Mathematic Bohemica

Ján Jakubík; Mária Csontóová
 Cancellation rule for internal direct product decompositions of a connected partially ordered set

Mathematica Bohemica, Vol. 125 (2000), No. 1, 115-122
Persistent URL:
http://dml.cz/dmlcz/126261

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CANCELLATION RULE FOR INTERNAL DIRECT PRODUCT DECOMPOSITIONS OF A CONNECTED PARTIALLY

ORDERED SET
Ján Jakubík ${ }^{1}$, Mária Csontóvá ${ }^{2}$, Košice
(Received December 12, 1997)

Abstract. In this note we deal with two-factor internal direct product decompositions of a connected partially ordered set.

Keywords: internal direct product decomposition, connected partially ordered set, cancellation

MSC 1991: 06A06

Direct product decompositions of a connected partially ordered set have been investigated by Hashimoto [1].

We apply the notion of internal direct product decomposition of a partially ordered set in the same sense as in [2]; the definition is recalled in Section 1 below.

The following cancellation rule has been proved in [2]:
(A) Let L be a directed partially ordered set and $x_{0} \in L$. Let

$$
\begin{aligned}
& \varphi^{0}: L \rightarrow A^{0} \times B^{0}, \\
& \psi^{0}: L \rightarrow A_{1}^{0} \times B_{1}^{0}
\end{aligned}
$$

be internal direct product decompositions of L with the same central element x^{0}. Suppose that $A^{0}=A_{1}^{0}$. Then $B^{0}=B_{1}^{0}$ and $\varphi^{0}(x)=\psi^{0}(x)$ for each $x \in L$.
The aim of the present paper is to generalize (A) to the case when L is a connected partially ordered set.

[^0]
1. Preliminaries

We recall that a partially ordered set is called connected if for any $x, y \in L$ there are elements $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ in L such that
(i) $x=x_{0}, y=x_{n}$;
(ii) if $i \in\{1,2, \ldots, n\}$, then the elements x_{i-1} and x_{i} are comparable.

Let L be a connected partially ordered set. Suppose that we have a direct product decomposition

$$
\begin{equation*}
\varphi: L \rightarrow \prod_{i \in I} L_{i} \tag{1}
\end{equation*}
$$

(i.e., φ is an isomorphism of the partially ordered set L onto the direct product $\left.\prod_{i \in I} L_{i}\right)$. For $x \in L$ let $\varphi(x)=\left(\ldots, x_{i}, .\right)_{i \in I}$. We denote $x_{i}=x\left(L_{i}\right)$. Next we put

$$
L_{i}(x)=\left\{z \in L: z\left(L_{j}\right)=x\left(L_{j}\right) \text { for each } j \in I \backslash\{i\}\right\}
$$

Let x^{0} be a fixed element of L. For each $i \in I$ we denote $L_{i}\left(x^{0}\right)=L_{i}^{0}$.
For each $x \in L$ and each $i \in I$ there is a unique element y_{i} in L_{i}^{0} such that $x\left(L_{i}\right)=y_{i}\left(L_{i}\right)$. Put

$$
\varphi^{0}(x)=\left(., y_{i}, \ldots\right)_{i \in I}
$$

Then the relation

$$
\begin{equation*}
\varphi^{0}: L \rightarrow \prod_{i \in I} L_{i}^{0} \tag{2}
\end{equation*}
$$

is said to be an internal direct product decomposition of L with the central element x^{0}.

For each $i \in I, L_{i}^{0}$ is isomorphic to L_{i}.

2. AUXILIARY RESULTS

In this section we suppose that L is a connected partially ordered set.
Assume that we are given a direct product decompostion

$$
\begin{equation*}
\varphi: L \rightarrow A \times B \tag{1}
\end{equation*}
$$

For $x \in L$ we put $\varphi(x)=\left(x_{A}, x_{B}\right)$. Sometimes we write $x(A)$ instead of x_{A}, and similarly for x_{B}.

Further, for each $x_{0} \in L$ we put

$$
\begin{aligned}
& A\left(x_{0}\right)=\left\{x \in L: x(B)=x_{0}(B)\right\} \\
& B\left(x_{0}\right)=\left\{x \in L: x(A)=x_{0}(A)\right\}
\end{aligned}
$$

Let $x_{1} \in L, x_{1} \notin A\left(x_{0}\right)$. We put $A\left(x_{0}\right)<A\left(x_{1}\right)$ if there are $x_{0}^{1} \in A\left(x_{0}\right)$ and $x_{1}^{1} \in A\left(x_{1}\right)$ such that $x_{0}^{1}<x_{1}^{1}$.

If $x, y, z \in L$ and $z=\sup \{x, y\}$ in L, then we express this fact by writing $z=x \vee y$. The meaning of $v=x \wedge y$ is analogous.
2.1. Lemma. Let $x_{0}, x_{1} \in L, A\left(x_{0}\right)<A\left(x_{1}\right), x_{2} \in A\left(x_{1}\right)$. Then there exists x_{2}^{0} in $A\left(x_{0}\right)$ such that
(i) $x_{2}^{0}<x_{2}$;
(ii) if $z \in A\left(x_{0}\right)$ and $z<x_{2}$, then $z \leqslant x_{2}^{0}$.

Proof. There exists $x_{2}^{0} \in L\left(x_{0}\right)$ such that

$$
\varphi\left(x_{2}^{0}\right)=\left(x_{2}(A), x_{0}(B)\right)
$$

Then $x_{2}^{0} \in A\left(x_{0}\right)$. We have

$$
x_{0}(B)=x_{0}^{1}(B) \leqslant x_{1}^{1}(B)=x_{2}(B),
$$

where x_{0}^{1} and x_{1}^{1} are as in the definition of the relation $A\left(x_{0}\right)<A\left(x_{1}\right)$. Thus $x_{2}^{0} \leqslant x_{2}$. Since $x_{2} \notin A\left(x_{0}\right)$, we must have $x_{2}^{0}<x_{2}$. Therefore (i) is valid.

Let $z \in A\left(x_{0}\right)$ and $z<x_{2}$. Then $z(B)=x_{0}(B)=x_{2}^{0}(B)$ and $z(A) \leqslant x_{2}(A)$; hence $z \leqslant x_{2}^{0}$. Thus (ii) holds.

It is obvious that the element x_{2}^{0} is uniquely determined if x_{2} and $A\left(x_{0}\right)$ are given and if $A\left(x_{2}\right)>A\left(x_{0}\right)$.
2.2. Lemma. Let x_{0} and x_{1} be as in 2.1. Further, let $x_{3} \in L, x_{3} \geqslant x_{1}$. Then the following conditions are equivalent:
(i) $x_{3} \in A\left(x_{1}\right)$;
(ii) $x_{3}^{0} \vee x_{1}=x_{3}$.

Proof. First we remark that from $x_{3} \geqslant x_{1}$ we infer that $A\left(x_{3}\right)>A\left(x_{0}\right)$, whence in view of 2.1 , the element x_{3}^{0} does exist; moreover, we have

$$
\varphi\left(x_{3}^{0}\right)=\left(x_{3}(A), x_{0}(B)\right)
$$

Further, from the relation $A\left(x_{0}\right)<A\left(x_{1}\right)$ we conclude that whenever $t_{1} \in A\left(x_{0}\right)$ and $t_{2} \in A\left(x_{1}\right)$, then $t_{1}(B)<t_{2}(B)$. In particular, $x_{0}(B)<x_{1}(B)$. Thus $x_{0}(B)<x_{3}(B)$ and $x_{3}^{0}(B)<x_{3}(B)$.
Let (i) be valid. Hence $x_{3}(B)=x_{1}(B)$. From $x_{3} \geqslant x_{1}$ we get $x_{3}(A) \geqslant x_{1}(A)$ Thus

$$
\left(x_{3}(A), x_{0}(B)\right) \vee\left(x_{1}(A), x_{1}(B)\right)=\left(x_{3}(A), x_{3}(B)\right)
$$

Therefore (ii) holds.
Conversely, let (ii) be valid. Then

$$
x_{3}^{0}(B) \vee x_{1}(B)=x_{3}(B)
$$

We already know that $x_{3}^{0}(B) \vee x_{1}(B)=x_{1}(B)$. Thus $x_{1}(B)=x_{3}(B)$. Hence (i) holds.
2.3. Corollary. Let x_{0} and x_{1} be as in 2.1. Then the set $\left\{x \in A\left(x_{1}\right): x \geqslant x_{1}\right\}$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}
2.4. Lemma. Let x_{0} and x_{1} be as in 2.1. Further, let $x_{4} \in L, x_{4} \leqslant x_{1}$. Then x_{4} belongs to $A\left(x_{1}\right)$ if and only if the following conditions are satisfied:
(i) $x_{4} \vee x_{1}^{0}=x_{1}$
(ii) $x_{4} \notin A\left(x_{0}\right)$;
(iii) there exists $t \in A\left(x_{0}\right)$ with $t<x_{4}$

Proof. Suppose that x_{4} belongs to $A\left(x_{1}\right)$. Then (ii) is obviously valid. In view of 2.1, the condition (iii) is satisfied.

For proving that (i) is valid we have to verify the validity of the relation

$$
\begin{equation*}
\left(x_{4}(A), x_{4}(B)\right) \vee\left(x_{1}^{0}(A), x_{1}^{0}(B)\right)=\left(x_{1}(A), x_{1}(B)\right) \tag{*}
\end{equation*}
$$

We have

$$
\left(x_{1}^{0}(A), x_{1}^{0}(B)\right)=\left(x_{1}(A), x_{0}(B)\right)
$$

whence
(*)

$$
x_{4}(A) \vee x_{1}^{0}(A)=x_{4}(A) \vee x_{1}(A)=x_{1}(A)
$$

Further, in view of (iii), $x_{4}(B) \geqslant t(B)$. Since $t \in A\left(x_{0}\right)$, we get $t(B)=x_{0}(B)$, Thus

$$
\begin{equation*}
x_{4}(B) \vee x_{1}^{0}(B)=x_{4}(B) \vee x_{0}(B)=x_{4}(B)=x_{1}(B) \tag{2}
\end{equation*}
$$

From $\left(*_{1}\right)$ and $\left(*_{2}\right)$ we conclude that $(*)$ is valid.
118

Conversely, suppose that the conditions (i), (ii) and (iii) are satisfied. From (i) we obtain

$$
x_{4}(B) \vee x_{1}^{0}(B)=x_{1}(B)
$$

Further we have $x_{1}^{0}(B)=t(B) \leqslant x_{4}(B)$, whence

$$
x_{4}(B) \vee x_{1}^{0}(B)=x_{4}(B) \vee t(B)=x_{4}(B)
$$

Then $x_{4}(B)=x_{1}(B)$, therefore $x_{4} \in A\left(x_{1}\right)$,
2.5. Corollary. Let x_{0} and x_{1} be as in 2.1. Then the set $\left\{x \in A\left(x_{1}\right): x \leqslant x_{1}\right\}$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.
2.6. Definition. The interval $[u, v]$ of L is said to have the property (α) if
(i) there exist $u^{0}, v^{0} \in A\left(x_{0}\right)$ such that the relations

$$
u^{0}=\max \left\{x \in A\left(x_{0}\right): x \leqslant u\right\}, \quad v^{0}=\max \left\{x \in A\left(x_{0}\right): x \leqslant v\right\}
$$

are valid;
(ii) $v^{0} \vee u=v$.
2.7. Lemma. Let x_{0} and x_{1} be as in 2.1. Let $z \in L$. The following conditions (a) and (b) are equivalent:
(a) There are elements $z_{0}, z_{1}, z_{2}, \ldots, z_{n}$ in L such that $z_{0}=x_{1}, z_{n}=z$ and for each $i \in\{1,2, \ldots, n\}$ we have
(i) the elements z_{i-1}, z_{i} are comparable:
(ii) if $z_{i-1} \leqslant z_{i}$, then the interval $\left[z_{i-1}, z_{i}\right]$ satisfies the condition (α) :
(iii) if $z_{i-1} \geqslant z_{i}$, then the interval $\left[z_{i}, z_{i}-1\right]$ satisfies the condition (α).
(b) $z \in A\left(x_{1}\right)$.

Proof. Assume that (a) is valid. Then in view of 22 and 2.4 we obtain $z_{1} \in A\left(x_{1}\right)$. Now it suffices to apply induction with respect to n.

Conversely, assume that (b) is valid. Since L is connected, the partially ordered set A is connected as well. It is obvious that the partially ordered sets A and $A\left(x_{1}\right)$ are isomorphic; hence $A\left(x_{1}\right)$ is connected as well. Thus there are elements z_{0}, z_{1}, , , z_{n} in $A\left(x_{1}\right)$ such that $z_{0}=x_{1}, z_{n}=z$ and for each $i \in\{1,2, \ldots, n\}$ the elements z_{i-1}, z_{i} are comparable. Then by using $2.1,2.2$ and 2.4 we conclude that (a) is valid.
2.8. Corollary. Let x_{0} and x_{1} be as in 2.1. Then the set $A\left(x_{1}\right)$ is miquely determined by $A\left(x_{0}\right)$ and x_{1}.

By a dual argument we obtain
2.9. Corollary. Let $x_{0}, x_{1} \in L$ be such that $A\left(x_{0}\right)>A\left(x_{1}\right)$. Then the set $A\left(x_{1}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.

From 2.8, 2.9 and from the fact that L is connected we conclude
2.10. Lemma. Let $x_{0}, x_{1} \in L$. Then the set $A\left(x_{1}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{1}.

Let $x_{0}, x_{1} \in L, x_{0} \leqslant x_{1}$. In view of 2.1 there exists $a\left(x_{0}, x_{1}\right) \in L$ such that

$$
a\left(x_{0}, x_{1}\right)=\max \left\{x \in A\left(x_{0}\right): x \leqslant x_{1}\right\} .
$$

Dually, if $x_{0}, x_{1} \in L, x_{0} \geqslant x_{1}$, then there is $b\left(x_{0}, x_{1}\right) \in L$ with

$$
b\left(x_{0}, x_{1}\right)=\min \left\{x \in A\left(x_{0}\right): x \geqslant x_{1}\right\}
$$

2.11. Lemma. Let $x_{0}, x_{1} \in L, x_{0} \leqslant x_{1}$. Then

$$
x_{1} \in B\left(x_{0}\right) \Leftrightarrow a\left(x_{0}, x_{1}\right)=x_{0}
$$

Proof. Suppose that $a\left(x_{0}, x_{1}\right)=x_{0}$. Hence $x_{0}(A)=x_{1}(A)$ and therefore $x_{1} \in B\left(x_{0}\right)$.

Conversely, suppose that $x_{1} \in B\left(x_{0}\right)$. Then $x_{1}(A)=x_{0}(A)$. From $x_{0} \leqslant x_{1}$ we conclude that $x_{0}(B) \leqslant x_{1}(B)$.

Let $x \in A\left(x_{0}\right), x \leqslant x_{1}$. We get $x(A) \leqslant x_{1}(A)$, whence $x(A) \leqslant x_{0}(A)$. Further, $x(B)=x_{0}(B)$. Therefore $x \leqslant x_{0}$. This yields that $a\left(x_{0}, x_{1}\right)=x_{0}$.

By a dual argument we obtain
2.12. Lemma. Let $x_{0}, x_{1} \in L, x_{0} \geqslant x_{1}$. Then

$$
x_{1} \in B\left(x_{0}\right) \Leftrightarrow b\left(x_{0}, x_{1}\right)=x_{0}
$$

2.13. Lemma. Let $x_{0}, x \in L$. The following conditions are equivalent:
(a) There exist elements $z_{0}, z_{1}, z_{2}, \ldots, z_{n}$ in L such that $z_{0}=x_{0}, z_{n}=x$, for each $i \in\{1,2, \ldots, n\}$ the elements $z_{i}, 1, z_{i}$ are comparable and $z_{i} \in B\left(z_{i-1}\right) ;$
(b) $x \in B\left(x_{0}\right)$.

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is obvious. Suppose that (b) is valid. The partially ordered set B is connected, hence so is $B\left(x_{0}\right)$. Thus there exist $z_{0}, z_{1}, \ldots, z_{n} \in$ $B\left(x_{0}\right)$ with the properties as in (a).

From 2.10-2.13 we obtain
2.14. Lemma. Let $x_{0} \in L$. Then the set $B\left(x_{0}\right)$ is uniquely determined by $A\left(x_{0}\right)$ and x_{0}.

In $2.10, A$ can be replaced by B. Hence 2.14 yields
2.15. Corollary. Let $x_{0}, x \in L$. Then the set $B(x)$ is umiquely determined by $A\left(x_{0}\right)$ and x.

3. Cancellation rule

Suppose that L is a connected partially ordered set and consider direct product decompositions
(1) $\varphi: L \rightarrow A \times B$,
(2) $\varphi_{1}: L \rightarrow A_{1} \times B_{1}$.

Let $x_{0} \in L$. Then from (1) and (2) we can construct internal direct product decompositions
(1) $\varphi^{0}: L \rightarrow A^{0} \times B^{0}$,
$\left(2^{\prime}\right) \varphi_{1}^{0}: L \rightarrow A_{1}^{0} \times B_{1}^{0}$
with the central element x_{0}.
In view of the definition of the internal direct product decomposition we have
(3) $A^{0}=A\left(x_{0}\right), \quad B^{0}=B\left(x_{0}\right)$,
(4) $A_{1}^{0}=A_{1}\left(x_{0}\right), \quad B_{1}^{0}=B_{1}\left(x_{0}\right)$;
further, if $x \in L$ and $\varphi^{0}(x)=\left(x_{1}, x_{2}\right), \varphi_{1}^{0}(x)=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then
(5) $\left\{x_{1}\right\}=A^{0} \cap B(x),\left\{x_{2}\right\}=B^{0} \cap A(x)$.
(6) $\left\{x_{1}^{\prime}\right\}=A_{1}^{0} \cap B_{1}(x),\left\{x_{2}^{\prime}\right\}=B_{1}^{0} \cap A_{1}(x)$.
3.1. Theorem. Let (1') and (2') be an internal direct product of a connected partially ordered set L with the central element x_{0}. Suppose that $A^{0}=A_{1}^{0}$. Then $B^{0}=B_{1}^{0}$. Moreover, for each $x \in L$ we have $\varphi^{0}(x)=\varphi_{1}^{0}(x)$.

Proof. The first assertion is a consequence of $2.10,2.15$ and of the relations (3), (4). Then in view of (5) and (6) we infer that $\varphi^{0}(x)=\varphi_{1}^{0}(x)$ for each $x \in L$.

Let us remark that if $\varphi: L \rightarrow A \times B$ and $\psi: L \rightarrow A_{1} \times B_{1}$ are direct product decompositions of a connected partially ordered set L and if A is isomorphic to A_{1}, then B need not be isomorphic to B_{1}.

Example. Let N be the set of all positive integers and let X be a linearly ordered set having more than one element. Put

$$
L=\prod_{n \in N} X_{n},
$$

where $X_{n}=X$ for each $n \in N$. We denote

$$
\begin{aligned}
A=\prod_{n>1} X_{n}, & B=X_{1}, \\
A_{1} & =\prod_{n>2} X_{n},
\end{aligned} B_{1}=X_{1} \times X_{2} .
$$

Then we have direct product decompositions

$$
\varphi: L \rightarrow A \times B, \quad \psi \rightarrow A_{1} \times B_{1} .
$$

A is isomorphic to A_{1}, but B fails to be isomorphic to B_{1}.
Further, the notion of the internal direct product decomposition can be used in group theory (where the central element coincides with the neutral element of the corresponding group); cf., e.g. Kurosh [3], p. 104. The result analogous to 3.1 does not hold, in general, for internal direct product decompositions of a group.

Example. Let X be the additive group of all reals, $Y=X, G=X \times Y$. We put

$$
\begin{aligned}
& X^{0}=\{(x, 0): x \in X\}, \\
& Y^{0}=\{(0, y): y \in Y\}, \\
& Z^{0}=\{(x, y) \in G: x=y\} .
\end{aligned}
$$

Then $Y^{0} \neq Z^{0}$. The group G is the internal direct product of X^{0} and Y^{0}, at the same time, G is the internal direct product of X^{0} and Z_{0}.

We conclude by remarking that the assumption of connectedness of L cannot be omitted in 3.1 .

References

[1] J. Hashimoto. On direct product decompositions of partially ordered sets. Ann, of Math. 5 f (1951), 315-318.
[2] J. Jakubí, M. Csontoová: Convex isomorphisms of directed multilattices. Math Bohem 118 (1993), 359378
[3] A. G. Kurosh: Group Thoeory. Third Edition, Moskva, 1967 (In Russian.)
Authors' addresses: Ján Jakubúk, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia, e-mail musavke@mail. saske. sk, Mária Csontóová, Katedra matematiky, Stavebná fakulta TU, Vysokoskolská 4, 04200 Košice, Slovakia.

[^0]: ${ }^{1}$ Supported by Grant GA SAV 2/5125/98.
 ${ }^{2}$ Supported by Grant 1/4879/97.

