Mathematica Bohemica

Jaromír Duda

Tolerances on powers of a finite algebra

Mathematica Bohemica, Vol. 117 (1992), No. 3, 299-304
Persistent URL: http://dml.cz/dmlcz/126279

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

TOLERANCES ON POWERS OF A FINITE ALGEBRA

Jaromír Duda, Brno

(Received December 19, 1990)

Summary. It is shown that any power $A^{n}, n \geqslant 2$, of a finite k-element algebra $A, k \geqslant 2$, has factorable tolerances whenever the power $A^{4 k^{2}-3 k}$ has the same property.

Keywords: Finite algebra, power, factorable tolerance
AMS classification: 08A05

In [3] R. Willard proved that congruences on any power $A^{n}, n \geqslant 2$, of a finite k element algebra $A, k \geqslant 2$, are factorable whenever the power $A^{k^{3}+k^{2}-k}$ has the same property. The aim of this paper is to find an adequate exponent for factorability of tolerances on powers of a finite algebra.

Definition 1. Let $C_{1}, \ldots, C_{n}, n \geqslant 2$, be algebras of the same type. We say that the product $B=C_{1} \times \ldots \times C_{n}$ has factorable tolerances if for any tolerance T on B we have $T=T_{1} \times \ldots \times T_{n}$ where T_{i} is a tolerance on $C_{i}, i \leqslant n$.

Notation 1. Let $C_{1}, \ldots, C_{n}, n \geqslant 2$, be algebras of the same type, $B=$ $C_{1} \times \ldots \times C_{n}$. The elements of B are denoted by x, u, v, \ldots, i.e. $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$, $u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right], v=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right], \ldots$, where $x_{i}, u_{i}, v_{i} \in C_{i}, i \leqslant n$. Let I, J be disjoint index sets such that $I \cup J=\{1, \ldots, n\}$. If

$$
x_{i}= \begin{cases}u_{i} & \text { for } i \in I \\ v_{i} & \text { for } i \in J\end{cases}
$$

then x can be expressed in the form $x=\left[\begin{array}{l}u_{I} \\ v_{J}\end{array}\right]$.

Notation 2. Let x, y, u, v be elements of an algebra B. The symbol $T_{B}(\langle x, y\rangle,\langle u, v\rangle)$ denotes the least tolerance on B containing the pairs $\langle x, y\rangle,\langle u, v\rangle \in$ B^{2}.

Notation 3. Let $C_{1}, \ldots, C_{n}, n \leqslant 2$, be algebras of the same type, $B=$ $C_{1} \times \ldots \times C_{n}$. Denote

$$
\begin{aligned}
\varrho(B)=\left\{\langle a, b, c, d, e, f\rangle \in B^{6} ; \forall i \leqslant n \quad \text { either }\left\langle a_{i}, b_{i}\right\rangle\right. & =\left\langle c_{i}, d_{i}\right\rangle \\
\text { or }\left\langle a_{i}, b_{i}\right\rangle & \left.=\left\langle e_{i}, f_{i}\right\rangle\right\}
\end{aligned}
$$

and, further,

$$
\tau(B)=\left\{\langle a, b, c, d, e, f\rangle \in B^{6} ; \forall i \leqslant n \quad \text { either }\left\langle a_{i}, b_{i}\right\rangle=\left\langle c_{i}, d_{i}\right\rangle, d_{i}=e_{i}=f_{i}, \begin{array}{rl}
& \text { or } a_{i}=b_{i}=d_{i}=e_{i}=f_{i} \\
\text { or } a_{i}=b_{i}=e_{i}=f_{i}, c_{i}=d_{i} \\
\text { or } \left.\left\langle a_{i}, b_{i}\right\rangle=\left\langle e_{i}, f_{i}\right\rangle, b_{i}=c_{i}=d_{i}\right\} .
\end{array}\right.
$$

Lemma 1. Let $C_{1}, \ldots, C_{n}, n \geqslant 2$, be algebras of the same type, $B=C_{1} \times \ldots \times C_{n}$. The following conditions are equivalent:
(1) B has factorable tolerances;
(2) $\langle c, d\rangle,\langle e, f\rangle \in T$ implies $\left\langle\left[\begin{array}{l}c_{I} \\ e_{J}\end{array}\right],\left[\begin{array}{l}d_{I} \\ f_{J}\end{array}\right]\right\rangle \in T$ for any elements $c, d, e, f \in B$, an tolerance T on B and any disjoint index sets $I, J, I \cup J=\{1, \ldots, n\}$;
(3) $\left\langle\left[\begin{array}{l}c_{I} \\ e_{J}\end{array}\right],\left[\begin{array}{l}d_{I} \\ f_{J}\end{array}\right]\right\rangle \in T_{B}(\langle c, d\rangle,\langle e, f\rangle)$ holds for any elements $c, d, e, f \in B$ and any disjoint index sets $I, J, I \cup J=\{1, \ldots ; n\}$;
(4) $\langle a, b, c, d, e, f\rangle \in \varrho(B)$ implies $\langle a, b\rangle \in T_{B}(\langle c, d\rangle,\langle e, f\rangle)$ for any elements $a, b, c, d, e, f \in B ;$
(5) $\langle a, b, c, d, e, f\rangle \in \tau(B)$ implies $\langle a, b\rangle \in T_{B}(\langle c, d\rangle,\langle e, f\rangle)$ for any elements $a, b, c, d, e, f \in B$.

Proof. (1) \Rightarrow (2): Suppose that $\langle c, d\rangle,\langle e, f\rangle \in T$ for a tolerance T on B. By hypothesis $T=T_{1} \times \ldots \times T_{n}$ for some tolerances T_{i} on $C_{i}, i \leqslant n$. Then $\left\langle c_{i}, d_{i}\right\rangle$, $\left\langle e_{i}, f_{i}\right\rangle \in T_{i}, i \leqslant n$, and so $\left\langle c_{i}, d_{i}\right\rangle \in T_{i}, i \in I,\left\langle e_{i}, f_{i}\right\rangle \in T_{i}, i \in J$, for any disjoint index sets $I, J, I \cup J=\{1, \ldots, n\}$. In other words, we have $\left\langle\left[\begin{array}{l}c_{I} \\ e_{J}\end{array}\right],\left[\begin{array}{l}d_{I} \\ f_{J}\end{array}\right]\right\rangle \in$ $T_{1} \times \ldots \times T_{n}=T$.
(2) $\Rightarrow(3)$ is trivial.
(3) \Rightarrow (4) follows from the definition of $\varrho(B)$.
(4) \Rightarrow (5) is evident since $\tau(B) \subseteq \varrho(B)$.
(5) $\Rightarrow(4)$: Let $\langle a, b, c, d, e, f\rangle \in \varrho(B)$. Then

$$
\langle a, b, c, d, e, f\rangle=\left\langle\left[\begin{array}{l}
c_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
c_{I} \\
c_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
e_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle
$$

for some disjoint index sets $I, J, I \cup J=\{1, \ldots, n\}$. If $I=0$ or $J=0$ then the conclusion of (4) holds trivially. In the opposite case we proceed as follows:
(i)

$$
\left\langle\left[\begin{array}{l}
c_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
c_{I} \\
c_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle \in \tau(B)
$$

yields

$$
\begin{array}{r}
\left\langle\left[\begin{array}{l}
c_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle \in T_{B}\left(\left\langle\left[\begin{array}{l}
c_{I} \\
c_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle\right)= \\
=T_{B}\left(\left\langle\left[\begin{array}{l}
c_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle\right) \subseteq T_{B}(\langle c, d\rangle) ;
\end{array}
$$

(ii) further, from

$$
\left\langle\left[\begin{array}{l}
c_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
c_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle \in \tau(B)
$$

we get

$$
\begin{gathered}
\left\langle\left[\begin{array}{l}
c_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle \in T_{B}\left(\left\langle\left[\begin{array}{l}
c_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle\right)= \\
=T_{B}\left(\left\langle\left[\begin{array}{l}
c_{I} \\
d_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
d_{J}
\end{array}\right]\right\rangle\right) \subseteq T_{B}(\langle c, d\rangle),
\end{gathered}
$$

by (i);
(iii)

$$
\left\langle\left[\begin{array}{l}
f_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
e_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle \in \tau(B)
$$

implies

$$
\begin{array}{r}
\left\langle\left[\begin{array}{l}
f_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle \in T_{B}\left(\left\langle\left[\begin{array}{l}
e_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle\right)= \\
=T_{B}\left(\left\langle\left[\begin{array}{l}
e_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle\right)=T_{B}(\langle e, f\rangle ;
\end{array}
$$

(iv) from

$$
\left\langle\left[\begin{array}{l}
d_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle \in \tau(B)
$$

$$
\begin{gathered}
\left\langle\left[\begin{array}{l}
d_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle \in T_{B}\left(\left\langle\left[\begin{array}{l}
f_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle\right)= \\
=T_{B}\left(\left\langle\left[\begin{array}{l}
f_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
f_{I} \\
f_{J}
\end{array}\right]\right\rangle\right) \subseteq T_{B}(\langle e, f\rangle)
\end{gathered}
$$

by (iii);
(v)

$$
\left\langle\left[\begin{array}{l}
c_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
c_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle \in \tau(B)
$$

and so

$$
\begin{aligned}
\langle\dot{a}, b\rangle= & \left\langle\left[\begin{array}{l}
c_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle \in T_{B}\left(\left\langle\left[\begin{array}{l}
c_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle,\left\langle\left[\begin{array}{l}
d_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle\right)= \\
& =T_{B}\left(\left\langle\left[\begin{array}{l}
c_{I} \\
f_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle\right) \vee T_{B}\left(\left\langle\left[\begin{array}{l}
d_{I} \\
e_{J}
\end{array}\right],\left[\begin{array}{l}
d_{I} \\
f_{J}
\end{array}\right]\right\rangle\right) \subseteq \\
& \subseteq T_{B}(\langle c, d\rangle) \vee T_{B}(\langle e, f\rangle)=T_{B}(\langle c, d\rangle,\langle e, f\rangle)
\end{aligned}
$$

by (ii) and (iv).
(4) \Rightarrow (3): See again the definition of $\varrho(B)$.
(3) \Rightarrow (2): Let T be a tolerance on B and let $\langle c, d\rangle,\langle e, f\rangle \in T$. Then evidently $T_{B}(\langle c, d\rangle,\langle e, f\rangle) \subseteq T$ and further $\left\langle\left[\begin{array}{l}c_{I} \\ e_{J}\end{array}\right],\left[\begin{array}{l}d_{I} \\ f_{J}\end{array}\right]\right\rangle \in T_{B}(\langle c, d\rangle,\langle e, f\rangle)$ for any disjoint index sets $I, J, I \cup J=\{1, \ldots, n\}$, by hypothesis (3). Altogether, $\left\langle\left[\begin{array}{l}c_{I} \\ e_{J}\end{array}\right],\left[\begin{array}{l}d_{I} \\ f_{J}\end{array}\right]\right\rangle \in T$ as claimed.
(2) \Rightarrow (1): Let T be a tolerance on $B=C_{1} \times \ldots \times C_{n}$. Denote by T_{i} the projection of T on C_{i}, i.e. $T_{i}=\left\{\left\langle x_{i}, y_{i}\right\rangle \in C_{i}^{2} ;\langle x, y\rangle \in T\right.$ for some $\left.x, y \in B\right\}, i \leqslant n$. The inclusion $T \subseteq T_{1} \times \ldots \times T_{n}$ is trivial. Conversely, let $\langle u, v\rangle \in T_{1} \times \ldots \times T_{n}$. Then there are pairs $\langle c, d\rangle,\langle e, f\rangle \in T$ such that $\left\langle u_{1}, v_{1}\right\rangle=\left\langle c_{1}, d_{1}\right\rangle$ and $\left\langle u_{2}, v_{2}\right\rangle=\left\langle e_{2}, f_{2}\right\rangle$. Choose index sets $I=\{1\}, J=\{2, \ldots, n\}$ and apply the hypothesis (2) to the assumption $\langle c, d\rangle,\langle e, f\rangle \in T$. Then we have $\left\langle\left[\begin{array}{l}c_{I} \\ e_{J}\end{array}\right],\left[\begin{array}{c}d_{I} \\ f_{J}\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{c}c_{1} \\ e_{2} \\ \vdots \\ e_{n}\end{array}\right],\left[\begin{array}{c}d_{1} \\ f_{2} \\ \vdots \\ f_{n}\end{array}\right]\right\rangle=$ $\left\langle\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ e_{n}\end{array}\right],\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ f_{n}\end{array}\right]\right\rangle \in T$. Repeating this process we find that $\langle u, v\rangle \in T$, as required. The proof is complete.

Lemma 2. Let B, C be algebras of the same type, φ a homomorphism from B to C. Then $\langle a, b\rangle \in T_{B}(\langle c, d\rangle,\langle e, f\rangle)$ implies

$$
\langle\varphi(a), \varphi(b)\rangle \in T_{c}(\langle\varphi(c), \varphi(d)\rangle,\langle\varphi(e), \varphi(f)\rangle)
$$

for any elements $a, b, c, d, e, f \in B$.
Proof. The assumption $\langle a, b\rangle \in T_{B}(\langle c, d\rangle,\langle e, f\rangle)$ can be rewritten to

$$
\begin{align*}
& a=t\left(c, d, e, f, b_{1}, \ldots, b_{m}\right) \\
& b=t\left(d, c, f, e, b_{1}, \ldots, b_{m}\right) \tag{*}
\end{align*}
$$

for some elements $b_{1}, \ldots, b_{m} \in B$ and a $(4+m)$-ary term t, see e.g. [2]. Applying φ to the above equations (*) we immediately get

$$
\begin{aligned}
& \varphi(a)=t\left(\varphi(c), \varphi(d), \varphi(e), \varphi(f), \varphi\left(b_{1}\right), \ldots, \varphi\left(b_{m}\right)\right) \\
& \varphi(b)=t\left(\varphi(d), \varphi(c), \varphi(f), \varphi(e), \varphi\left(b_{1}\right), \ldots, \varphi\left(b_{m}\right)\right)
\end{aligned}
$$

which means that $\langle\varphi(a), \varphi(b)\rangle \in T_{C}(\langle\varphi(c), \varphi(d)\rangle,\langle\varphi(e), \varphi(f)\rangle)$, see [2] again.
Notation 4. Let A be an algebra, $n \geqslant 2, p_{1}, \ldots, p_{n}: A^{n} \rightarrow A$ canonical projections, and S a subset of A^{n}. Then $p_{1}^{S}, \ldots, p_{n}^{S}$ denote the restrictions of p_{1}, \ldots, p_{n}, respectively, to S.

Theorem. Let A be a finite algebra. The following conditions are equivalent:
(1) A^{n} has factorable tolerances for any $n \geqslant 2$;
(2) $A^{r(A)}$ has factorable tolerances.

Proof. (1) \Rightarrow (2) is trivial.
(2) \Rightarrow (1): Take $\langle a, b, c, d, e, f\rangle \in \tau\left(A^{n}\right)$. It is a routine to verify that
(i) $\left\langle a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}\right\rangle \in \tau(A), \quad i \leqslant n$;
(ii) $\left\langle p_{1}^{\tau(A)}, p_{2}^{\tau(A)}, p_{2}^{\tau(A)}, p_{4}^{\tau(A)}, p_{5}^{\tau(A)}, p_{6}^{\tau(A)}\right\rangle \in \tau\left(A^{\tau(A)}\right)$;
(iii) the correspondence $\varphi: g \mapsto\left[\begin{array}{c}g\left(a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}\right) \\ \ldots \\ g\left(a_{n}, b_{n}, c_{n}, d_{n}, e_{n}, f_{n}\right)\end{array}\right]$ is a homomorphism from $A^{r(A)}$ to A^{n} which sends $p_{1}^{\tau(A)}, p_{2}^{\tau(A)}, p_{3}^{\tau(A)}, p_{4}^{r(A)}, p_{5}^{r(A)}, p_{6}^{r(A)}$ to a, b, c, d, e, f, respectively.

By hypothesis $A^{r(A)}$ has factorable tolerances and so (ii) implies

$$
\begin{equation*}
\left\langle p_{1}^{\tau(A)}, p_{2}^{\tau(A)}\right\rangle \in T_{A^{r(A)}}\left(\left\langle p_{3}^{\tau(A)}, p_{4}^{\tau(A)}\right\rangle,\left\langle p_{5}^{\tau(A)}, p_{6}^{\tau(A)}\right\rangle\right), \tag{*}
\end{equation*}
$$

by Lemma 1(5). Applying the homomorphism φ to the relation formula (*) we obtain

$$
\langle a, b\rangle \in T_{A^{n}}(\langle c, d\rangle,\langle e, f\rangle),
$$

see Lemma 2. In this way we get that $\langle a, b, c, d, e, f\rangle \in \tau\left(A^{n}\right)$ implies $\langle a, b\rangle \in$ $T_{A^{n}}(\langle c, d\rangle,\langle e, f\rangle)$, which establishes the factorability of tolerances on algebra A^{n}, by Lemma 1(5) again. The proof is complete.

Corollary. Let A be a finite k-element algebra, $k \geqslant 2$. The following conditions are equivalent:
(1) A^{n} has factorable tolerances for any $n \geqslant 2$;
(2) $A^{4 k^{2}-3 k}$ has factorable tolerances.

Proof. Evidently card $\tau(A)=4 k^{2}-3 k$ whenever card $A=k$.

References

[1] S. Burris, R. Willard: Finitely many primitive positive clones., Proc. Amer. Math. Soc. 101 (1987), 427-430.
[2] I. Chajda: Lattices of compatible relations., Arch. Math. Brno 18 (1977), 89-96.
[3] R. Willard: Congruence lattices of powers of an algebra., Algebra Univ. 26 (1989), 332-340.

Souhrn

TOLERANCE NA MOCNINÁCH KONEC̉NÉ ALGEBRY

Jaromir Duda

V clánku je ukázáno, že libovolná mocnina $A^{\boldsymbol{n}}, \boldsymbol{n} \geqslant 2$, konečné k-prvkové algebry A, $k \geqslant 2$, má rozložitelné tolerance, jestliže tuto vlastnost má již mocnina $A^{4 k^{2}-3 k}$.

Author's address: Kroftova 21, 61600 Brno.

