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Abstract. Some decompositions of general incidence structures with regard to distin­
guished components (modular or simple) are considered and several structure theorems for 
them are deduced. 
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Definit ion 1. Let G and M be non-empty sets and / C G x M. Then the 

triple J = (G,M,I) is called an incidence structure (a context). HACG,BCM 

are non-empty sets, then denote 

AT := {m € M; glm \/g 6 A], 

Bl :={geG; glm Vm 6 B}. 

Further notation: 0f := M, 01 := G, 

= { 5 } t for all g 6 G, 

= {m}1 for all meM, 

An 

B* 

= (A*)1 for all AÇG, 

= (B^Ý for aľi BÇM. 

(See [31). 

This paper was supported by GACR Grant 201/95/1631 
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Definition 2. Let J = (G,M,I) be an incidence structure. If G : C G, 

Mi C M are non-empty subsets and I\ = IV\(G\ x Mi) , then the incidence structure 

Jx = (Gi,Mi,Ii) is called a substructure of X 

Definition 3 . Let J = (G,M,I) be an incidence structure. J is called 

1. complete if I = G x M, 

2. open if fl
t ^ M for all g £ G and m> ^ G for all m 6 M, 

3. triuio/ if |G| = \M\ = 1, 

4. regular if 3T ^ 0 for all g e G and m* ^ 0 for all m e M, 

5. simple if |pf| = 1 for all g 6 G and Im^l = 1 for all m £ M. 

Let J = (G, M, I) be a simple incidence structure. It will be useful to express G 

and M as indexed families G = {gv; v £ Ti}, M = {mM; /i £ T2} where <?„/ = gV2 

iff !̂ i = i/2 and m^, = mM2 iff JJ.\ = u2. By Definition 3, for every gi £ G there exists 

exactly one ITJJ e G such that gdrrij, and vice-versa. Hence the map a : T\ -> T2, 

defined by a(i) = j iff 3 i /mj for all i 6 2 \ , is injective. Assume that there exists 

an I £ T2, I £ a(Ti). Then there exists a gt £ G such that gjmi. It follows that 

a(i) = 1,3, contradiction. Thus ct(Ti) = T2 and the map a is a one-to-one map of Ti 

onto T2 so that we can identify both sets of indices. If we denote p ; := ma^ for all 

i 6 Ti , then we have gjpj «• gilma^ o a(i) = a(j) •& i = j . 

Let J = (G, M , / ) be a simple incidence structure. Then T will serve as an index 

set for elements of G, M such that the relation / is defined by gdm^ iff i = j . In 

what follows we will suppose that incidence relations in simple incidence structures 

are expressed like this. 

Definition 4 . An incidence structure J = (G,M,I) is said to be the union 

of substructures Jv = (GV,MV,IV), v £ T, if {Gv; v £ T} and {Mv; v £ T} are 

decompositions of G and M . In this case we will write J = \J Jv. 
vd'T 

R e m a r k 1. If a family {P„ ; v £ T} forms a decomposition of a non-empty set 

P, then we will write P = \J Pv. 

Let J = (G, M, I) be an incidence structure and Gv C G, Mv C M non-empty 

subsets for all v £ T. Then denote J7y := (Gi, M,-,iy) the substructure of J7, where 

iij = 7 n (Gi x Mj) for i, j £ T. Moreover, put Ju = J i and 7ii = h for all i £ T. 

Theorem 1. If J = \J Jv as in Definition 4, then 7 = 0 hj-
i/gT i , j£T 

P r o o f . Consider the substructures ;7y of J , i , j £ T. Then |J 7y C I. Let 
i.ieT 

(g,m) £ I. Since G = Q Gv and M = Q ^ > there exist i , j e T such that 
^6T ^€T 
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g 6 Gi and m € M}. Then (g,m) 6 / « , / = g !>i- I f (s>m) e 7nji n !Ws> then 

(ff,m) £ (G; ; x M , 1 ) n ( G . 3 xMj , ) and 5 6 G , , n G . , , m 6 M,-, n M J 2 , a contradiction. 

Thus 1= U fy. D 

Definit ion 5. Let an incidence structure J = (G,M,I) be the union of sub­

structures Ju, v £ T. This union is called disjoint if f;.,- = 0 for distinct i,jeT, and 

will be denoted by J = (J Jv. The union is called complete if Ii} = G; x Mj for 
ueT 

distinct i,j e T, and will be denoted by J = (J Ju. 
veT 

R e m a r k 2. 1. Let J = \J Jv. Then J = (J J., iff / = | j /„ and J = 
UST ver u£T 

U Ju iff / = ( U h) U ( IJ (<?. X M,)) where i 5* j . 
„eT „e r . jeT 

2. If |T| = 1, then J = (J J = (J J. Let J = (G,M,I) be a simple incidence 

structure, where G = {gv; v £ T), M = {m„; f e T} and #;fm,,- iff i = j . If 

,7„ = ({</„}, {m„}, /„) , v eT, are substructures of .7 then J is the disjoint union of 

substructures Jv, v eT. 

3. If J is a disjoint union of substructures Ju, v eT then J is regular iff Ju are 

regular for all v 6 T. If 7 is a complete union of substructures X , f 6 T, then .7 

is open iff X are open for all v eT. 

R e m a r k 3. If an incidence structure J is a union of substructures Jv, v e T 

then write operators f, 4 a s right superscripts (XT) for the incidence relation I 

in J" and as left superscripts (TX) for incidence relations /„ in substructures J„. 

Furthermore, write G" = G - G„ and M" = M - Mv for all v eT. 

T h e o r e m 2. Let J = (G, M, / ) be the disjoint union of substructures Jv, v e T. 

If A C Gi, A ^ $ and B C M i ; B ^ % for some i e T then A* = U , A t t = ^ 

and B^ = •_., B i f = t 4 B, respective!}'. If a £ G., 6 6 Gj and m e M „ n 6 M,- for 

i,j e T, i == j , then {a, ft}1' = 0 and {m, n}^ = 0, respectively. 

P r o o f . Let i C G(, 4 ^ 0. Then m 6 A* iff aim for all a £ A. Since 

I = U f.-, we obtain al{m for all a £ A, AT = 14 and A1* C M,. Similarly we obtain 
f€T 

B i _ 4Bj B i g G . T h i s y i e l d s An _ #4 a n d B # _ tie. 
Let a £ G;, 6 £ G}, i jt j . If m e {a,6}t then a / m and blm, hence m £ M. n M , , 

which is a contradiction to M; n M,- = 0. Similarly we proceed when elements 

m e Mi, n e M} are under consideration. • 

T h e o r e m 3 . Let an incidence structure J be the complete union of substructures 

Ju, veT. 
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1. If AC Gi and B C Mi, i 6 T, then AT = M1 U U M l i B4- = G ; U *B. ff the 

incidence structure J is open then At4- = ttA and Blt = nB. 

2. Let aeGi and b e Gj for distinct i, j e T. Then {a, b}r = ( M ; n M j ) U T a U f 6 . 

If the incidence structure J is open then {a, 6} t* = *ta u 4t0 £ e t m e J J ^ 

ne Mj,i£ j,i,j eT. Then{m,nY = ( G i n G i ) u 4 m U 4 n . If J is open then 

{m,n}* t = 1*mU1 '*n. 

P r o o f . Let g e G. Since G = ( j Gv, there exists I e T such that g e Gi. By 
*ET 

Definition 1, p1" = {m e M; glm} and from I = (\J Ii,)L>( (J (G; x Mj)) where 
fST ; , jgT 

i ^ j , we obtain gr = M1 U V Similarly, for m, G M there exists i e T such that 

me Mk and m* = Gk U •'-m. 

1. Let A C Gi and A = 0. Then A1" = M = M ; U M; = M ; U T0 = Ml U tA. If 

A ? 0 then A1" = ( 1 ^ = n (Mi u M = M ; U ( n Ta) = M j U fA. 
a<E-4 a£A a£A 

Let 7 be an open incidence structure. Then (M')4- = G; for all i e T. We obtain 

An - ( ^ t ) l = ( M i u tA)» = (M i )* n (U)K As 14 C M;, we have (14)4" = G j U 4tA 

and A14- = G; n (G; U **A) = (G; n G;) U (G; n
 WA) = 4l4. 

If B C Mi then the proof is similar. 

2. Let a e G,-, 6 e G j , i / j . Then {a,&} f = a1" n 6T = (Mi U ta) n ( M j U T&) = 

( M i n M') U (MJ ' n fa) U (Mi n T6) U (Ta n t6). Since M ' n Ta = Ta, M i n T6 = t&> 
r a n % = 0 we have {a, 6}1" = ( M ; n MJ) U f o U f6. 

Let J be an open incidence structure. For every i,jeT we obtain ( A f ' n t f ) 4 = 

( U M,)4- = G i U G j . Hence, {a,6} t 4 = ({a,6} t)4- = ( (M i nM- ' ' )U t aU t 6) 4 - = ( M i n 

M04nf»±n(t&)* = (G iuG j)n(G iu^a ) n(G iu t t0) _. [(GiuGj)n(GinG^')]u[(Giu 
Gj)n

4-fa]U[(GiUGj)n
4-t6]. Now, (G.UGi)n(G*nG>') = (GiUGJ-)n( IJ Gt) =0. By 

l+i,i 
virtue of ^a C Gj, •»& C G,-, it follows that ( G j U G ^ n ^ a = #a, (G i uG J - )n i t 6 = 44'6. 
Thus {a, 6}ti = 4ta u 4tfc. 

For m e Mi and n 6 M,- the proof is similar. D 

Definition 6. Let J = (G,M,I), J\ = ( G i . M i . i i ) be incidence structures. 

A map v?: G U M -> Gi U Mj is called a homomorphism of 7 onto J\ if 

1. V(G) := M J ) ; J 6 G ) = G , , # ) := {v(m); m 6 M} = Mj, 

2. a i m = > </)(a)/i<p(m), 

3. for a'lim' there are elements a e G, m e M such that a i m , </>(a) = a' and 

y>(m) = m'. 

R e m a r k 4. 1. Let J = (G,M,I) be an incidence structure and let G,M 

be decompositions of G, M. Put 7? = (G, M) and consider the incidence structure 

368 



Jn = (G, M, In) where glnm iff there is an h e g with n e fn, him for every g e G, 

fn e M. The map <pn defined by 

f g -> g V<? e G, 

[ m i-> m Vm 6 Af, 

is a homomorphism of J onto Jn- (See [1], Theorem 1.) 

2. Let </? be an incidence structure homomorphism of J = (G, Af, 7) onto Jl = 

(Gi,Mi,h). If we put g = {h e G; <p(h) = <p(g)}, m = {n e M; <p(n) = <p(m)} 

then Gp = {g; g e G} is a decomposition of the set G and Afv = {m; m e Af} is 

a decomposition of the set Af. If we denote Tiv = (Gv, M9) then the map £ defined 

by 
g<-^p(g) VgeG^, , 

m H> <p(m) Vm e Af ,̂ 

is an isomorphism (i.e., both sided homomorphism) between Jnv and J\. (See [1], 

Theorem 1.) 

T h e o r e m 4. Let J = (G, Af, I) be an incidence structure. Then the following 

conditions are equivalent. 

1. J is the disjoint union of substructures Jv = (G„, Af„, Iv), v € T, where |T| ^ 2 

and Iv 5= 0 for ail c e T . 

2. There exists a homomorphism of J onto a simple non-trivial incidence structure. 

P r o o f . 1. => 2. Let the assumption 1 hold. Then the sets G = {G„; v e T}, 

M = {Mv; v e T} are decompositions of the sets G, Af. Put 11 = (G,M) and 

consider the incidence structure Jn = (G,M,I-n) from Remark 4. We will prove 

that Jn is a simple incidence structure. Let G; e G. Then there exist g e G,-

and m e Af; such that fff;m., because / ; ^ 0. By Theorem 1, we have glm and by 

Remark 4, we obtain GJnMi and | G j | ^ 1. Similarly we get |Af|| > 1 for every 

Mj e Af. Now suppose that GJnMj for i,j e T. Then there exist g e G; and 

m e Af,- such that glm, and according to Definition 5 and Remark 2 there exists an 

I e T such that g e Gt, m e Mi and ghm. But g e G; n G( and m e Mj n Af., 

which means that i = j = I so that |Gj | = 1. Similarly we obtain | M j | = 1 for all 

Mj e M. Thus Jn is simple. Because of \T\ ^ 2, we have \G\ ^ 2, \M\ ^ 2 and Jn 

is not trivial. 

According to Remark 4 the map <pn '• J -> Jrc is a homomorphism of .7 onto Jrc • 

2. = > 1. Let <£: J -> J' be a homomorphism of J onto a simple incidence 

structure J' = (G',M',I'). Suppose that G' = {g'„; u e T}, M' = {m'v; v e T} 

and g'il'm'j iff i = j . Since J' is non-trivial, it follows that \T\ > 2. 
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By Remark 4, we obtain the structure Jnr = {Gv,Mv,Inv), where G ,̂ = {g; 

g e G} , Mv = {m; m e M } and gln^fn iff there are h e g, n € m such that 

Wn. Furthermore, put G{ := g iff ^(9) = g[ and M ; := JT" iff p(m) = m^ and 

consider substructures Jt = ( G i , M i , / i ) , where ~j = J n (G, x M i) for all i £ T. 

Then </>(G.) = #,', tp(Mi) = mj and g'il'm^. By Condition 3 from Definition 6 there 

exist g £ G i ; and m & Mi such that jr/m. Then gUm and hence /< 5= 0 for all i 6 T. 

We will prove that J = (j Jv. Since GV,MV are decompositions of G , M , the 
r e ­

sets {G„; (̂  e T} and {Mv; v e T} are decompositions of G, M, too. Now the set 
{Iv; v e T} is a decomposition of the set I. We have <?/m so that <p(g)I'ip(m). If 
¥>(#) = 9i then ¥>(m) = m'i and (g,m) e G ; x Mi. This yields (g,m) e Ii and / ; C / 
for all i e T. From G ; n Gj = 0 and M ; n M,- = 0 for t 7̂  j , we get 7 = | j / „ . D 

"ST 

R e m a r k 5. There exists a homomorphism of an arbitrary incidence,structure 

with non-empty incidence relation onto a trivial simple incidence structure. 

Theorem 5. Every regular incidence structure is a homomorphic image of a cer­

tain simple incidence structure. 

P r o o f . Let J = (G,M,I) be a regular incidence structure. Set G = {gv; 

v e P i } , M = {m^; fi e P 2} and define the set U C P, x P2 by (i, j ) e (7 iff ft/m,-. 

Let t/ = {u^; f e T } . We consider the map a : U -f P i , given by a( i , j ) = i for all 

( t , j ) e [". If i e P i , then \gj\ ^ 0 because J" is regular. Hence there exists mj e M 

such that gjmj. It follows that (i, j) e It, a ( i , j ) = i and so a is a map onto P i . For 

every i e P i , put a _ 1 ( i ) = U = {un; n eT} where T; C T. Similarly, define a map 

": (7 -> P2 such that /"(i,j) = j . This map is onto. Denote (l~l(j) = Uj = {uK; 

ree T/} where T i C T. 

Now consider the simple incidence structure J\ = (G\,MYJ\) where Gi = {b^; 

£ e T), Mi = {p(; * e T} and 6i / ip , iff i = j . Put k = {&<;; f e T ;} for t e Pi and 

Pi = fa; te&} for jeP2. 
The family {h; i £ Px} forms a decomposition of Gi. If bi £ Gj then I e T, and 

there exists a, ui e U. We express it as ut = (p,q) so that a(«/) = p, U/ £ E7P and 

consequently, . e Tp, bt £ 6P, Gi = |J 64. If 6/ £ 6., n 6i2 then I e Th n Ti2 and 
•€T 

ui £ [/j, n C/i2, which yields t'i = i2 . Obviously, 6i =£ % for all t £ P i . Similarly one 
can prove that the family {m,-; j e P2} forms a decomposition of Mi . 

It is clear that 

ui = (i,j), I e T o ui e U n uj -» I e T n Tj o 6; e 6i; p/ € ft. 

Finally consider the map tp: Gi U Mi -+ G U M given by <p(6i) = ĝ  iff 6i £ 6j 

for all 6; £ Gi and i^(Pi) = ' " j iff Pi £ pj for all p ; £ M\. We claim that <̂> 



is a homomorphism of Jx onto J: In deed, first it is obvious that tp(G\) = G, 

f>(M\) = M. If bJ\Pk then . = k. If y?(6() = g; then bt e 5< and similarly for 

V?(p;) = mj , pi e pj. This implies Uj = («, j ) € 77 and we obtain gjmj, <p(bi)Iip(Pi)-

If ftim^- then there exists an I e T with Uj = (i, j) and it follows that bi e hi, 

Pi e pj. This yields <p(bi) = g ;, tp(pi) = m, and bihpi. • 

Modular incidence structures have been defined in [2]: 

Defini t ion 7. An incidence structure J = (G, M, 7) is said to be modular if it 

satisfies the following conditions: 

(Ml) { a , i } T ^ 0 V a , 6 e G , 

(M2) {m,n}l^% Mm,neM, 

(M3) a,beG, xe {a, b}n, x # a ==> {a, x } f C {a, 6} r , 

(M4) m,n e M, ye {m, n } * , y ^m => {m, y}1, C {)7i, n}4-. 

T h e o r e m 6. Let an incidence structure ;T = (G, M, 7) be the complete union of 

incidence structures J„ = (GV,MV,I„) where v € T and \T\ > 1. Then the following 

two conditions are equivalent: 

1. J is open modular. 

2. \G\ ^ 3 and each of Jv is either open modular, or simple non-trivial, or a triviaJ 

incidence structure with empty incidence relation. 

P r o o f . 1. => 2. As J is open, all substructures Jy are open by Remark 2. 

Since \T\ > 1, we have \G\ ^ 2 and \M\ >- 2. Suppose that \G\ = 2, G = {a,b}. It 

follows that J\ = ( {a} ,Mi , / i ) , J2 = ({6},M2 , /2) where M = MXUM2. Moreover, 

J\2 = ({a} ,M 2 , / 1 2 ) , J2X = ({b},M\,h\) where 712 = {a} x M2 , 721 = {6} x Mx. 

Since J\,J2 are open, 7t = 72 = 0 and Im^l = 1 for all m 6 M. But J is modular so 

that, according to Theorem 3 of [2], J is not open, which is a contradiction. Hence 

\G\ > 3 and similarly, \M\ >- 3. 

Let Ji = (Gi,Mi, U), i e T, be substructures of J. 

(1) Let |G,| = 1. Then G ; = {a} for some a e G. Furthermore, suppose that 

7; r£ 0. Then there exists an m £ M ; such that a7 ;m and it follows that {a} = lm. 

According to Theorem 3, ml = G* U lm = G* U G; = G. We have obtained a 

contradiction to Condition 1. Therefore 7; = 0. 

Let m,n be distinct elements of Mi. Then lm = 0 = *n and m4- = n^ = G*, in 

contradiction to Theorem 4 of [2]. Thus m = n and |M,;| = 1. Hence J i is trivial and 

its incidence relation is empty. The case |M;| = 1 can be considered analogously. 
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(2) Let |Gi| > 1. Then |M;| > 1, too. Suppose that f o = 0 for some a G G ; . By 

Theorem 3 we have aT = M* U r a = M*. Since |G4| > 1, there exists a 6 G G ; , 6 / a 

and from &t = M* U t& we get at C &t. But this is a contradiction to Theorem 4 

of [2], so that | ta | >- 1. Similarly we prove |-tm| >. 1. 

(a) Suppose that | ta | = 1 for some a € Gi. Then there exists an m G Mi such 

that a/i?n and t 0 = {m}. Further suppose that there exists a 6 6 Gt, b ^ a such 

that bhm. Then m G f& and To C t&. Since aT = M* U Ta and &t = M* U f&, we have 

at C &T, which is again a contradiction to Theorem 4 of [2]. This implies l^ml = 1 

and ^m = {a}. 

Let n be an arbitrary element of Mi, n ^ m. Then n 0 Ta. Suppose there exist 

distinct &,c G G ; , such that 6/,n, c/ ;n. Clearly T{a, &} = 0 and by Theorem 3, 

{ a ^ J t = M*. Now u{a,b} = G ; and c 6 i f{a,&}. By Theorem 3 it follows that 
iT{a,&} = {a,b}n. Hence c G {a,b}n and from n £ M \ one gets n £ {a ,6} t . 

Moreover, n G {&,c} t, hence {&,c}t g {&, a } f , which is a contradiction to (M3). 

From l^nl >• 1 we obtain l^nl = 1. 

Let & be an arbitrary element of Gi, b ^ a. Suppose there exist distinct n,p G M,-

such that bltn, bhp. Then l{m,n} = 0 and n{m,n} = Mi, and therefore p G 

^ { m ^ } = {m,n}tt. Moreover, & G {n,p}1 and 6 £ {m^i}4- so that {n,p}1 g 

{n^n}1-, in contradiction to (M4). Hence l̂ &l = 1 and J i is simple. 

Similarly we prove that l^ml = 1 implies that Jt is simple. 

(b) Let us suppose that there exists a G Gi such that | r a | > 1. Then by part (a) 

|T:c| > 1 for all x G Gi and ^ml > 1 for all m G Mi. We prove that every incidence 

structure J i satisfies conditions (M1)-(M4). 

To (Ml) : Let o,& G G; such that ^{a,b} = 0. Then ^{0 ,6} = {a, b}n = G{ 

and for arbitrary x G Gi we obtain x G {a, b}n. As J is modular, (M3) implies 

{x,a}^ C {a,b}^ whenever x ^ a, in other words M* U^{x,a} C M* U t { a , &}. As 
t {o , &} = 0, we obtain ^{x,a} = 0. By |Ta| > 1, there exists an m G M{ such that 

ahm. As l^ml > 1, there exists a c G Gi, c ^ a such that cUm. Hence m G ^{c,a}, 

which is a contradiction. Then t {o , &} 7̂  0. 

Condition (M2) can be proved similarly as (Ml). 

To (M3): Let a, 6 G Gi and c G i T{o,6}, c / a . Then c G {a,b}n. By (M3), 

{ c , a } ' C {a,6}T i.e. M ' U T { c , a } C M i U t { a , & } . If x G T{c,a} then x G M 'U*{a , &} 

and, regarding x £ M*, we obtain x G t{a,&}. It follows that ^{c,a} C T{o,&}. 

Condition (M4) can be proved similarly as (M3). 

2. = > 1. Each of Jv, v G X is an open and consequently J is open. We show 

that J satisfies conditions (M1)-(M4). 
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To (Ml): Let a, 6 be elements of G such that a, b e Gi for some i € T. By virtue 

of \T\ > 1, it follows that M ; ^ 0 and {a, 6}f = M* U f {a, 6} ^ 0. 

Let a e Gi, b e G} where i 7̂  j and let |T| = 2. Then J = J i O J 2 . According 

to the hypothesis \G\ >. 3 both structures J\ and J2 are non-trivial. Hence, for 

instance, J\ is simple non-trivial or modular and so regular. If a e G\ and 6 e G2 

then Ta # 0 and, by Theorem 3, {a ,6} t = (Ml n M-?) U fa U f& = fa U r 6 # 0. If 

|TI > 2 then M* n M ' j S j and again {a, 6}f # 0. 

The condition (M2) can be proved similarly as the condition (Ml) . 

To (M3): Let a, b be elements of G and c £ {a, 6 } ^ , c ^ a. We have to prove that 

{ a , c } t C {a,6}f. 

(a) Let a, 6 e Gi for a certain z G T. Then {a,b}n = i f { a , 6 } . If Jt is trivial 

with /,- = 0 then G; = {a}, c = a = 6 and f{a,c} = T{a,6} = 0. Further, {a,c}f = 

M' = {a ,6} t . If J i is simple then, because of a / c, it follows that f{a ,c} = 0 

and f{a, c} C t {a , 6}. If Jt is modular then we obtain the same conclusion as a 

consequence of (M3). Hence {a, c}1" = Ml U T{a, c} C M* U ^ a , 6} = {a, 6 } t . 

(b) Let a e G i? 6 £ Gj} i ^ j . 

If x,y 6 G ; for an arbitrary / € T then Ty C ^X iff y = x. If Jt is simple then 

f {a:, y} = T:r n T y = 0 for a; ^ y and (M3) is valid. If J is modular, then Ji is open 

and we obtain (M3) by Theorem 4 of [1]. 

By the hypothesis c 6 {a,b}n. That means, by Theorem 3, c £ i1"a U iT6. Since 

•"a n -f 6 = 0, c belongs to exactly one of the sets i f a and 4 t6. Let c e -^a. Hence 

t a C t c and a = c. This yields {a,cY = (M ; n Mj) U t o U t c = (Mi n AP') U fa C 

( M i n M J ' ) U t a U t 6 = {a,6}f. 

Condition (M4) can be proved similarly as (M3). • 

R e m a r k 6. Let J = (G,M,I) be a simple incidence structure with \G\ ^ 3. 

We put G = {#„; 1/ e T}, M = {m„; 1/ 6 T } , <?</m, iff t = j . If J ' is a comple­

mentary incidence structure on J (i.e. J' = (G,M, (G x M ) - / ) ) , then J is open 

modular. 

R e m a r k 7. According to Theorem 6, we can extend every open modular in­

cidence structure with help of other open modular or non-trivial simple incidence 

structures or of trivial ones the incidence relations of which is empty, to a new inci­

dence structure which is open modular, too. 
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