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Abstract. We give a definition of uniform PU-integrability for a sequence of /i-measurable 
real functions defined on an abstract metric space and prove that it is not equivalent to the 
uniform p-integrability. 
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INTRODUCTION 

In [4] we gave the definition of PU-integral on a suitable abstract metric measure 
space X and proved that this integral is equivalent to the ^-integral. Moreover, we 
gave an example of a non euclidean space verifying the previous results. In this 
paper, we give the definition of uniform PU-integrability for a sequence {fn}n of 
real functions on X and prove that this concept is not equivalent to the uniform 
jU-integrability. Then, given a real function / on X, a suitable sequence {/„}n 

converging to / is defined and some conditions on / are given for {fn}n to be 
uniform PU-integrable. 

PRELIMINARIES 

In this paper X denotes a compact metric space, M a cr-algebra of subsets of X 
such that each open set is in M, n a non-atomic, finite, Radon measure on M such 
that 

(i) each ball U(x, r) centered at x with radius r has a positive measure, 
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(ii) for every x in X there is a number h(x) e R such that n(U[x,2r]) ^ h(x) x 
IJ,(U[x,r]) for all r > 0 (where r7[z,r]) is the closed ball), 

(iii) n(dU(x,r)) — 0 where 8U(x,r) is the boundary of U(x,r). 
We introduce the following basic concepts. 

Definition 1, A partition of unity (PU-partition) in X is, by definition, a finite 
collection P = {(#i, £i)}?=i where ai; £ X and 0» are non negative, ^-measurable and 

v 
/.-integrable real functions on X such that ]£ 0;(a;) = 1 a.e. in X. 

Definition 2. Let S be a positive function on X. A PU-partition is said to be 
<5-fine if S6i = {x € X: 0<(a;) ^ 0} C (Tfe,^(z;)), « = 1,2,... ,p. 

Definition 3. A real function / on X is said to be PU-integrable on X if 
there exists a real number I with the property that, for every given e > 0, there is a 

p 
positive function 5: X —> R such that | J2 f(xi) • j x 8i&jj, — / |< e for each i-fine 

PU-partition P = {(&i,Xi)}p
i=l. The number I is called the PU-integral of / and we 

write I=(PV)Jxf. 

Definition 4. A sequence {fn}n of PU-integrable functions is uniformly PU-
integrable on X if for each e > 0 there exists a positive function 5 on X such that 

ІE /.<*> / ,d/.-(PU) / /» < e 

for all n, whenever P = {(0j,£i)}; is a <5-fine PU-partition in X. 

Definition 5. A sequence {/»}n of real functions on X is a (5-Cauchy sequence 
if for each e > 0 there exist a positive function 6 on X and a positive integer n such 
that 

|X>(*i) / 0.dA.-£/m(*.) / ftdJ <e 
! " JX j Jx I 

for all m,n>-n and for each <5-fine PU-partition P = {(8it »;)};. 

Definition 6. A sequence {fn}n of /j-integrable functions is uniformly /i-
integrable on X if for each e > 0 there exists a positive integer k such that 

L \U\dn < e 

for all n, where A% = {x € X: |/„(ir)| > fc}. 
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Defini t ion 7. A real function / has small Riemann tails (sRt) if for each e > 0 

there exist a positive integer n and a positive function 5 on X such that 

I £/**.(*.)/ W/i < є 

for all n >. n whenever P = {(Si, Xi)}i is a (5-fine PU-partition in X , .4n = {x € X: 

\f(x)\ > n} and XAn is the characteristic function of An-

Defini t ion 8. A function / has really small Riemann tails (rsRt) if for each 

e > 0 there exist a positive integer n* and a positive function 5 on X such that 

| .£/(*)//< dfi\ < e 

whenever P = {(9i,Xi)}i is an An. 5-fine family, e.g. S0i C U(xi,5(xi)), £0. (a ; ) ^ 1 

a.e. in X and xt e An*. 

We observe that if / has rsRt then / has sRt but the converse is not usually true. 

PART I 

P r o p o s i t i o n 1. Let {fn} be a sequence of real functions defined on X such that 

(i) fn is PU-integrabie on X for all n, 

(ii) {fn(x)}n converges pointwise to f(x) on X, 

(iii) {fn}n is uniformly PU-integrabie on X, 

then f is PU-integrabie on X and 

( P U ) / / = l i m ( P U ) / / „ . 
Jx n Jx 

P r o o f . Let e > 0, there exists a positive function 5 on X such that 

IE/»(*,) / ^ - ( p i J ) / / » | < ! 
| f-j Jx Jx \ s 

for all n, where P = {(0J,x0}£_i is a fixed 5-fine partition and by (ii), there exists 

a positive integer n* such that 

I E/»(*.) / *.d/*-E/m(*.) / ^ < | 
I ~ J Jx ~ft Jx I d 

for all m,n >• n*. 



Consider 

|(PU) / /„ - (PU) / / J 
I Jx Jx \ 

<|(PU) / / „ - £ / „ ( * { ) / ø î d J 
I Jx JГJ •!* I 

+ 1 £/»(*.) / «.<!*•-£/«(*.) / *.dJ 
l è í j * è í Jx \ 

+ | £ / m W ) / « î d A . - ( P U ) / 
I fcí •!* •/* 

e є e 

< 5 + + = £ 

for all w,re > n*. 

So the sequence {(PU) j x f n } n is a Cauchy sequence and let a be its limit. For 
each s > 0 there is a positive function if on X such that 

I £/»(*,) /f , -(pu)/ /„ |<! 
; JX І X 3 

for all n, whenever P = {(0,,a;;)}. is a <J-fine PU-partition, and there is a positive 
integer n such that 

(PU) / /„ - o 
I i x 

and 

I £/(--.) / ftd/.-£/„(*.) / Ø.dJ < % 

for all n > n. 
Hence 

|£/(^)£^d/i-«| 

<• !£/(*<) / ^-£/»(*<) / ^ 1 
I 7 Jx ~~ Jx \ 

+ !£/»(*.) / ^ - (pu) / /»| - |(pU) / /„ - ol < e. 
I i •!* «oc I I i x I 

So / is PU-integrable and o is its PU-integral. 



N o t e 1. We observe that this theorem is not equivalent to the generalized Vitali 
convergence theorem. In fact, if we consider the sequence {/«}«, so defined fn(x) = 0 
if a; 6 (0,1] and fn(x) = In if x = 0, it is easy to verify that it is uniformly jx-
integrable but it is not uniformly PU-integrable. 

Proposition 2. Let {fn}n be a sequence of PU-integrable functions. Then 
{fn}n is a S-Cauchy sequence iS{fn}n is uniformly PU-integrable and the sequence 
{(PU) fx fn}n converges. 

Proof, If the sequence {fn}n is uniformly PU-integrable and the sequence 
{(PU)/_£/„}„ converges, for e > 0 there are a positive function 5 on X and a 
positive integer n s.t. for each m,n> n 

| ( P U ) / / „ - ( P U ) / / J < £ 
I Jx Jx I •i 

and for each 5-fine partition P = {(6i,Xi)}i we have 

|(PU)//»-£/»(*<)/»,dJ<i 
I Jx i Jx I •» 

and 

|(PU) / /m "E/»(*«) / ^ < | -
I Jx j Jx <> Hence 

I E м**) f ^ - E м*-) /x

 e^| < < 
for all m,n>.n and for each d-fme partition P. 

Now, suppose that {fn}n is a <5-Cauchy sequence. 
Let e > 0, there exist a positive integer n and a positive function l o n X s.t. for 

each S-Htie partition P = {(#>,£»)}. and for m,n~£ n, we have 

| ( P U ) / fm-Y]fm(x.{) [ 9iAi\<S-, 
\ Jx i Jx I 3 

|(pu)//-E/^)//*H<I 

lE^w/^M-E^^/^^h? 

aad 
gl#* ,K-



For a fixed S-fine partition P = {(@'i,x'i)}i, consider 

|(PU) / /„ - (PU) / /J 
\ Jx Jx \ 

^\(PV) f fm-'EMx'i) f e'idJ 
I Jx i Jx I 

+ | (PU)//„-£/„( a ; ; ;) /^dJ 
I J X £ Jx I 

+IE-^) / ^ - E ^ ) / e'M <e 

I 7 J x - r ' J x I 

for all m, n >- n. So it follows that the sequence {(PU) fx /„}„ is a Cauchy sequence. 

Now, for e > 0, for each n there is a positive function <S„ on X s.t. 

(*) |(PU) / /„-][>(.*,) / f tdJ<e 
I Jx { Jx \ 

whenever P = {(8i,Xi)}i is a <Sn-fine partition. 

Set So =min {81,82,••.,<5„-i}, then the condition (*) is true for 1 <. n ^ (n — 1), 

whenever P is a <So-fine partition. Choose an integer n0 >• n s.t. 

| (PU) / /„ - (PU) / /J<! 

for all m, ?i ^ no- Set 8% = min{<5, <5n0}; for each n >- no, we have 

|(PU) / fn-J2^(Xi) f didJ 
I Jx f Jx I 

7 JX ; J x I 

+ |(PU) / /„, , -£/-o(*0 / *.dj 
I JX j J x I 

+ | ( P U ) / / „ - ( P U ) / / „ 0 | < « r 
I J x J x I 

whenever P = {(#;,£;)}, is a <5i-fine partition. 

Hence, set 8 = mm{8i,S0}, the relation (*) is true for each n, whenever P is a 

<$-fine partition. D 



PART II 

Let / be a /^-measurable function on X; if {/„}n is the sequence defined so that 

' / ( * ) i f | / ( * ) | < n , 
fn{X) \0 if |/(&)| > n, 

then the following propositions hold: 

P ropos i t i on 3 . The sequence {/„}„ is uniformly PU-integrable iff / has small 

Riemaim tails. 

P r o o f . We observe that the functions fn are u-integrable and by [4] they 

are PU-integrable. So, if {/„}„ is uniformly PU-integrable, by Proposition 1, / is 

PU-integrable and 

(PU) / / = lim(PU) / 7 n . 
Jx n Jx 

Fixed e > 0, there exists a positive function S on X s.t. 

|(piJ)/ / - £ / ( * < ) / < w J < | 
I Jx i Jx I 3 

and 

KPU) / f^J2h(xi) / iåџ\< 

for each n, whenever P = {(&,£»)}» is a <5-fine PU-partition in X. 

Choose n s.t. 

| ( P U ) / ? „ - ( P U ) / / | < ! 

I Jx Jx \ 6 

for each n >. n, and let P\ — {(#i>£;)}i be a Mine PU-partition in X; for n >• n 

consider 

\£fXAn«) jj'i^\ 

= 1 £/(*.)/ «.^-^7„(x.)/e'idJ 
I i J x i Jx I 

< |(PU) / / - E / ( ^ ) / *&J + |(PU) / J„-E7»W) / *.dJ 

+ |(PU) / J n - ( P U ) / / ! < £ , 
I J x JX I 

thus / has small Riemaim tails. 
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Now, suppose that / has sRt, then the sequence {(PU)/X7„} is a Cauchy se
quence. In fact, fixed e > 0, there exists a positive integer n s.t. for m,n>.fl there 
is a positive function <5 on X with the property that if P = {(9i,xi)}i is a Mine 
PU-partition in X, we have 

|(PU) / / „ - ( P U ) / / J 
\ Jx Jx I 

< |(PU) / 7n - £7„(*i) / 0idii + |(PU) / 7m - £7m(*.) / ftd 
I Jx i Jx I I Jx < Jx I 

+ lE/(x«) / ***/*-£7„(*.) / *,dJ 
I 7 JX ; JX 1 

+1E /(*«) j ^ - E /-(Xi) jx °M 

= |(PU) / 7» - £7»fe) / e^l + |(pu) / / - ~ £?-.(*<) / ^ 1 
I Jx j Jx I I Jx J Jx I + I £/**.(*.) / ftdA»| + I £/x,i„>;) / ^ 1 < I 

I ; Jx I I i Jx I 4 

for all m,n>.n. 

Let e > 0, there exist no and a positive function <5i on X s.t. 

|£/XA.(*.)jU<i/.|<! 

for each n >- n§, whenever P is a <5i~fine PU-partition in X. 

Choose n\ > max{n,no} s.t. 

|(PU) / 7„ - (PU) / 7J < I 
I Jx Jx I 4 

for each m,n>.n\, and choose S < <5i s.t. 

|(pu)/x^-E/»M/xftdM[<i 

for 1 <. n <. n-i, whenever P = {(fti^.)}* is a <5-fine PU-partition. 



Moreover, for each <5-fine PU-partition P = {(8i, a;;)}, and for n > n\ we have 

|(PU) / 7„-E/"(^)/^d/u| 
I Jx i Jx \ 

< I E /(*<) / ^ - E ?»(**) / ftd^l 
l ~ « i Jx \ 

+ 1 £/(*<) / fl.d/.-£7„,(*.) / 6M 
I - jx - Jx I 

+ |(PU) / 7„. - £7„ , (*.) / ^ 1 + |(PU) / »̂ " (PU) / K l 
I Jx i Jx \ \ Jx Jx I 

= I E /x*. (**) ŷ  e^\ +1E /XA., (*.) £ *.| 
+ |(PU) / 7m - E 7-. (**> / *<d"l + |(pu) / ?«- (pu) / ?«.I 

I Jx i Jx I I Jx Jx I e e e e 
< i + i + i + i = e, 

which proves the uniform PU-convergence of the sequence {/„}«• D 

Proposition 4. / has really small Riemann tails iff the sequence {fn}n is 
uniformly n-integrable. 

Proof . Set An = {x € X: |/(a;)| > n}, we observe that \j% = J / J and if the 
sequence {fn}n is uniformly /u-integrable then so is the sequence {|/|n}n-

By the generalized Vitali theorem, it follows that 

lim / | /Jd/j = / \f\dn  
n Jx Jx 

and 

Mm / \f\XA„dn = lim / (|/| - | /J)dM = 0. 71 Jx « Jx 

Thus, for each e > 0 there exists a positive integer n s.t. for each n >- rt we have 

y \f\xA„dit<7j, 

and there exists a positive function 5 on X s.t. 

|£l/lx*.(*.) / M A . - / \S\xA,di\ < \ 
I ,: Jx Jx I -



whenever P = {(&i,Xi)}i is a <J-fine PU-partition in X. 
We have 

< |El/I^.T / ftdjU- / l / |x^dJ + / l/lx^dp 
l i Jx ix I Jx 

whenever P is a <S-fine partition. 
Suppose that Pi = {(&'i,x'i)}i is an An <5-fine family [see Definition 8], then it can 

be extended to a <$-fine partition P — {(9i,Xi)}i in X and we have 

I £/(*.) lв,dJ<У;i/(x'i)| /öídм І Ţ Jx I i <!* 

<Ei/ЬЛ^)/ftd^' 

Hence / has rsRt. 
Now, suppose that / has rsRt, then / has sRt and by the previous Proposition 3 

the sequence {fn}n is uniformly PU-integrable; so / is PU-integrable and by the 
results of [4] / is /i-integrable and so the sequence {fn}n is uniformly /x-integrable. 

• 
N o t e 2. By the results of the two previous propositions, we observe that for 

the sequence {fn}n the uniform PU-integrability is equivalent to the uniform p,-
integrability, but in the general case, they are not equivalent [see Note 1]. 
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