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Summary. We present an easy-to-implement algorithm for transforming a matrix to 
rational canonical form. 
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1* INTRODUCTION 

In this note we show how the Jordan canonical form algorithm of Valiaho [g] 
can be generalized to give the rational canonical form of a square matrix A ove? an 
arbitrary field P. If rriA — P*1 • • -p*' -s the factorization of the minimum polynomial 
of A into distinct monk irreducible factors, our objective is to find a non-singular 
matrix P over F such that 

P - M P = i/i e • • • e f t , 

where 

J*. = - # ( # ' ) © •••ij(p;w<Y 

and whefe the hypercomp&nion matrix H(pe
(
ii) U defined by 

Я(tf y ) = 

(C(Pi) 0 
N C(pi) 
0 N 

{ 

o 
... o 

* 4 

» • 

N C(pi)) 
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There are ey blocks on the diagonal and .AT is a square matrix of same size as C(pi)t 

the companion matrix of Pi, where 

C(p)=x 

/0 0 
1 0 
0 1 

Vo o 

0 -a0 \ 
0 -ai 
0 -aj 

1 -o„-i/ 

if p = xn + a n -i« n " 1 + • • - + axx + a0. 
Every entry of N is zero, apart from the top right-hand corner, where there is a 

1. The overall effect is an unbroken subdiagonal of l's. 
In the special case that p,• = a: — A,-, H(p]%i) reduces to the elementary Jordan 

matrix 
/A, 0 0 \ 

1 A* ... 0 
0 1 ••. 0 

Л.,(A.) = 

o 
\ 0 

0 
0 

A< 

1 

0 

AІ/ 

We present our algorithm in terms of linear transformations. However for 
matrices, the algorithm is easily translated into one which can be used directly by 

any exact arithmetic matrix calculator which works over F and which computes the 
minimum polynomial TUA of a square matrix A and factorizes TTXA as a product of 
monic irreducibles over F[x]. 

Rational canonical forms were first introduced by Frobenius in 1879. (See [3, page 
72] for references to this and other early papers.) 

Of the many modern proofs of the rational form decomposition, typical are the 
ones in Priedberg, Insel, Spence [1, pages 339-354], Pearl [5, pages 157-164] and 
Rotman [7, pages 54-56]. Their proofs are inductive in nature and do not lend 
themselves to immediate computer implementation. 

There is another standard proof based on the Smith canonical form of the matrix 
xl — A} where A = \T\fi -* ^ e matrix of T relative to a basis /? (see Perlis [6, page 
162]). However, computationally the resulting algorithm is limited to matrices of 
small size. 

As i* well-known (see Jacobson [2, page 188]), V becomes a left-.F[ar] module if 
left~F[ar] multiplication is defined by 

/i = /(D(tO, feF[x]rvev. 
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With appropriate changes of terminology, our algorithm generalizes to give a proof 
of the structure theorem for finitely-generated torsion modules M over a principal 
ideal domain R: simply replace V by M, F[x] by R and replace the scalar multipli­
cation (2), defined below, by the left-module multiplication /v , / € R> v 6 M. 

We finish the paper with an example of an 6 x 6 matrix over Z3. 
In the interests of brevity, all proofs are omitted and left as exercises. Most are 

straightforward. 

2. DEFINITIONS 

Let T: V —+ V be a linear transformation over F, with dimV = n. Let m j = 
Pi1 '"Pt* b e the factorization of the minimum polynomial of T into distinct monic 
irreducible factors. We make crucial use of the vector spaces 

NhtPi = I m p f - ^ T ) O Ker Pi(T), 1 $ iI < t, 1 ̂  h ^ b4) 

following Valiaho, who dealt with the special case pi = x — A*. 
In particular N\fPi = Kerp,(T). Then we have the sequence of subspace contain­

ments: 

(1) NUpiD..DNiitP,^{0). 

The following result is important for computing a basis for .Afo>Pl: 
If KerPi(T) = (u\i..., ti r), the subspace generated by tii, ..., u r , then 

NH,Pi = (pf-'CTXtii), • • • .pr-'CTXur)}. 

Let FPi = F[x]/(pi) be the field of residue classes mod p,-. Then in addition to 

being an F-vector space, NhtPi is also an FPi-vector space if FPl-scalar multiplication 

is defined as follows: 

Let / = / + (p,), f e F[x] and v € NhiPi. Then 

(2) fv = f(T)(v). 

Some relevant properties of this scalar multiplication are: 
(i) / = 9 *> Pi \ f - 9 (that is p, divides / - g). 

(ii) Let Uj = degp,. Then 

V = /Twi + • • • + JTWT *> V = J^ ] £ "i*7*^.*)» Ci* € "*• 
i-xl tcO 
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(iii) Vectors uri, ..*, wr in NhtPi are /^-linearly independent if and only if 

/i(T)(wi) + • • + MT)(wr) = 0 =»Pi I A,...,Pi I /r. 

This last implication is in turn equivalent to the statement that 

(3) tin, T(wx), . . . , r 1 ' - 1 ^ ! ) , . . . , uv, T K ) , . . . , T^'-^uir) 

are F-linearly independent. 
We refer to the expanded array (3) as the padded array. It is the means whereby 

in numerical examples, Fp .-basis calculations can be reduced to F-basis calculations. 
Rom property (iii) we have 

,4, w ^ ^ . ^a^, • ̂ '\f"', 
where v(p*(T)) denotes the F-nullity of p*(T). (See Mirsky [4, page 161].) 

The integers VhtPi) 1 ^ - ^ *> 1 ^ h ^ 6,-, form a sequence called the Weyr char­
acteristic (see MacDuffee [3, page 74]). In view of the sequence of containments (1), 
we have for 1 ^ t ^ t, the decreasing sequence of positive integers: 

where ul%Pi = dim* Kerpt(r) = U^T)\ 
degp,-

Telescopic cancellation using (4) gives 

H.W + - + -W. —£j£T-

We mention that this sum in fact equals at) where p*' is the exact power of p« which 
divides the characteristic polynomial chr- (This emerges as a consequence of taking 
characteristic polynomials of both sides of (9) in Section 3.) 

It is helpful to visualize the above sum as a dot diagram formed by a tower of left-
justified rows of dots, where the A-th row from the bottom contains t/htPi dots. The 
height of the tower is 6,-, while the width at the bottom is 7,- = v\iVx. For example 
with 6» = 4 and v\%Pi = V2tPi = 3, uzlPi = UAtPi = 2, we have the dot diagram 

• • Ч.PІ 
• • *<3,P. 

• • • V^PІ 
• • • • • • "I.P. 
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The integers represented by the respective columns of dots from left to right, form 
a decreasing sequence 

6,- = e,i ^ ••• "̂  e,-7i. 

These sequences for 1 ^ t ^ t form the Segre characteristic of T (see MacDuffee [3, 
page 74]). For example, in the above dot diagram, the conjugate partition is e,i = 4, 
e,2 = 4, ei3 = 2. 

The polynomials petJ, 1 < i ^ t, 1 ^ j ^ 7,- are called the elementary divisors 
ofT. 

3. DECOMPOSITION OF V INTO INDECOMPOSABLE T-CYCLIC SUBSPACES 

(Good references for this section are Friedberg, Insel, Spence [1, pages 280-300] 
and Pearl [5, pages 137-164].) 

If v E Vy the T-invariant subspace CT,V of V defined by 

CT,v = {f(T)(v)\f€F[x]} 

is called the T-cyclic subspace generated by v. The minimum polynomial mrtv of 
v is the monic polynomial / of least degree such that f(T)(v) = 0. If v ^ 0, then 
m = deg mTtv > 0 and CT)V has a basis /?: 

v, T( t ; ) , . . . ,T— \v) 

called a T-cyclic basis. If W = CT,V and Tw denotes the restriction of T to W, then 

[Tiv]/? = C(mTtv)-
In the special case where mT)V = p e , where p is a monic irreducible polynomial of 

degree n, Cr.v has another basis /?': 

t>, T(f)> •••, T-^v) 

P(T)(v), TP(T)(V), .... T»-yr)W 

p-HrJW, sv-HrM'), •••. T.-y--(T)(») 
called a canonical basis. Here [Tw]p = H(pe). 

The well-known primary decomposition theorem (see Friedberg, Insel, Spence [1, 

pages 342-343]) states that 

(5) V = Kerp\x(T) 0 • • • 0 Kerp**(T). 
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We will give an algorithm which decomposes each Ker p '̂(T) into a direct sum of 
indecomposable T-cyclic subspaces: 

a 
(6) K«pft-0 = ©Cr,.<,, where m r , , = p? 

;=-

and 6,- = Cii ^ . . . *̂  e,-7i. Consequently in view of (5), we have a decomposition of 
V as a direct sum of indecomposable T-cyclic subspaces: 

(7) V = ©©<*>„. 
t= i ; = i 

Then if /3jy is the canonical basis for CT.V^ and 

(8) fi=\J\Jlki, 
iszljml 

then 0 is a basis for V with the property that 

(9) P> = ©©iST(p?w). 
i=i i = i 

We can now apply the result to the special case T = 7U: Vn(F) —• Vn(-F), where 
Ki(^) is the F-space of n-dimensional column vectors over F, A € Mnxn(F) and 
TA(X) = AX\ If P is the non-singular matrix whose columns are the respective 
members of the basis 0 defined in (8): 

P = [»n|---|vi7l |-..|u,i|-..|w f7 l], 

then 

P-UP-[^X00^'). 
1=1 ; = . 
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4. CONSTRUCTING THE VECTORS vy 

The motivation for the construction of the vectors vy comes from a uniqueness 

result for the elementary divisors, which involves the FPi-vector spaces NhtPi- For 

we see that in any decomposition (6), we must have 

m r = p ; u - - - p f " , 

thereby determining the polynomials pi, ..., pt as the distinct monic irreducible 

factors of mj. Also for each i, 1 ^ i ^ t, if 1 .$ h ^ 6,-, it is easy to prove that NhtPi 

has the FPi-basis 

(ю) P Г Ч I PГ vЧк > 

where en, ..., e,7h are the integers in the sequence e,i, ..., e,-7i which are not less 

than h. 

There are consequently dimF,. NhtPi = VhtPi such integers and hence the number 

of integers e,i, ..., e,7 i equal to h is equal to VhtPi - ^ + i , P i , which depends only on 

T. In other words, for each i, the sequence e,i, ..., e,-7< depends only on T. 

In particular, Kerp,(T) possesses a special type of FPi-basis 

(ii) p?"-1(r)(«n),...>pr''1(r)(^) 

with the property that the vectors (10) with jh = Vh,Pi, form an FPi-basis for Nh,Pii 

1 ^ h ^ 6,. 

In fact such a basis is easy to construct. We start with a FPi-basis for NbifPi, 

extending it to bases for the successive distinct subspaces in the sequence 

-V».,-.C-"C-Vi,-., 

until we eventually reach an FPi-basis for Ker Pi(T) of the required form (11). 

It is then straightforward to prove that the secondary decomposition (6) follows 

as a consequence. (The reader is urged to verify this statement in the particular case 

of the earlier dot diagram. A proof by induction of the general case, should then 

suggest itself.) 

We illustrate the construction of the FPi-basis (11) using the earlier dot diagram: 

here e,i = 4, ei2 = 4, ei3 = 2. 

First choose an FPi-basis pf(T)(v,i), pf(T)(vi2) for N4tPi = N3tPi. Then ex­

tend this to an F p rbasis pf(T)(v,i), pf(T)(vi2)} Pi(T)(vi3) for N2tPi = NhPi. Then 

Kerpf(T) = CTtvix © CT,vi2 ® CT,«iit where rnTtVil = pj = ™Ttvi2 **-<* Mr,** = Ph 
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5. A NUMERICAL EXAMPLE 

Let A Є Л/бxв(Za): 

A = 

/ l O O O O 2 \ 

1 0 0 0 2 1 

0 1 0 0 2 2 

2 0 1 0 1 2 

0 0 0 1 1 1 

M O O O O 1/ 

€ M6x6(23). 

Here mA = p?, Pi = ar3 + x + 2 € F[«], F = Z3) pi(,4) = A2 + yl + 2J6-

Pi(A) = 

/O O O O O 0 \ 

0 2 0 2 1 0 

0 1 2 2 0 1 

0 1 1 0 1 2 

0 0 1 2 2 2 

VO O O O O 0 / 

-».M»-4, « , . - « - . . 

„ - ^ . - n ^ Л ^ . - л „ - " ( P i ( ^ ) ) - « v ( p i O l ) ) _ 6 - 4 
рх(Л) = O, v(Pl(A)) = 6, í/2,P, = г — = —-— - -• 

degpi 

Hence we have a corresponding FPl-dot diagram: 

" 2 . P , 

" l . P i 

We have to find an Fp,-basis p(A)t>n for N2,Pl and extend this to an Fp,-basis 

Pi(^)«u, v12 for iV(piOi)) = Kerpi(7U). 

An F-basis for N(P\(A)) is Fi, . . ., E6, the standard basis for V6(F). Then 

N2,P1 = (Pi(A)Eu • • -,Pi(A)E6) = (Pl(A)E2). 

Thus pi(A)E2 is an FPl-basis for N2,Pl so we can take t>n = F2-

We find the columns of the following matrix form an F-basis for .V(pi(j4)): 
/ l 0 0 0 \ 

0 2 1 0 
0 1 1 1 

0 1 0 0 

0 0 1 0 

\ 0 0 0 1/ 
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We place pi (A)E2 in front of this matrix and then pad the resulting matrix to get 

Ѓ 0 1 1 0 0 0 0 0 2\ 
2 0 0 1 2 0 1 2 0 1 
1 2 0 0 1 2 1 0 1 2 
1 1 0 2 1 1 0 2 0 0 
0 1 0 0 0 1 1 1 0 1 

\0 0 0 1 0 0 0 0 1 1/ 

The first four columns p\(A)E2, Api(A)E2y E\, AE\ of this matrix form an F-

basis for N(px(A)) and hence pi(A)E2, E\ form an FPl-basis for N(pi(A)). So we 

can take v\2 = E\. 

Then Ve(Z3) = N(p\(A)) = CTA,VH © CTA,V12 and joining canonical bases Vn, 

Avn, pi(A)viU Apx(A)vn for CTA}VII and v12, Avi2 for CTAtvl2, gives a basis v n , 

Avxu pi(A)vU} -4pi(-4)vii, i>i2, Avi2 for V6(l3). 

Finally, if P is the non-singular matrix whose columns are the respective members 

of this basis, we can transform A into a direct sum of hypercompanion matrices: 

P-^AP^H^фHfr)^ 

/O 1 

1 2 

0 1 

0 0 

0 0 

\o o 

o o 0\ 
0 0 0 

1 o o 
2 0 0 

0 0 1 

0 1 2/ 

where 

p = 

/O 0 0 0 1 1\ 

1 0 2 

0 1 1 

0 0 

0 0 0 

\0 0 0 

0 

2 

1 1 

1 

0 

1 

0 

2 

0 

1/ 
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