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NEWS AND NOTICES 

SIXTY YEARS OF PROFESSOR FRANTIŠEK NEUMAN 

ONDŘEJ DOŠLÝ, Brno 

An outstanding Czech mathematician, Prof. RNDr. Frantisek Neuman, DrSc, one 
of the leading personalities of Brno's mathematics and a prominent specialist in the 
theory of linear differential equations, celebrated his sixtieth birthday on May 28, 
1997. 

Frantisek Neuman was born in Brno, where he also attended primary and sec­
ondary school. Already as a secondary school student he showed his mathematical 
talent, being twice among the winners of the Czechoslovak Mathematical Olympiad. 
In 1960 he graduated at the Faculty of Science of J. E. Purkyng University (now 
Masaryk University) in Brno and started to work at the Department of Mathematics 
at this faculty. In 1965 he received his Candidate of Science degree (CSc.) and one 
year later he was appointed Associate Professor of Mathematical Analysis. In 1974 
he left university for the Brno branch of Mathematical Institute of the Academy of 
Sciences just established, where since 1991 he has been working as its head. After 
the change F. Neuman has continued in his pedagogical activities at the Faculty of 
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Science by reading special lectures for undergraduate students and has devoted a lot 

of his time to postgraduate students. In 1980 he received the title Doctor of Science 

(DrSc.) and in 1991 was appointed Professor of Mathematical Analysis. 

The scientific activities of F. Neuman are closely connected with the qualitative 

theory of differential equations. This orientation was strongly influenced by Professor 

Boruvka who was his supervisor during postgraduate studies. At the beginning of 

the scientific career F. Neuman concentrated his attention on the second order linear 

differential equations. He proved a series of new results concerning the distribution of 

zero points, periodicity, asymptotic behaviour and extremal properties of solutions of 

these equations. Among these results let us mention the paper [26], where conditions 

are established which guarantee that all solutions of a given second order linear 

differential equation are periodic and an explicit description of periodic solutions is 

offered. These papers attracted considerable attention of mathematical community 

since they reveal a close relationship between qualitative theory of linear differential 

equations, affine geometry and theory of functional equations. 

In late sixties F. Neuman turned his attention to the third and higher order dif­

ferential equations. Using an ingenious combination of algebraical and geometrical 

methods with methods typical for investigation of differential and functional equa­

tions he created in next 20 years a unified theory of global properties of linear differ­

ential equations. This global theory of linear differential equations made it possible 

to resolve several until that time open problems and its results find applications 

in many related mathematical disciplines, as theory of functional and functional-

differential equations. It is rather difficult to describe the basic results of Neuman's 

theory in a few sentences. Let us mention here at least the paper [40] where, using a 

category theory approach, the algebraic structure of global transformations of linear 

differential equations is established, and papers [53, 59] where F. Neuman investi­

gated the problem of global canonical forms of mutually transformable differential 

equations and offered (up to a certain particular exception) an effective criterion of 

global equivalence of two linear differential equations. These papers are valuable also 

from the historical point of view since they reveal the "localness" of investigation of 

linear differential equations in the 19-th century. 

The main results of Neuman's global theory of linear differential equations are 

summarized in the monograph [M2]. This monograph has attracted a considerable 

international attention and became one of the basic references in the field—see the 

recent monograph [E]. 

Recently F. Neuman has been dealing with qualitative properties of functional-

differential equations. From the transformation point of view he investigates alge­

braic and geometrical aspects of this problem. It is also worth mentioning that in 

addition to his fundamental work in the theory of differential equations, F. Neuman 
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has achieved remarkable results in other mathematical disciplines as well. For ex­

ample, the paper [6] gives a complete characterization of the trees whose square is 

a Hamiltonian graph. A graph with this property is now usually called Neuman's 

tree. In the theory of functional equations his papers [49, 50, 51, 74] represent basic 

results for decomposition of functions of two variables into finite sums of products 

of functions of single variables. 

FrantiSek Neuman has been for many years one of the leading mathematical per­

sonalities in Brno. He organizes the seminar on differential equations at Masaryk 

University and acts as a member of Editorial Boards of several international jour­

nals. He also significantly contributes to the organization of Equadiff Conferences 

which are periodically held in Prague, Brno and Bratislava (he was the chairman of 

the Scientific and Organizing committee of Equadiff 9 held in Brno in August 97). 

F. Neuman was supervisor of several postgraduate students who now are well known 

mathematicians. 

Based on his scientific and teaching activities, F. Neuman has obtained many in­

vitations to lecture at universities abroad and to plenary lectures at international 

conferences. He has also obtained several scientific distinctions, among them let us 

mention the Bolzano medal awarded to distinguished scientists by the Presidium of 

the Czech Academy of Sciences. 

On behalf of the whole Czech mathematical community we take the opportunity 

to wish Professor FrantiSek Neuman good health and every success in his personal 

life and his scientific work. 
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