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Abstract. We consider a class of semilinear elliptic problems in two- and three-dimensi
onal domains with conical points. We introduce Sobolev spaces with detached asymptotics 
generated by the asymptotical behaviour of solutions of corresponding linearized problems 
near conical boundary points. We show that the corresponding nonlinear operator acting 
between these spaces is Frechct differentiable. Applying the local invertibility theorem 
we prove that the solution of the semilinear problem has the same asymptotic behaviour 
near the conical points as the solution of the linearized problem if the norms of the given 
right hand sides are small enough. Estimates for the difference between the solution of the 
semilinear and of the linearized problem are derived. 
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1. INTRODUCTION 

The theory of general linear elliptic problems in domains with a piecewise smooth 
boundary is well developed (see the monographs [10, 22] and the references therein). 
In papers by Kondrat'ev [11] and Maz'ya, Plamenevsky [17, 18] the Fredholm prop
erty of the corresponding linear operators in domains with conical points is investi
gated in several scales of functional spaces and the solutions u are decomposed into 
a linear combination of some singular functions Si and a more regular remainder 

(1) u = s£JciSi + u„ 



Another simple approach based on the construction of a barrier function was used 
by Azzam [1] in order to prove regularity results for linear elliptic two-dimensional 
boundary value problems in domains with corners. This method leads to estimates 
of the solution u in the neighbourhood of the conical point p which have the form 

(2) \u(x) - u{Pi)\ ^ c\x - Pi\a. 

The theory of nonlinear elliptic problems in nonsmooth domains is much less devel
oped. The barrier method was applied to several classes of semilinear and quasilinear 
problems [6, 25, 19, 3]. Asymptotic expansions near conical boundary points of the 
type (1) are known only for special nonlinear problems as semilinear perturbations 
of the biharmonic operator [2], degenerate p-harmonic problems [5], Navier Stokes 
equations [23, 20] and others [21]. More general results were obtained in [19] where 
the Dirichlet problem for quasilinear equations is investigated and asymptotic ex
pansions near conical points are derived in domains with non-reentrant corner points 
under the assumption that a solution exists which is continuous up to the boundary 
in a neighbourhood of the corner point. 

The solvability of nonlinear elliptic problems with small right hand sides can be 
investigated with the help of the implicit function theorem or the local invertibility 
theorem. Usually this approach demands an appropriate regularity of solutions to 
a (formally) linearized problem. This leads to difficulties if the domain is non-
smooth, if the coefficients have jumps or if mixed boundary conditions occur. These 
theorems were successfully applied to the Dirichlet and the Neumann problem in 
convex nonlinear elastic bodies [26, 4]. In [24] Recke used this approach to prove 
local iy1,p(£l)-solvability results with p > 2 for mixed boundary value problems for 
a class of two-dimensional quasilinear elliptic systems. In higher-dimensional cases 
he investigates the local w1,2(fi)-solvability under special growth conditions for the 
coefficients. 

In this paper we use the local invertibility theorem to investigate the local be
haviour near conical boundary points for a class of semilinear elliptic systems. To 
this end we use an idea from [20] introducing Sobolev spaces with detached asymp-
totics which describe the asymptotic behaviour of solutions to the linearized problem. 
We prove that the operator of the semilinear problem acting between Sobolev spaces 
with detached asymptotics is Erechet differentiable at u = 0 and that the Erechet 
derivative coincides with the linearized operator. Thus the solution of the semilinear 
problem admits an asymptotic decomposition with singular terms of the same type 
as the solution of the linearized problem, provided that the norms of the right hand 
sides are small enough. 



2. FORMULATION OF THE PROBLEM 

Let tt 6 R", n = 2,3, be a bounded domain with a piecewise smooth boundary. We 
assume that there exists a finite set P = {P\,..., Pq} c dtt of boundary points such 
that dtt \ P is smooth. Furthermore, let dtt = Tj U F2 be a given decomposition of 
the boundary with F2 ^ 0. We assume that in the two-dimensional case Fi n F 2 c P, 
whereas in the three-dimensional case Fi n T2 = 0. These assumptions guarantee 
that singularities of solutions occur only in the neighbourhood of isolated points of 
the boundary. 

We consider a mixed boundary value problem for an elliptic system of k semilinear 
equations for the vector function u = ( u j , . . . ,uk) 

-dj[aija0(x)diUa] + biap(x, u)diUa + cp(x, u) = fp in ft, f) = 1 , . . . , k, 

(3) [aijap(z)diUa] Vj = hp on l\, (1 = 1 , . . . , k, 

up = gp on F2 , ji = 1, •. •, k. 

Here we denote by v = (vx, • • •, un) the unit outward normal on dtt. Moreover, we 
apply here and in the following Einstein's summation convention for the repeated 
indices i,j = l , . . . , n and a = l,...,k. We assume that a,ijap C C1(tt),biap,cp € 
C2(tt x Rn) and that cp(x,0) = 0. The last assumption guarantees that the problem 
(3) with homogeneous right hand sides has the trivial solution. 

Semilinear systems of the form (3) appear in fluid mechanics (stationary Navier-
Stokes equations, stationary convection-diffusion equations [7]) and in the theory 
of diffusion processes (reaction-diffusion systems [15, 8], advection equations in air 
quality modelling [9]). In practical applications the boundary of a domain is often 
piecewise smooth. Frequent examples are fluid or particle flow (transport) in an 
unbounded exterior domain around a rigid body with corner points and flow around 
nonsmooth obstacles at the bottom or at the walls of channels. In fluid mechanics 
one traditionally studies boundary conditions of the pure Dirichlet or Neumann type. 
The Dirichlet conditions express a non-slip behaviour of the fluid on the walls of the 
channel, whereas the Neumann conditions describe the flux or surface stresses on 
the surface of the obstacle. In order to describe the behaviour of more complicated 
models it is necessary to impose mixed boundary conditions. 

In this paper we investigate the local solvability of (3) and the regularity of the 
solutions in the neighbourhood of conical points of the boundary. To this end we 
formulate (3) as an operator equation between appropriate spaces and apply the 
theorem on local invertibility of nonlinear operators. 

Theorem 2 .1 . (Local Invertibility Theorem, see e.g. [4]) Let N: X ->• Y be a 
continuous mapping between the Banach spaces X, Y and let xo G X, yo £ Y with 
Nxo = yo- Suppose that the operator N is Frechet differentiable at x0 and that 



the Frechet derivative N'(xo) • X ~» Y is an isomorphism. Then there exist open 

neighbourhoods U(x0) C X, V(y0) c Y such that the operator N: U(x0) -t V(y0) 

is continuously invertible and its local inverse N~l is Frechet differentiable at y0. 

3. LINEAR ELLIPTIC PROBLEMS IN SPACES WITH DETACHED ASYMPTOTICS 

We consider the formal linearization of the problem (3) at u = 0 

-dj[aija0(x)diVa] + bia0(x,O)diVa + (ducp(x,0),v) = fp in U, 

(4) [a.ijap(x)diVa] Vj = hp on Ti, 

vp = 9p o n T 2 . 

Here (-, •) denotes the scalar product in Uk and the derivatives are to be understood 

in the distributional sense. 

The regularity of solutions of linear elliptic problems of the form (4) in domains 

with conical points was thoroughly investigated in a series of papers by Kondrat'ev 

[11], Maz'ya and Plamenevsky [17, 18]. From their results it follows that the be

haviour of the solutions of (4) in the neighbourhood of a singular point Pi e P can 

be described with the help of the singular functions 

R(Xi)-l ^ 

(5) Wj=rx> VJ 3 ( l o S r ) > i . s ( w ) -

ЩJ) j 
vi = r312 -~(њsr)sФзA^>)-

Here r = \x—Pi\ is the distance from the singular point Pi and u> are n—1 coordinates 

on the unit sphere Sn~1. The functions Wj satisfy the homogeneous linear problem 

(7) Oi3ap(P)dijVa=0, P = l,...,k, 

and corresponding homogeneous boundary conditions in the infinite wedge W(Pi) 

with origin on Pi which coincides with fi in some neighbourhood of the corner point 

Pi- The exponents Â  and the functions <pjtS can be interpreted as eigenvalues and 

(generalized) eigenfunctions of a certain operator pencil A(Pt) (see [11, 17] for de

tails). R(\j) denotes the Riesz-index (the maximal length of the Jordan chains to 

Xj). Moreover, R(j) vanishes if j is not an eigenvalue of the operator pencil A(Pi). 

Otherwise it coincides with the Riesz index to j . The functions VJ are special solutions 

of the same problem with non-vanishing (polynomial) right hand sides [18]. 



The regularity of weak solutions u 6 W\ (fl) of (4) depends on the distribution 
of eigenvalues of A(P;) for every corner point P; 6 P. Let ao — mm{Rea,}, where 
the minimum is taken over all eigenvalues ctj of A(Pi) with 1 — j ^ Re ctj for every 
singular point P; e P. The weak solution u belongs to W^(U) if p < n/(l - a0). It 
means, we can guarantee that u £ W* (ft) if the strip l - ^ < R e A < l — ^ i s free of 
eigenvalues of the operator pencil A(Pi) for all corner points P; € P. In the following 
we assume: 

(E) The problem (4) is elliptic and has a unique weak solution u € W2(fi). 
(R) The weak solution u belongs to Wp(fl), where p = n + e with a small real 

£ > 0 . 

The regularity condition (R) is always satisfied if n = 2 [11]. In the three-
dimensional case this can be often guaranteed if (Av)p := dj [aijap(0)diVa] is strongly 
elliptic. This follows from Fi D T2 = 0 and the following Theorem: 

Theorem 3.1. [12, 13, 14] Let n = 3, P; € P and suppose that pure Dirichlet 
or pure Neumann conditions are given in a neighbourhood of Pi. If the operator 
(Av)fj = dj [aija/3(0)diva] is strongly elliptic, then the strip | Re A + | | < | is free of 
eigenvalues of the operator pencil A(Pi). 

In fact, the value ao = 0 is an eigenvalue for the pure Neumann problem in a 
neighbourhood of a conical point P;, but the corresponding asymptotic term Wj does 
not appear in the asymptotics due to the condition (E) and only logarithmic terms 
vo remain in this case. For right hand sides which vanish in the neighborhood of P; 
the term vo vanishes, too. Therefore the condition (R) is satisfied for pure Dirichlet 
conditions and even reasonable for Neumann conditions under assumptions for the 
right hand sides. 

Now we can formulate the regularity results for the linear system (4). 

Theorem 3.2. [11, 18] Assume that the conditions (E) and (R) are satisfied. 
Let fp € £p(fi), tip e wp"~1/p(ri), gp e w^ 1 / p ( r 2 ) , p = l,...,fc, p = n + e. 
Furthermore let u>i, • • •, to;, be the sequence of all singular functions (5) to eigenvaiues 
A ofA(Pi) with l - | < A < 2 - ^ f o r every Pi e P. Let us denote by Vi,... ,vi2 

the sequence of all singular functions (6) corresponding to the eigenvalue 1 ofA(Pi) 
for every Pi 6 P. Then the unique weak solution u £ W\ (fi) of (4) allows the 
decomposition 

u = ] T CjWj + Y; djVj +1 
j=l 3=1 

withu€W%(tt). 



This theorem motivates the introduction of Sobolev spaces with detached asymp-
totics. Let {z\,. • • ,zm} be a basis of the finite dimensional linear space generated 
by the functions {w1 ,...,wiltvi,...,vi3). We define 

(9) D2
p(U) :=. spanfo , . . . , zm) <g> W2(U). 

The norm of a function u G Dp(Q) with the decomposition u = £] CjZj + u is defined 
i = l 

by 

(10) IHIc>(n)=2tl^l + Hfill^(n)-
3 = 1 

Lemma 3.3. T ie imbedding Dp(Q) -» Wp(Q) is continuous. 

P r o o f . Since Zj € H^(n) and since W2(ft) is continously imbedded in W*(Q) 

we obtain for u = J2 cizi + " 

Hln/;(n) ^ ^ M M ^ n ) + Nlu^n) 
3 = 1 

^ max{l, 11^11^(0), • • •, ||2mllw,;(0)} ( J 2 \cj\ + Ml w,;(«) ) 
S=i J 

^ dHu\\D2(Q). 

a 
Let the operator L be defined by 

(Lv)0 = ( - dj [aijap(x)diva} + biaP(x,0)diVa + (d^x,0), v), 

h-i^Wa^J^lr^^lr,). 

The Theorem (3.2) can be formulated as 

Theorem 3.4. Let the assumptions of Theorem 3.2 be satisfied. Then the oper
ator 

(12) L: D2
p(fl) -> Lp(il) x W^-VJ-fT.) x J ^ ' " ^ 

deSned by (11) is an isomorphism. 



4. CONTINUITY AND FRECHET-DIFFERENTIABILITY OF THE SEMILINEAR 

OPERATORS 

We write the problem (3) in the form of an operator equation 

(13) Nu = (f,h,g) 

with / = (fi,.. •, fk),h — (hi,... ,hk),g = (</i, • • •, <7t) and the operator N defined 
by 

(Nu)p -{-dj [aija0(x)diua] + biaP(x, u)diua + C/3(x, u), 

[aija0(x)diua] Vj\Tl,Uf,\T2). 

The continuity and the Frechet differentiability of the operator Ar follows from the 
corresponding properties of the composition operator. 

Theorem 4 .1 . (Marcus/Mizel [16], Valent [26]) Let. p > n and c € C2(fi, Rk). 
Then the composition operator C: W*(Q) -> W*(Sl) defined by (Cu)(x) = c(x,u(x)) 
is continuous and Frechet differentiable. The Frechet derivative ofC is given by 

(15) C'(u)v = (duc(x,u),v). 

Lemma 4.2. Let p > n and b e C2(H, R*). Then the operators B{: W£(Sl) -+ 
LP(Q) deBned by (BiU)(x) = b(x,u(x))diU, i = 1 , . . . , n, axe continuous and Frechet 
differentiable. The Frechet derivative of Bi is given by 

(16) B'f(u)v = {dub(x,u),v)diu + b(x,u)d{V. 

P r o o f . If u € W*(tt) then b(x,u) € W}(Sl) and ftu € LP(U). Therefore we 
have b(x,u(x))diu 6 LP(U) and Bi is continuous due to multiplicative properties 
of Sobolev spaces ([26, Corollary II.2.3]). The relation (16) follows directly from 
Theorem 4.1 applied to u i-+ b(x, u) and the Leibniz rule for the Frechet derivatives. 

• 

Theorem 4.3. Let p > n + e. Then the operator N: D*(il) -+ LP(Q) x 

Wl~llF(Ti) x Wp"~1/p(r2) is Frechet differentiable and its Frechet derivative at 

u = 0 coincides with the operator L deBned by (11). 

P r o o f . We decompose the operator N into the sum N = Ni+ N2 + N3, where 

(Niu)f3 = { - dj [aijap(x)diua], [cnjap(x)diUa] Uj\ruup\r,), 

(N2u)f3 = (biap(x,u)diua,0,0), 

(N3u)i3 = (cp(x,u),0,0). 
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The operator Ni is linear and continuous and therefore N{(0)v = Niv. 
Note, if an operator N: X -> Y is continuous and Frechet differentiable at a;0 € 

X, where X is continuously imbedded in X then JV: X —> Y is also continuous 
and Frechet differentiable at x0. In our case the space D'(il) can be continuously 
imbedded into W* (fl). Using this fact we conclude from Lemma 4.2 that N2 is Frechet 
differentiable and 

(17) (K(0)v)p = (bial3(x,0)diva,0,0). 

From Theorem 4.1 it follows that 

(18) W(0)v)p = ((ducp(x,0),v),0,0). 

Summing up the Frechet derivatives of Ni,N2 and N3 we obtain the assertion. • 

5. ASYMPTOTIC BEHAVIOUE OF THE SOLUTION OF THE SEMILINEAR PROBLEM 

Let us summarize the assumptions which we need in order to apply the Theorem 
2.1 to the nonlinear problem (3): 

Ai. ai:ja0 e c1(p.),biap,cp e c2(n x or). 
A2. cp(x,0) =0. 
A3, fp e Lp(fi), hp e wP

1-1/p(ri), gp e Wp'1/p(T2), fi = l,...,k,p = n + e with 
a small positive e, and the norms of fp, hp, gp are small enough. 

A4. The linearized problem (4) is elliptic and has a unique weak solution in W.J(fl). 

Now we can formulate the main result of this paper: 

Theorem 5.1. Let the assumptions A1-A4 be satisfied. Then the semilinear 
problem (3) has a unique solution u € D^(fl). 

P r o o f . According to Theorem 4.3 the operator N of the boundary value 
problem (3) is Frechet differentiable at u = 0 and its Frechet derivative coincides 
with the linear operator L defined by (11). On the other hand we know from Theorem 
3.4 that the operator L is an isomorphism. Thus the operator N is locally invertible 
in the neighbourhood of u = 0 e D~(~l). D 

Furthermore, using an idea from [4, Theorem 6.8.1] we can estimate the difference 
between the solution of the semilinear and of the linearized problem. 

Theorem 5.2. Let u = V CjZj + u be the solution of the semilinear problem (3) 
3=1 

and let uiin = T) c'.in2,- + « l in be the solution of the linearized problem (4). Then 
j= i 



the following estimates are valid 

(19) l l « - « l i n | b ? ( n ) < d i l l ( / , / ' , 9 ) l l M n ) x H , , - , / , ( r i ) x l y r , / , ( r 2 ) , 

(20) \Cj - c f | < d2l l ( / , / i ,3 ) l l L p ( n ) x W . - . / , - ( r j ) x l y r . / , ( r 2 ) , 3 = !•••• ,". , 

(21) I M I ^ n ) *£ d3| |( / ,f t ,s) | | i i i ( n ) x V V i , - , / , ( r i ) x l .v2-./ , . ( r 2 ) 

with positive real constants dj, da, c^. 

P r o o f . From the local invertibility theorem follows that 

N(N~1(f,h,g)) = (f,h,g) and i V ' ^ ^ / . / i . g ) ) ^ - - 1 ) ^ / , / ! ^ ) = / 

for (f,h,g) € LP(Q.) x Wp~1/p(Ti) x Wp~1 / p(r2) whose norm are small enough. 
Thus 

(7V-1)'(0) = (7V')(0)- 1=L- 1 . 

From the Frechet differentiability of N"1 at 0 we obtain then 

lim ^ " " " " l l - S W _ l i m l l ^ M / . M ) - (JV-1)'(0)(/,ft,g)lbii(n) _ 
il(/,h's)||-to \\(f,h,g)\\ ll(/,fc,9)IK0 \\(f,h,g)\\ 

Thus (19) is proved. The estimate (20) is a direct consequence of (19) and the 
definition of the norm in D^(Ct). Furthermore we have 

IMID-KS.) < ll«h"llD,2,(n) + H"-w l mlb2(n). 

Therefore the estimate (21) follows from (19) and the continuity of the inverse oper
a tor ! . - 1 . D 

R e m a r k . The estimates (19) and (20) can be further improved if we can guaran
tee that the nonlinear mapping N is twice Frechet differentiable at 0 (see [4, Theorem 
6.8.1]). 
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