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LOCALLY REGULAR GRAPHS 
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(Receíved Noverober 11, 1998 

Abstract. A graph G is called locally s-regular if the neighbourhood of each vertex of G 
nduces a subgraph of G which is regular of degree s. We study graphs which are locally 
r-regular and simultaneously regular of degree r. 
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At the Czechoslovak Symposium on Graph Theory in Smolenice in 1963 [1] 
A. A. Zykov suggested the problem to characterize graphs H with the property that 
there exists a graph G in which the neighbourhood of any vertex induces a subgraph 
isomorphic to H. This problem inspired many mathematical works and led also to a 
certain generalization, namely the study of local properties of graphs. A graph G is 
said to have locally a property P, if the neighbourhood of each vertex of G induces 
a subgraph having the property P. For locally connected graphs let us mention e.g. 
[2] and [4], for locally linear graphs e.g. [3]. A survey paper on local properties of 
graphs was written by J. Sedlacek [5]. 

Here we will study locally s-regular graphs. A graph G is called locally s-regular, 
where s is a non-negative integer, if the neighbourhoods of all vertices of G induce 
subgraphs which are regular of degree s, shortly s-regular. We consider finite undi
rected graphs without loops and multiple edges. The vertex set of a graph G is 
denoted by V(G), the complement of G by G. If A C V(G), then G(A) is the sub
graph of G induced by A. The symbol G\ + G-i denotes the disjoint union of two 
graphs G\,Gj,; the symbol G\ (B Gi denotes the Zykov sum of G\ and G2, i.e. the 
graph obtained from G\ + Gi by joining each vertex of G\ with each vertex of G2 
by an edge. By G\ x G2 the Cartesian product of G\ and G2 is denoted; its vertex 
set is V(G\) x F(G2) and two vertices («i,«2)> (v\,V2) are adjacent in it if and only 
if either m = v\ and «2,«2 are adjacent in G'2, or v,\,v\ are adjacent in G\ and 

481 



«2 = V2- The symbol NG(V) denotes the (open) neighbourhood of a vertex v in a 
graph G, i.e. the set of all vertices which are adjacent to v in G. By Cn we denote 
the circuit of length n. 

By Locreg(r, s), where r is a positive integer and s a non-negative integer, we 
denote the class of graphs which are simultaneously r-regular and locally s-regular. 

Proposition 1. If Locreg(r, s) ^ 0, thenr ~~z s+1 and at least one of the numbers 
r, s is even. 

This assertion is evident, because the conditions mentioned are the well-known 
necessary conditions for the existence of an s-regular graph with r vertices. 

Proposition 2, Let s, k be positive integers, let k be a divisor of s. Then 
Locreg(s + k, s) # 0. 

Proof . Let G be the complement of the disjoint union of s + 2 copies of the 
complete graph Ku with k vertices. Then G e Locreg(s + k, s). D 

Corollary 1. Locreg(s + 1, s) ^ 0 for each integer s ^ 0. 

Corollary 2. Locreg(s + 2, s) ^ 0 for each even integer s~~iQ. 

Proposition 3. If Locreg(ri, s) =̂  0 and Locreg(r2, s) ^ 0, then also Locreg(ri + 
r 2 , s ) # 0 . 

Proof . If Gi e Locreg(ri,s) and G2 € Locreg(r2,s), then the Cartesian 
product Gi x G2 £ Locreg(r! + r2, s). D 

Now we state two lemmas. 

Lemma 1. Let p,q be positive integers such that q ~H p2 - 1. TJien there exist 
non-negative integers a, b such that 

q = ap + b(p+l). 

Proof . Let & be an integer such that 0 ^ b ^ p - 1 and b = g(mod p). Let 
a = (q — b)/p — b. We have ap + b(p + 1) = q. The number a is an integer, because 
q — 6(mod p). Further we have q ~H p% — 1 = (p + l)(p — 1) ~H b(p + 1) and thus 
a = (q — b)/p — 6 > (b(p + 1) — b)jp — 5 = 0. This proves the assertion. D 

Lemma 2. Let p,q be positive integers such that q ~H (2p- l)(p~ 1). Then there 
exist non-negative integers a, b such that 

q = ap + b(2p-l). 
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Proof . Let b be an integer such that 0 < 6 < p - 1 and b + q = 0(mod p). Let 
a = (q + b)/p — 26. The proof that o is a non-negative integer is analogous to the 
proof of Lemma 1. • 

Now we prove some theorems. 

Theorem 1. Let r, s be positive integers such that s is even and r ^ s(s + 2). 
Then Locreg(r, s) # 0. 

Proof . According to Lemma 1 there exist non-negative integers o, b such that 
r = a(s + 1) + b(s + 2). Then the assertion follows from the Corollaries 1 and 2 and 
from Proposition 3. • 

Theorem 2. Let r, s be positive integers such that r is even, s is odd and r ^ 
s(s - 1). Then Locreg(r,s) ^ 0.' 

Proof . Put p = | ( s = 1); then \r ^ (2p — \)(p - 1) and, as r is even, 
according to Lemma 2 there exist non-negative integers a, b such that \r = ap + 
b(2p - 1) = |o(s + 1) + bs and thus r = o(s + 1) + 26s. According to Proposition 2 
we have Locreg(s + 1, s) ^ 0 and Locreg(2s, s) ^ 0 and thus, by Proposition 3, also 
Locreg(r,s) # 0. • ' 

Now we turn our attention to small values of s. 

Proposition 4. Let 0 ^ s ^ 2 and r Js s + 1 and in the case of s = I let r be 
even. Then Locreg(r, s) ^ 0, 

Proof . A graph from Locreg(r,0) is an arbitrary r-regular graph without tri
angles, e.g. the complete bipartite graph K,yr. A graph from Locreg(2,1) is C3 and 
Locreg(n, 1) ^ 0 follows from Theorem 1. Examples of graphs from Locreg(3,2), 
Locreg(4,2) and Locreg(5,2) are successively the graphs of regular polyhedra tetra
hedron, octahedron, icosahedron. Every s ^ 6 is a sum of numbers from {3,4,5} 
and thus Proposition 3 implies Locreg(r, 2) for every r ^ 6. • 

From these results it may seem that Locreg(r, s) 5̂  0 for any r, s which satisfy the 
condition of Proposition 1. We will show an example for which this is not true. 

Theorem 3. The class Locreg(7,4) = 0. 

Proof . Suppose the contrary and let G e Locreg(7,4). Let u be a vertex 
of G. The graph G(NG(U)) is a 4-regular graph with seven vertices. Its com
plement is a 2-regular graph and therefore it is isomorphic either to C3 + C4, 

• or to Cx. Hence G(N9(u)) 5z'C3®Ci or G(NG(u)) =• Cx. Suppose the first 
case occurs. Denote the vertices of G(NQ(U)} by v\,V2,v%,u>i,W2,11)3,11)4 so that 
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ViU2,f2i>3,f3i>i,u,iii>2,«i>2u;3!'"'3W4, w4wi are edges of the complement of G(Na(u)). 
Consider the graph G{NG(VI))- It contains the graph {{wi,W2,w3,w4}) — C"4 

as an induced subgraph and therefore it cannot be isomorphic to C7. We have 
G{NG(VI)) = C~3($C4 and there exist vertices a>i,22,0:3 outside NG(U) which are 
pairwise non-adjacent and each of them is adjacent to i>i,ioi,W2,W3,tU4. (One of 
them is u.) But nowG(A<G('tui)) contains two disjoint independent triples {i>i,i>2>t>3}, 
{xi, 0:2,0:3} and hence it is isomorphic neither to C3 © C4 nor to C7, which is a con
tradiction. As u was chosen arbitrarily, we have proved that the neighbourhood of 
any vertex of G cannot induce C3 ffi C4 and thus it must induce C7. 

Thus let G(Na(u)) S C7. The vertices of G{NG(u)) will be denoted by 
vi,V2,V3,V4,va,i>6)f7 in such a way that vtVi+i for i = 1,...,7 are edges of the 
complement of G(NG(U)); here and everywhere in the sequel the subscripts are 
taken modulo 7. Consider the graph G(NG(vi)) for an arbitrary i e {1 , . . . , 7}. It 
contains the vertices u, v,+2, Vi+3, Vi+4, i>;+5 and does not contain Vi+i and vi+Q. 
As G(NG(vi)) = C7, it contains vertices Wi,xt outside Ne(u) such that Wi is ad
jacent to Vi,Vi+3,Vi+4,Vi+5,Xi and non-adjacent to u, i>i+2 while %i is adjacent 
to Vi,Vi+2,Vi+3,Vi+4,Wi and non-adjacent to «,i>i+5. Consider the vertices Wi for 
i = 1, . . . , 7, Suppose that W{ = WJ for some i and j . This vertex is non-adjacent 
to Vj+2 and adjacent to Vi,Vi+3,Vi+4,Vi+f, and thus j + 2 $ {i,i + 3,i + 4,i + 5}, 
which implies j $ {i + l,i + 2,i + 3,i + 5}. Further, this vertex is non-adjacent 
to Vi+2 and adjacent to VJ,VJ+3,VJ+4,VJ+5; we have i $ {j + l,j + 2,j + 3, j + 5}, 
which implies j $ {i + 2,i + 4,i + 5,i + 6}. Therefore Wi = Wj implies i = j and 
the vertices Wi, • • •, w>7 are pairwise distinct. As Wj is adjacent to v-i,Vi+3, Vi+4, IH+S 
for i = 1,...,7, the vertex Vi is adjacent to W{,Wi+2,Wi+3,Wi+4 for i = 1,...,7. 
Further, it is adjacent to «,i>i+2,i>i+3,t>i+4,t|i+5 and thus its degree in G is at least 
9, which is a contradiction. This proves the assertion. • 
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