I; = IN(G; x M), then the incidence structure
T = (Gy, M1, 1) is called a substructure of J.

Definition 3. Let J = (G, M, I) be an incidence structure. 7 is called
1. complete if I =G x M,

2. openif gT# M forall g € G and m* £ G forallm € M,

3. trivial if |G| = | M} = 1,

4. reqular if gT #Qforallg € G and m* # P for all m € M,

5. simple if |gT| = 1forall g € G and |m}| =1 for all m € M.

Let J = (G, M, I) be a simple incidence structure. It will be useful to express G
and M as indexed families G = {g,; v € T\ }, M = {my; p € Tp} where g,,'= gu,
iff v1 = vp and my, = my, iff g1 = po. By Definition 3, for every g; € G there exists
exactly one m; € G such that g;Im;, and vice-versa. Hence the map a: Ty — T3,
defined by a(i) = j iff giJm; for all ¢ € Ty, is injective. Assume that there exists
anl € Ty, | € a(T1). Then there exists a g; € G such that g;Im;. It follows that
a(i) =1, a contradiction. Thus &(T1) = T and the map « is a one-to-one map of T
onto T so that we can identify both sets of indices. If we denote p; := m(;) for all
i € Th, then we have g;Ip; & gilmay © ali) = a(j) @ i=j.

Let J = (G, M,I) be a simple incidence structure. Then T will serve as an index
set for elements of G, M such that the relation I is defined by g:Imy iff i = j. In
what follows we will suppose that incidence relations in simple incidence structures
are expressed like this.

Definition 4.  An incidence structure J = (G, M, I) is said to be the union
of substructures 7, = (Gv,M,. 1), v € T, if {G,; v € T} and {M,; v € T} are

decompositions of G and M. In this case we will write 7 = |J J..
vET

Remark 1. Ifafamily {P,; v € T} forms a decomposition of a non-empty set
P, then we will write P = |J P,.

veT
Let J = (G, M,I) be an incidence structure and G, C G, M, € M non-empty
subsets for all v € T. Then denote J;; := (Gi, Mj, I;;) the substructure of 7, where
Ii; = IN(Gi x M;) for i,j € T. Moreover, put Ji; = J; and I;; = I; for all s € T,

Theorem 1. If 7 = |J J. as in Definition 4, then I = U I;.

vET ijET
Proof. Consider the substructures J;; of 7, i,j € T. Then |J Iij C 1. Let
i,5€T
(9m) € I. Since G = {J G, and M = |J M,, there exist i,j € T such that
vET veT
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9 €Giandm e M;. Then (g,m) € I;, I = U Lij. 1If (g,m) € Ly, N Liyj,, then
€T

(g,m) € (Giy x Mj,)N(Gy, x My, ) and g € Gy ﬁGm, m € Mj,NMj,, a contradiction.
Thus I = |J 1y m]
i,jET
Definition 5.  Let an incidence structure J = (G, M, I) be the union of sub-
structures J,,, v € T This union is called disjoint if I;; = @ for distinct ¢, € T, and
will be denoted by J = UT J.. The union is called complete if I;; = G; x M; for
ve

distinct 7,7 € T, and will be denoted by J = U J,.
veT

Remark 2. L LetJ= U J. ThenJ = U J iff [ = (J L, and J =
veT veT veT

U Ziff 1= (U L)U( U (Gi x My)) where i # j.
veT veT i,jeT

2. If |T| =1, then J = U7 =(JJ. Let J = (G, M,I) be a simple incidence
structure, where G = {g,; v € T}, M = {m,; v € T} and g;Im; iff i = j. If
T, = {g.}, {m.}, L), v € T, are substructures of 7 then J is the disjoint union of
substructures 7, v € T.

3. If 7 is a disjoint union of substructures J,,, v € T then J is regular iff 7, are
regular for all ¥ € 7. If 7 is a complete union of substructures J,, v € T, then J
is open iff 7, are open for all v € T.

Remark 3. If an incidence structure J is a union of substructures J,, v € T
then write operators 1, | as right superscripts (XT) for the incidence relation I
in J and as left superscripts ("X) for incidence relations I, in substructures J,.
Furthermore, write G =G -G, and M* =M — M, forallv e T.

Theorem 2. Let J = (G, M, I} be the disjoint union of substructures J,, v € T.
IfFACG;, A#0and BC M;, B# 0 for somei € T then A" =14, AW = ¥4
and BY =B, B = NB, respectively. Ifa € G;, b € G; and m € M;, n € M; for
i,j €T, i#j, then {a, b} =0 and {m,n}* = 0, respectively.

Px‘pof. Let A C G;, A # 0. Then m € A" iff alm for all a € A. Since
I=|J I, weobtain al;m foralla € 4, AT = T4 and A" C M;. Similarly we obtain

veT
Bt =14B, B* C G;. This yields A" = ¥4 and B¥ = %B.
Let a € Gi, be Gy, i # j. If m € {a,b}" then aI'm and bIm, hence m € M; N M;,

which is a contradiction to M; N M; = @. Similarly we proceed when elements
m € M;, n € M; are under consideration. a

Theorem 3. Let an incidence structure J be the complete union of substructures

J,,veT.

367



1. IfACG;and BC M, i €T, then A" = M' U4 and BY = G U'B. If the
incidence structure J is open then A™ = YA and B¥ = "B.

2. Leta € G; and b € G; for distinct i,j € T. Then {a,b}t = (MinM7)UTquTs,
If the incidence structure J is open then {a,b}% = Wa UV, Let m € M;,
n€ M, i#j,4,j€T. Then {m,n}’ = (G'NG)utmuUtn. If 7 is open then
{m,n}¥ =My hn,

Proof. Letg€G. Since G = U G, there exists [ € T such that g € G,. By
veT
Definition 1, g7 = {m € M; gIm} anEd from I = ( UTI yul U (G:x M;)) where
ve ijET
i # j, we obtain g7 = M'UTg. Similarly, for m € M there e;usts k € T such that
m € My and m* = GF Utm.

1. Let ACG;and A=0. Then A" = M = MUM =MUt)= M”UTA If
A#@then A= N o' = N (MiUTa)=Miu( r‘|T =MUTA

acA agA

Let J be an open incidence structure. Then (M ) = G; for all i € . We obtain
AN = (AN = (MPUTA) = (MY N (TA). As TA C M;, we have (TA)Y = GT U4
and AM = G; N (G UYA) = (G: NG U (G N¥A) = 114,

If B C M; then the proof is similar.

2. Let a € Gy, b€ Gj, i # 4. Then {a,b}" =a'NdT = (M UTa) N (MIUTH) =
(MinMI)uMInTa)U(MINTh) U (TanTh). Since MINTa="Ta, MINTh =Tp,
Tan s = 0 we have {a,b}" = (M*n MI)UTauTh.

Let 7 be an open incidence structure. For every 7,5 € T we obtain (M*N M)+ =
(U M)* =G;UG;. Hence, {a,b}" = ({a,b})* = (M*nMI)uTaU ™)t = (Min

1#i,5
n;)iﬂ(Ta)*n(Tb)l = (G;UG;)N(G UM a)N(GIU¥h) = [(G:UG;)N(GINGH)]uU [(G u

G;)N¥a]U[(G;UG;)NTB). Now, (G;UG;)N(GINGT) = (G,UG;) n( U Gi)=0. By
virtue of a C Gy, ¥b C G, it follows that (G;UG;)NYa = Ha, (G; UG )b = p.
Thus {a, b} ™ = ~'Ta U b,

For m € M; and n € M; the proof is similar. [m]

Definition 6. Let J = (G,M,I), /i = (G1, M1, 1) be incidence structures.
A map ¢: GUM — G, U M, is called a homomorphism of 7 onto J; if

1. (G) == {p(g); g € G} = G1, (M) := {p(m); m € M} = M,

2. alm = p(a)l1p(m),

3. for a’Iym’ there are elements a € G, m € M such that alm, ¢(a) = o’ and

@lm) =m/'.

Remark 4. 1. Let J = (G, M,I) be an incidence structure and let G, M

be decompositions of G, M. Put R = (G, M) and consider the incidence structure
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Jr = (G, M, Iz) where gl iff there is an h € § with n € m, hIm for every § € G,
m € M. The map ¢r defined by

g—g Vgegq,
o m—m YméEM,

is a homomorphism of 7 onto Jz. (See [1], Theorem 1.)

2. Let ¢ be an incidence structure homomorphism of 7 = (G, M, I) onto J; =
(G1, My, In). If weput g = {h € G; o(h) = p(g)}, M = {n € M; p(n) = ¢(m)}
then G, = {g; g € G} is a decomposition of the set G and M, = {m; m € M} is
a decomposition of the set M. If we denote R, = (G, M,;) then the map & defined
by

farele) VYieG,,

"l p(m) Vme M,,
is an isomorphism (i.e., both sided homomorphism) between Jr, and J1. (See [1],
Theorem 1.)

Theorem 4. Let J = (G, M,I) be an incidence structure. Then the following
conditions are equivalent.
1. 7 is the disjoint union of substructures 7, = (G,,M,,1,),v € T, where |T| > 2
and I, 0 forallv e T.
2. There exists a homomorphism of J onto a simple non-trivial incidence structure.

Proof. 1. => 2. Let the assumption 1 hold. Then the sets G = {G,; v € T},
M = {M,; v € T} are decompositions of the sets G, M. Put R = (G, M) and
consider the incidence structure Jz = (G, M, I) from Remark 4. We will prove
that Jr is a simple incidence structure. Let G; € G. Then there exist g € G;
and m € M; such that glim, because I; # 0. By Theorem 1, we have gIm and by
Remark 4, we obtain G:Ir M; and IGII 2 1. Similarly we get ]M]‘ll > 1 for every
M; € M. Now suppose that G;IrM; for i,j € T. Then there exist g € G; and
m € Mj such that g/m, and according to Definition 5 and Remark 2 there exists an
! € T such that ¢ € G, m € M, and gy)m. But g € G;N G, and m € M; N M,
which means that i = j = I so that |GT| = 1. Similarly we obtain |Mjl| =1 for all
M; € M. Thus Jr is simple. Because of |T| > 2, we have |G| > 2, |M| > 2 and Jr
is not trivial.

According to Remark 4 the map ¢z : J — Jr is a homomorphism of J onto Jr-

2. = 1. Let ¢: J — J’ be a homomorphism of 7 onto a simple incidence
structure J' = (G', M’,I"). Suppose that G' = {g,; v € T}, M' = {m!,; v € T}
and g:I’m; iff i = j. Since J' is non-trivial, it follows that |T| > 2.
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By Remark 4, we obtain the structure Jr, = (Gy, My, Iz,), where G, = {g;
g € G}, M, = {m;m € M} and glg,m iff there are h € §, n € M such that
hIn. Furthermore, put G; := § iff ¢(g) = gt and M; := m iff ¢(m) = mj and
consider substructures J; = (Gy, M;, I;), where I; = I N (G; x M;) for all i € T.
Then ¢(G;) = gi, ¢(M;) = m} and g/I'm}. By Condition 3 from Definition 6 there
exist g € G;, and m € M; such that gIm. Then gI;m and hence I; # @ for alli € T

We will prove that J = U J.. Since G, M, are decompositions of G, M, the

sets {G,; v € T} and {M, ;ViTe T} are decompositions of G, M, too. Now the set

{I,; v € T} is a decomposition of the set I. We have gIm so that ¢(g)I'p(m). If

@(g) = gi then p(m) = m} and (g,m) € G; x M;. This yields (g,m) € I; and I; C I

foralli€ T. From G;NG;=0and MinM; =P fori# j,weget I= \J I,. O
veT

Remark 5. There exists a homomorphism of an arbitrary incidence structure
with non-empty incidence relation onto a trivial simple incidence structure.

Theorem 5. Every regular incidence structure is a homomorphic image of a cer-
tain simple incidence structure.

Proof. Let J = (G,M,I) be a regular incidence structure. Set G = {g,;
ve P}, M={m,;pu€ P} and define the set U C P, x P, by (i,5) € U iff giIm;.
Let U = {u¢; £ € T}. We consider the map o: U — P, given by a(¢,j) = i for all
(i,j) € U. I i € Py, then |g,~T| # 0 because J is regular. Hence there exists m; € M
such that g;Im;. It follows that (i, j) € U, a(i, j) = i and so « is a map onto P;. For
every i € Py, put @ 1(i) = U; = {u,; 7 € T;} where T; C T. Similarly, define a map
B: U — P such that 8(i,5) = j. This map is onto. Denote 371(j) = U7 = {u,;
KE€TI} whereT7 CT.

Now consider the simple incidence structure Ji = (Gi, My, 11) where Gy = {b¢;
E€TY, My = {pe; £€ T} and blhp; iff i = j. Put b; = {be; £ € Ty} for i € P, and
pj={pe; €T} forje P

The family {b;; i € P;} forms a decomposition of Gy. If b, € Gy then [ € T, and
there exists a u; € U. We express it as u; = (p,q) so that a(w) = p, w € U, and
consequently, | € Tp, by € by, G1 = L% b;. I b € b;y Nby, then { € Ty, N Ty, and

€Ty
w; € Ui, NUs,, which yields 4, = 4>. Obviously, b; # @ for all i € P;. Similarly one
can prove that the family {m;; j € P;} forms a decomposition of M.
It is clear that

w=(i,j), leTweUinU & leTinT & b b, p € p;.

Finally consider the map ¢: G1 U M; — G U M given by o(b;) = g; iff b; € b;
for all b; € Gy and @(p;) = m; iff p; € p; for all p; € M;. We claim that ¢
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is a homomorphism of J; onto 7: In deed, first it is obvious that e(G1) = G,
o(My) = M. I blips then | = k. If o(br) = g; then b € b; and similarly for
@(pi) = mj, p € p;. This implies w; = (i, §) € U and we obtain g;Imj, o(b)I¢(p1).

If giIm; then there exists an { € T with v, = (i,j) and it follows that b € b;,
pi € P;. This yields (b)) = gi, ¢(p) = m; and bdip,. [u]

Modular incidence structures have been defined in [2]:

Definition 7.  An incidence structure J = (G, M, I) is said to be modular if it
satisfies the following conditions:

(M1) {a,b}" #0 Va,beG,

(M2) {m,n}* #0 Ym.ne M,

(M3) a,b€ G, z €{a, b} 2 #a=> {a,2}" C {a,b}",
(M4) m,n €M, y€ {mn, y#m = {m,y}* C {m,n}"

Theorem 6. Let an incidence structure J = (G, M,I) be the complete union of
incidence structures J, = (G,,M,,1,) wherev € T and |T| > 1. Then the following
two conditions are equivalent:

1. J is open modular.
2. |G| 2 3 and each of J, is either open modular, or simple non-trivial, or a trivial
incidence structure with empty incidence relation.

Proof. 1. = 2. As J is open, all substructures 7, are open by Remark 2.
Since |T| > 1, we have |G| > 2 and [M| > 2. Suppose that |G| = 2, G = {a,b}. It
follows that Ji = ({a}, M1, I;), Jo = ({b}, M2, I) where M = M;UM,. Moreover,
Tz = ({a}, M2, Iz), T = ({b}, M1, 121) where I); = {a} x Ma, Iy = {b} x M.
Since J1,J2 are open, [ = I = ) and |m*| =1 for all m € M. But J is modular so
that, according to Theorem 3 of [2], J is not open, which is a contradiction. Hence
|G| > 3 and similarly, |[M| > 3.

Let J; = (Gi, M;, 1;), i € T, be substructures of 7.

(1) Let |G;| = 1. Then G; = {a} for some a € G. Furthermore, suppose that
I; # 0. Then there exists an m € M; such that alym and it follows that {a} = ‘m.
According to Theorem 3, m* = G*U'm = G'UG; = G. We have obtained a
contradiction to Condition 1. Therefore I; = @.

Let m,n be distinct elements of M;. Then *m = § = *n and m* = n* = G, in
contradiction to Theorem 4 of [2]. Thus m = n and |M;| = 1. Hence J; is trivial and
its incidence relation is empty. The case |M;| = 1 can be considered analogously.
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(2) Let |Gi] > 1. Then |M;| > 1, too. Suppose that Ta = @ for some a € G;. By
Theorem 3 we have a’ = M?UTa = M. Since |G;| > 1, there exists a b€ G;, b#a
and from b = M?UTh we get o« C bT. But this is a contradiction to Theorem 4
of [2], so that |Ta| > 1. Similarly we prove [*m| > 1.

(a) Suppose that |Ta| = 1 for some @ € G;. Then there exists an m € M; such
that alym and Ta = {m}. Further suppose that there exists a b € G;, b # a such
that bI;m. Then m € Th and Ta C Tb. Since o’ = MiUTa and bT = M UTh, we have
a’ C b%, which is again a contradiction to Theorem 4 of [2]. This implies ['m| = 1
and *m = {a}.

Let n be an arbitrary element of M;, n # m. Then n € Ta. Suppose there exist
distinet b,¢ € Gj, such that blin, clin. Clearly "{a,b} = § and by Theorem 3,
{a,b}’ = M*. Now ¥{a,b} = Gi and ¢ € ¥"{a,b}. By Theorem 3 it follows that
M{a,b} = {a,b}™. Hence ¢ € {a,b}™ and from n & M*, one gets n ¢ {a,b}".
Moreover, n € {b,c}, hence {b,c}'  {b,a}", which is a contradiction to (M3).
From [¥n| > 1 we obtain |‘n| = 1.

Let b be an arbitrary element of G;, b # a. Suppose there exist distinct n,p € M;
such that bL;n, bl;p. Then *{m,n} = @ and ®{m,n} = M;, and therefore p €
Wm,n} = {m,n}". Moreover, b € {n,p}* and b & {m,n}* so that {n,p}* €
{m,n}%, in contradiction to (M4). Hence [*6] = 1 and J; is simple.

Similarly we prove that [*m| = 1 implies that J; is simple.

(b) Let us suppose that there exists a € G; such that |Ta| > 1. Then by part (a)
|"z| > 1 for all z € G; and |¥m| > 1 for all m € M;. We prove that every incidence
structure J; satisfies conditions (M1)-(M4).

To (M1): Let a,b € G; such that T{a,b} = @. Then ¥{a,b} = {a,b}" = G;
and for arbitrary x € G; we obtain z € {a,b}™. As J is modular, (M3) implies
{z,a}" C {a,b}" whenever z # a, in other words M* UT{z,a} C M*U™{a,b}. As
"{a,b} = 0, we obtain T{z,a} = 0. By |Ta| > 1, there exists an m € M; such that
alym. As [¥m| > 1, there exists a ¢ € Gy, ¢ # a such that c/;m. Hence m € {c,a},
which is a contradiction. Then '{a,b} # 0.

Condition (M2) can be proved similarly as (M1).

To (M3): Let a,b € G; and ¢ € #{a,b}, ¢ # a. Then c € {a,b}*. By (M3),
{c,a}" € {a,b}" ie. MTUT{c,a} C MUT{a,b}. If z € T{c,a} then z € M U{a,b}
and, regarding ¢ € M*, we obtain z € T{a,b}. It follows that T{c,a} C "{a,b}.

Condition (M4) can be proved similarly as (M3).

2. = 1. Each of J,, v € T is an open and consequently 7 is open. We show
that J satisfies conditions (M1)-(M4).
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To (M1): Let a,b be elements of G such that a,b € G; for some i € T. By virtue
of |T| > 1, it follows that M* # 0 and {a,b}" = M* U {a,b} # 0.

Let @ € Gy, b € G; where i # j and let |[T| = 2. Then J = J10%,. According
to the hypothesis |G| > 3 both structures Jy and J» are non-trivial. Hence, for
instance, J; is simple non-trivial or modular and so regular. If a € G; and b € G,
then Ta # @ and, by Theorem 3, {a,b}T = (MinM)utauTh =TauTs # 0. If
|T) > 2 then M*N M7 # @ and again {a,b}" # 6.

The condition (M2) can be proved similarly as the condition (M1).

To (M3): Let a, b be elements of G and ¢ € {a,b}™, ¢ # a. We have to prove that
{a,c}t C {a,b}".

(a) Let a,b € G; for a certain ¢ € T. Then {a,b}" = ¥{a,b}. If J; is trivial
with ; = @ then G; = {a}, c = a = b and "{a,c} = {a,b} = 0. Further, {a,c}" =
M = {a,b}T. If J; is simple then, because of a # c, it follows that T{a,c} = 0
and T{a,c} C "{a,b}. If J; is modular then we obtain the same conclusion as a
consequence of (M3). Hence {a,c}? = M*U™{a,c} C M*UT{a,b} = {a,b}".

(b) Let a € Gi, b€ G;, i # 5.

If 2,y € G, for an arbitrary | € 7 then Ty C Tz iff y = z. If J] is simple then
Mz,y} =TanTy =0 for z # y and (M3) is valid. If J; is modular, then \7; is open
and we obtain (M3) by Theorem 4 of [1].

By the hypothesis ¢ € {a,b}™. That means, by Theorem 3, ¢ € ¥a U #b. Since
Han ¥y = P, ¢ belongs to exactly one of the sets ¥a and ¥b. Let ¢ € #a. Hence
Ta € Tc and a = ¢. This yields {a,c}T = (M Nn M) UTaUTec= (MinMi)utaC
(MinMi)UuTauTh = {a,b}".

Condition (M4) can be proved similarly as (M3). u]

Remark 6. Let J = (G, M,I) be a simple incidence structure with |G| > 3.
Weput G = {g,;veT}, M={m,;veT}, gIm; iff i = j. If J' is a comple-
mentary incidence structure on J (i.e. J' = (G, M, (G x M) — I)), then J is open
modular.

Remark 7. According to Theorem 6, we can extend every open modular in-
cidence structure with help of other open modular or non-trivial simple incidence
structures or of trivial ones the incidence relations of which is empty, to a new inci-
dence structure which is open modular, too.
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