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MAXIMAL INEQUALITIES AND SPACE-TIME REGULARITY 

OF STOCHASTIC CONVOLUTIONS 

SZYMON PESZAT, Krakow, JAN SEIDLER, Praha 

(Received June 18, 1996) 

Abstract. Space-time regularity of stochastic convolution integrals 

J = JQ S(--r)Z(r)dW(r) 

driven by a cylindrical Wiener process W in an L -space on a bounded domain is investi­
gated. The semigroup S is supposed to be given by the Green function of a 2m-th order 
parabolic boundary value problem, and Z is a multiplication operator. Under fairly general 
assumptions, J is proved to be Holder continuous in time and space. The method yields 
maximal inequalities for stochastic convolutions in the space of continuous functions as well. 

Keywords: stochastic convolutions, maximal inequalities, regularity of stochastic partial 
differential equations 

MSC 1991: 60H15 

0. INTRODUCTION 

Let us consider an abstract stochastic semilinear parabolic equation 

(0.1) dX = AXdt + f(t,X)dt + o-(t,X)dW, X(0) = C 

in a Hilbert space H, A: Dom(A) —> H being an infinitesimal generator of an 

analytic Co-semigroup S(t) on H and W an infinite-dimensional Wiener process in 

The research of S. Peszat has been supported in part by KBN Grant No. 2P03A 082 08, 
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H. Investigating regularity (or even only sample paths continuity) of mild solutions 

of (0.1), which are given by the variation of constants formula 

1.2) X(t) = S(t)( + [ S(t- s)f(s, X(s)) ds + í 
Jo Jo 

(0.2) X(t) = S(t)C+ S(t-s)f(s,X(s))ds+ S(t-s)a(s,X(s))dW(s), 
Jo Jo 

one faces the fact that it is the third term on the right hand side of (0.2) that causes 

the most serious problems. It turns out that a thorough understanding of properties 

of the stochastic convolution 

Җt) = I"s{t-
Jo 

s)ф(s)dW(s), ŕ ^ O 

for an operator-valued process 0 is indispensable when dealing with the equation 
(0.1). If the Wiener process W has a nuclear covariance operator then a general pro­
cedure (the so called factorization method), proposed by G. Da Prato, S. Kwapieri 
and J. Zabczyk, is available, see the paper [2] for the additive noise case, i.e. tp = I 
(the identity operator), and [4] or [6], Chapter 7.1, for the general case of an L(H)-
valued process %l>, where L(H) denotes the space of all bounded linear operators in 
H. Using this method it is straightforward to show that, under weak restrictions on 
i/>, the process !? has Holder continuous sample paths in the real interpolation space 
(H, Dom(j4))0,2 for any a < | , see [11], [21]. In applications to parabolic problems, 
H = L'2(D) for a domain D C Ud, and A is given by a 2m-th order elliptic differ­
ential operator in D. Then (H, V)ova(A))a^ is a subspace of the SlobodeckiT space 
W2ma,2(D) and the Sobolev embedding theorem yields that $• is Holder continuous 
in both the time and space variables provided 2m > d. 

Unfortunately, the situation is much more complicated if W is a standard cylin­
drical Wiener process (that is, with the covariance operator / ) . Even in the simple 
case H = L2(]0,1[), ip = I and A = A (the second derivative operator) with homoge­
neous Dirichlet boundary data it can be shown that <P(t) 6 w2<*'2(]0,1[) if and only 
if a < i (see [13], Example 3.1, cf. also [20] for a different proof), but W2a-2(]Q,1[) 
embeds into ^([0,1]) only if a > j . On the other hand, Holder continuity of the 
random field >P was established for many particular choices of the operator A and/or 
the process f, see e.g. [7], [26], [16], [3], [9], [10], [14], [1]. Except for the paper [3], 
where a functional analytic proof (that seems to apply only in the additive noise 
case) was proposed, all other proofs we know are based on the Kolmogorov test for 
sample paths continuity. A new version of this argument was used also in [5] (cf. [6], 
Chapter 5.5) and developed further in [18] to cover stochastic convolutions of the 
form 

(0.3) J(t) = Í S(t-s)Z(s)dW(s), t>0 
Jo 



in L2(]0,1[), where A = A and Z(s), s ^ 0, are now generally unbounded multi­
plication operators in Z,2(]0,1[). Let us recall that multiplication operator valued 
processes appear if the diffusion coefficient a in (0.1) is a superposition operator, 
which is the most common case. 

In the present paper, we aim at establishing the space-time Holder continuity of 
the random field J defined by (0.3) if A is a general 2m-th order elliptic differen­
tial operator in a bounded domain 6 C Rd. We assume that 2m > d as otherwise 
the operators S(t), t > 0, are not Hilbert-Schmidt and the process J need not be 
well-defined in l?(0) (see Theorem 2.1 below for a precise statement). We show 
that J(t, •) e Ws'v((?) for certain s > 0 and p £ ]2,oo[ with p sufficiently large for 
the embedding theorem to imply Holder continuity (see Theorem 2.2). Moreover, 
under stronger assumptions, the same method yields the differentiability of J(t, •) 
and makes it possible to describe the behaviour of J(t, •) on the boundary dG (The­
orem 2.3). Finally, we establish Holder continuity of J in time (Theorem 2.4); as a 
consequence, a maximal inequality for stochastic convolutions in the space of con­
tinuous functions follows. This result seems to be new even in the case d = m = 1, 
& = }0,1[, Z = 1, where we obtain 

E sup \[ S(t-s)dW(s)\ ^ const.T4-2-f 
0<t<T I^ÜOДl) 

for any p > 8 and e € ]0, f - 2[. 
Our results are closely related to those obtained by P. Kotelenez in [14]. He consid­

ered more general pseudo-differential operators in not necessarily bounded domains; 
on the other hand, the results of [14] apply only to stochastic convolutions with an 
L°°-valued process Z, and no maximal inequalities are established there. The case 
of unbounded multiplication operators Z may be of some importance in investigat­
ing stochastic parabolic equations, cf. the paper [18] for some applications of this 
kind. Furthermore, we believe our proofs to be more straightforward and lucid. In 
particular, we avoid the use of the Kolmogorov test, but instead we rely directly on 
the Sobolev embedding theorem, as was first proposed in [12] (cf. also the proof of 
Theorem 3.4 in [6]). 

The paper is organized as follows. In the first section we introduce some notation 
and recall a few facts about Sobolev-Slobodeckii spaces, Green functions and infinite-
dimensional Ito integrals, whilst in Section 2 the main results are stated. In Section 
3, some useful estimates of the Green functions are derived, and Section 4 provides 
proofs of our theorems. 



1. NOTATION AND PRELIMINARIES 

In this section we will introduce some notation and quote some results that are 

frequently used in what follows. 

First, \N will stand for Lebesgue measure on RN. Let Q C R " be an open 

bounded set, let s = k + A for some t £ N and A 6 ]0,1[. By # S ( Q ) we denote 

the space of all functions on Q having fc-th order derivatives which are A-H61der 

continuous on Q. The space t?s(Q) is equipped with the norm 

E l r . „ , Xl , V- \Dvu(x)-D"u(y)\ 
SU£|i? ' 'u(x) |+ V J SUP_ j — - j . 

M<* i e « M=* x-y€Q ' ' 

The L''(Q)-spaces, 1 ^ q ^ oo, are defined in the standard way, let us denote by 

L(Lq(Q),Lp(Q)) the space of all bounded linear operators from Lq(Q) into LP(Q). 

The Hilbert-Schmidt norm of an operator Y e L(L2(Q)) is denoted by | |K|| (HS) . 

li s e N and q e [l,oo[ then Ws-q(Q) stands for the standard Sobolev space. If 

s = k + A, fc 6 f*sJ, A e ]0,1[ then by Ws'q(Q) we denote the Sobolev-Slobodeckii 

space (see e.g. [15], §8.3). Namely, Ws'q(Q) is the space of all u e Wk'q(Q) such 

that 

For further references we recall the Sobolev embedding theorem (see e.g. [25], The­

orem 4.6.1). 

T h e o r e m 1.1. Let Q C RN be a bounded domain with a Lipschitz boundary. 

Let s 6 ]0,oo[, q e ]l ,oo[ and A € [0,oo[. Then Ws'q(Q) <-> VX(Q) provided 

s > A + N/q. 

Throughout the paper & C Rd will be a fixed bounded domain, and 

^ = s/(x,D)= VJ av(x)D", xee, 

a fixed 2m-th order elliptic differential operator. Let {By, j = 1 , . . . , m } be a system 

of boundary operators, 

Bj=Bj(x,D)= VJ bjil(x)D'/, j = l,...,m, xedff. 

M<r3-



We assume: 

(i) d6 is of the class 'if 2">+^ for a A > 0. 

(ii) The coefficients {au} are Holder continuous functions on 0. 

(iii) s? is uniformly elliptic on O; that is, there exists a S > 0 such that 

( - l ) m V_] _„(„)£" ^ -<5|f|2m for all x 6 0 and { 6 Rd. 
M=2m 

(iv) One has 0 < r,- ^ 2m - 1 and {fc>} C 1f 2 m- r ;+ ' ' (6>^) for an n > 0. 

(v) The system {£?,•} fulfils uniformly the complementarity condition on d& (see 

[22], SI, for the definition). 

We will employ many times the following results (see [8], Theorem 1.1, cf. also [23], 

Theorem 2): Under the above assumptions, there exists a Green function G for the 

system {srf, S i , . . . , Bm}. That is, G: ]0, oo[x 6 x (? —> R is a continuous function, 

continuously differentiable with respect to the first variable, and has continuous 

derivatives of orders less than or equal to 2m with respect to the second variable. 

Further, G fulfils 

( 1 1 ) ( | - ^ ) 0 ( V , » ) - 0 in]0,Oo[x_>, 

BjG(; ; y) = 0 on ]0, oo[ x d0 

for any y € G, and 

lim f G(t,x,y)f(y)dy = f(x), x g 0, / _ ' 

Moreover, G satisfies heat kernel type estimates: 

Theorem 1 .2 . For every T > 0 there exist constants C, c > 0 such that 

\D"G(t,x,y)\ ^ crf+H^") expf- c | -^ | 2 m " ^ 

for all t £ ]0, T], a:, ?/ £ ^ , and for any multi-index v, \v\ ^ 2m. 

Here and in the sequel, £>"C? refers to the partial derivatives of the function x i—• 

G?(t,_,3/). 

Let g 6 ]l,oo[, define 

Dom(A ,) = { u e W2m<i(G); BjU = 0 on 80 for j = l , . . . , m } , 

J4,U = _f« for u e Dom(v4,). 

11 



Then Aq is an infinitesimal generator of a C0-semigroup Sg on Lq(e) (see e.g. [24], 

Theorem 3.8.2), and 

(1.2) Sq(t)u(x) = f G(t,x,y)u(y)dy, t € ] 0 , o o [ , x 6 G, ueL"(e). 

The formula (1.2) defines a C0-semigroup S\ on Lx(e) as well, note that Sq(t) = 

Sp(t) on Lq(e) for all q >• p,so we will omit the subscript with no danger of confusion. 

Moreover, (1.2) together with Theorem 1.2 yield that the operators S(t), t > 0, map 

the space l>(0) into L°° (^ ) . 

Let (tt,&, (^t)s^oi P) be a filtered probability space. Let W(t) be a cylindrical 

Wiener process on L2(e). That is, W(t) E L(L2(0), L2(Q)), E(W(t)(h)W(t)(g)) = 

t(h,g) for any t>- 0, h,g £ L2(e), and (W(t)(h))t>0 is a real valued ( ^ ) - a d a p t e d 

Wiener process with covariance \h\\2,Cy Let us fix an orthonormal basis •{ek}k
xL1 

in L2(e) and set Wk(t) = W(£)(efc). Then {Wk} is a sequence of independent 

real valued ( . ^ - a d a p t e d Wiener processes and formally W(t) = J2wk(t)ek- This 

series does not converge in L2(e) but converges almost surely in any Hilbert space 

containing L2(e) with a Hilbert-Schmidt embedding. 

If f: Q x [0,T] — • L(L2(e)) is an (<^i)-adapted measurable stochastic process 

satisfying 

- ' { j f ll£WII(HS)d. < Oo} = l 

then the stochastic Ito integral 

f 
Jo 

£(s)dW(s), t e [ 0 , T ] , 

is a well-defined L2(e)-va\ued process, and 

/ Č(s)dИҶs) = ] Г / Ç(s)ek dИ^(s) i n L 2 ( ^ ) , 

where the series converges in probability. We refer the reader to the books [17], §15 

and §16, and [6], Chapter 4.3, for a systematic exposition of stochastic integration 

with respect to a cylindrical Wiener process. 

Prom now on, we take a fixed T > 0. Let 5 6 [1, oo[, r e [1, oo] and q e [1, oo]. By 

^i,r,q we denote the space of all measurable (^" t)-adapted Lq (^)-valued stochastic 

processes Z = (Z(t),0 < t < T) such that 

f [ - 3 ( j [ \Z(s)\l.l(e)ds^ <™ ifr<oo, 

l-*l«.»* = I 1/4 
M - E e s s s u p | Z ( s ) | [ , ( ( ? J < oo i f r = cc. 
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We say that Z e ^o,*-,? if Z is a measurable ( ^ - a d a p t e d Lq(6)-valued stochastic 

process fulfilling 

p|jf |.?(S)[i,{t,)ds<ooj = l. 

Any function # e Lq(G), q e [2, co], may be viewed as a multiplication operator 

g:L2(0) —>L2*/0H-2>(<?), u >—> S u . 

Note that the Holder inequality implies 

(1-3) l»lz,(Z.2(t-),L»«/<«+a>(t»)) ^ bli»(t-)-

(Here we set 2oo/(oo + 2) = 2.) Consequently, if 2 e ^ V , 2 then 

a t—+ S(t - s)Z(s), s e [ 0 , t ] , 

is an L(L 2 (^))-valued process for each t e [0,T] due to (1.3) and (1.2). 

Finally, throughout the paper we adopt the convention that, for any number q e 

[2, oo\,q stands for the dual index tog/2. That is, q = q/(q—2) and do = 1. Moreover, 

we set q' = 2q. Occasionally, we will denote fx = l /(2m), thus 2m/(2m — 1) = 

1/(1 — u). Let k >. 0 be an integer and let 2m > d + 2k, we define 

2 d ^ ^ f c ) = A ( i - I ) + A , ,(qX 
-2k m \ q' j m 

0 = 0(0), ()(q) = P(q,0), 7(5) = 7 ( 9 , 0 ) . 

^ = 2 ^ ^ ««.»-™^-.^+-;. ^ f c ) = г з д а > 

Note that 

««.*>=if-+-)+i. 
2m \ q) m 

moreover, @(q, k) e ]0,1[ provided q > 6(k). 

2. M A I N RESULTS 

In the first theorem, we present a sufficient condition for the stochastic convolution 

integral to be an L 2 (^)-valued stochastic process. 

T h e o r e m 2 . 1 . Assume that 2m > d and suppose that Z e <^o,r,2 for an 

r € ] - & - , « > ] . Tiien 

/ ||S(t - s)Z(s) | |2
H S ) ds < oo P-almost surely 

Jo 
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for all t e [0,T\. Consequently, the stochastic convolution 

Jz(t) = f S(t- s)Z(s) dW(s), t e [0, T], 
Jo 

is a well-defined L2(ff)-valued stochastic process. Moreover, there exists a constant 

K = K(m, d, r, T) < oo such that 

oSupTE\jz(t)\2
L2{fi)<K\lZfw 

for any Z e ^2,r,2-

Therefore, under the assumptions of Theorem 2.1 we can define the random field 

Jz(t,x)=l S(t-s)Z(s)dW(s))(x), 0<.t <_T, xe G. 

A priori, Jz(t, •) is defined only as an element of L2(G), this means Ad-almost ev­

erywhere. Our next theorem shows that, in fact, the space regularity of Jz is much 

better. Prior to stating the result let us note that, obviously, r > Am/(2m — d) if 

q > 6 and r > •y(q). 

T h e o r e m 2.2. Assume that 2m > d, q e }6,oo], r e ]7(g),oo] and S £ [2,oof. 

Set 
6 _ m(l-/3(g)f) A i _ / m ( r - 2 ) _ _ _ d\ , 

2 q, 

Then for each s e ]0, b[ there exists a constant L = L(q, r, S, s) < oo such that 

(2-1) sup E\Jz(t, •)\6
w..t(tn < £ | Z | ! , r , , 

for every Z G 3"6,T,q- Hence Jz(t, •) e Ws-S(fi) P-ahnost surely, and if S > d/b then 

Jz(t, •) e <£x(<?) P-almost surely for each A £ [0, b - d/S[. 

As a simple consequence of the theorem we have 

Corollary 2 .1 . (\)U2m-d = landZe fl &6,T,q for a certain S > 2d then 
r,q>2 

Jz(t, •) e Vx(<?) for A e [0,1/2 - d/S[ and t e [0,T]. 

(ii) If2m-d> \ and Z e f) &>s,r,q for a certain S > d then Jz(t, •) e ^(ff) 
r,7>2 

for AG [0,1 - d/S[ and t e [0,T[. 

14 



As usual in analogous situations, a local uniqueness argument makes it possible 

to weaken the integrability assumptions upon the process Z. 

Corollary 2.2. Assume that 2m > d, let q e ]8, oo], r e ]j(q), oo], and suppose 

that Z e &o,T,q. Then for any t e [0,T] and A e [0,6[ one has Jz(t,-) e <*fA(7?) 

P-almost surely. 

Varying the proof of Theorem 2.2 we can investigate—under strengthened 

hypotheses—higher smoothness of the function Jz(t,-), namely, we will prove the 

following assertion. 

Theorem 2.3. Assume that 2m> d + 2k for an integer k >- 0. Let q e ]9(k), oo], 

r e ]y(q, k),oo] and 6 e [2, oo[. Set 

Then for each s e ]0, b(k)[ there exists a constant L = L(q, r, S, s) < oo such that 

sup E\D"Jz(t,-)\6
w,.S(e)^LlZf^q 

for all processes Z e &s,r,q and any multi-index v, \v\ ^ k. Hence Jz(t, •) € 

Wk+S-S(7?) P-almost surely, and if 6 > d/b(k) then Jz(t,-) e Vk+X(ff) P-almost 

surely for each A e [0, b(k) - d/S\. 

Note that Theorem 2.2 is a particular case of Theorem 2.3, but we have treated 

the case k = 0 separately because of its special importance. As a consequence 

of the preceding theorem we can show that the stochastic convolution satisfies (in 

the classical sense) some of the boundary conditions that are fulfilled by the Green 

function G. Recall that B\,.. • ,Bm are boundary operators of orders r i , . . . , r m , 

respectively, and BjG(-, -,y) =0 on ]0,T] x dff for any ye 6. 

Corol la ry 2 .3 . Assume that 2m > d+2k for an integer k >- 0. Let q e ]8(k), oo], 

r e ]-y(q,k),oo], S e ]b(k),oo[, and Z e &6,r,q- Then 

BjJz(t, •). = 0 P-aJmost sureJy 

for any t e ]0, T] and j e { 1 , . . . , m} such that r, ^ k. 

Our last theorem deals with the space-time regularity of Jz. It is worth noticing 

that Jz is less regular in time than in the space variables. 

15 



Theorem 2.4. Assume that 2m > d, q e ]0,oo], r G ]7(<j),oo] and <5 € [2. oof. 
Then for each s £ ]0, (1 - /%)r)/(2r)[ there exists a constant M = M(</,r,<5, s) < oo 
such that 

(2-2) -5tJZ(-,;)l^...-0o,Ttx<r)<^|2|!,r,, 

for every Z 6 ^<s,r,,- Consequentiy, Jz(-,-) £ W/s'<s(]0,T[x(9') P-aimost surely. 
Moreover, if 

(2-3) S>T^Wf 

then Jz(;-) e ^A([0,T] xfi) P-almost surely for each A satisfying 

(2.4) 0 < A < i ^ « - ^ . 

Ir o 

After simple calculations we obtain 

Corollary 2.4. If 2m > d and Z e f] &s,r,q for a certain S > 4™£±P then 
r , ,>2 

Jz(-, •) e ^A([0,T] x fi) for any A satisfying 
„ .^ , 1 d d + 1 
0 < A < 2 - 4 ^ - — • 

The estimate (2.2) can be viewed as a maximal inequality for stochastic convolu­
tions. We state this result explicitly since maximal inequalities are very useful. 

Corollary 2.5. Let the assumptions of Theorem 2.4 be satisfied and let (2.3) 
hold. Then for any A fulfilling (2.4) and any K fulfilling 

cfl-(3(q)r d+1 , 
0 < rc<<5 P^- j A 

V 2r <5 

there exists a constant M < oo such that 

I /"' I4 ~ 
15 sup / S(t-s)Z(s)dW(s)\ ^MTKtZfs 

whenever Z e ^s,r,q-

The proofs of the above theorems are postponed to the final section. 
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R e m a r k . Tracing the proofs one can see easily that the particular form of the 
operators s/ and {Bj} has never been used, only the fact that the semigroup S{t) is 
given by a kernel G satisfying the estimates of Theorem 1.2 is relevant. So we can 
treat the case of a (parabolic) system of operators with coefficients dependent on time 
as well, as just such systems are investigated in the papers [8], [23] we have relied on. 
We have contented ourselves, however, with the simplest case of a single operator 
having time independent coefficients not to obscure the basic idea. Moreover, all 
proofs virtually remain valid for a (cylindrical) Wiener process with an arbitrary 
covariance operator; we have chosen the standard cylindrical Wiener process with 
the covariance operator i" as it is, in a sense, the worst possible case. On the other 
hand, the adopted method does not take into account the possible regularizing effect 
of nuclearity of the covariance operator. 

3. AUXILIARY ESTIMATES 

Let k >. 0 be a fixed integer, everywhere in this section we assume that 2m > d+2k 

and q £ [2,oo]. Generic constants independent of x, t are denoted by C; in each 
proof independently. Recall that 6{k), 0{q,k) and i{q,k) are defined at the end of 
Section 1. 

Lemma 3.1 . For ail q e }6{k), co] and p e [l,P{q, k)~1[ there exists a constant 

L\ = L\{q,p) < oo such that 

f\D"G{s,x,-)\2ll,{ff)ds^Llt''<
3^'-

Jo 

for a\\ t £ [0, T], x e &, and any multi-index v with \v\ ^ k. 

P r o o f . Let q' < oo (that is, q > 2). By Theorem 1.2 we have 

j \DvG{8,x,-)\2£.{ff)<is = J ^\D"G{s,x,y)\«' dy^j ** ds 

r* / r / I T - „ I 1 / ( 1 - ' ' ) \ \2v/q' 
<d / , - ( - + M ) - / « M e x p lcg> £ _ V . \ d y \ ds 

«^r—ii-Hiři""-')*] -
S í C 2 i* S-(^)V1™+ÍP/{™I')\( exp ( - c ^ i i / O - M ) ) dzl ^ d.s 

<_C3 fs-Ki-^ds^L^-Ko^. 

17 



The case q' = oo can be treated similarly. D 

Corollary 3.1. Let q € ]9(k), oo] and r e ]-y(q, k),°°i- Then we have 

^ t|£»-G(<-5,Z,Os(*)|l2(r,)ds<L1(g>f)1/?<1^^(*' i)lfflir([0>71.L,(<,)) 

for all t 6 (0, T\, x 6 0, g € Lr([Q, T]; Lq(0)), and any multi-index v,\v\^ k. 

Proof. Note that f e [l,j%,k) -1[ if r > 7(9,*)- Applying the Holder inequal­
ity we obtain 

/ / \D"G(t-s,x,y)g(s,y)\2AyAs 
Jo Jff 

^ f \9(s)\Uff)\D
vG(t - s , x , . ) | | „ w d S 

<Mi'([o,r| ;^(«-))l irG(-'x '-)l|«'([o,t) i^(*)). 

and Lemma 3.1 yields the desired conclusion. D 

Lemma 3.2. Assume that q 6 ]0(A:),oo], p 6 [1,#(9,&)_1[ and a e]0,2m(l -
0(q, k)p) A 2p[. Then there exists a constant L2 = L2(q,p,a) such that 

f \D»G(s, Xl,-)- D»G(s,X2, -)\%,(ff) As < L2t
1-^'k^-"'^\x1 - xtf 

for all Xi,x2 6 6, t G [0, T], and any multi-index v,\v\^k. 

Proof. Note that k + l ^ 2m, thus by Theorem 1.2 and the mean value theorem 
we have 

I Í1 I 
\D"G(s,Xl,y) - D"G(s,x2,y)\ = / DxD»G(s,Xl + T(X2 - xx),y)(x2 - Xl) AT\ 

\Jo I 
^ Cllx2 -Xl\ í\'^+^exJ-c\^+T^-^-yr~rí) AT 

Jo \ s,t I 

^C2s^d+k+l^\x2-Xl\, 
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where Dx stands for the Prechet derivative with respect to the variable x. Take an 
a _ ]0,2m(1 - 0(q, k)p) A 2p\ and set g = a/(2p). Then _ 6 ]0,1[ and 

\D"G(s,x2,y)-D»G(s,xl,y)\ 

= \DvG(s,x2,y) - D"G(s,xuy)\' \D"G(s,x2,y) - D»G(s,Xl,y)\l-g 

^Cl\x2-x1\
gs^d+k+l^{\DvG(s,x2,y)\1-e + \DvG(s,x1,y)\

1-g} 

^ C 3 | x 2 - _ 1 | ^ - ( d + f c + e » " { e x p ( c ( e - l ) | ^ = ^ | " ) + 

+ e x p ( C ( _ - l ) | ^ | 1 / < , " , ) } . 

Assuming for simplicity that q > 2 we obtain 

J \D"G(s, _2, -) - D"G(s, *i, -)\%(C) As 

/
t r r / , „ i l / ( l - i _ ) \ -\2P/I' 

5_ ( d + ,+_ ) p / m ^ e x p / ' ( e _ _ ) | J L | J Ay J As 
-=: d\x2 -a_ |« f _-/»(«.*)P-"'/'B As, 

and it remains to observe that /?(<_. fc)p + a/(2m) < 1 due to the choice of a. • 

Corollary 3.2. Let _ e ]6(k),oo], r e]-y(q,k),oc], and a e]0,2m(l-(3(q,k)r) A 
2r[. Then we have 

y | [D"G(t- s ,_1 , - ) -D1 '6 ' (*-5,a ; 2 , . ) ] s( s) |2 , { t f ) d s 

^ L^a)1'^-^-*/^) \Xl-XtfF\9\l^nL,m 

for all xux2 £ ( ? , ( _ [0,T], 9 6 £r([0,_r];__,«(_?)), and any mu.ti-index f with 
\"\ ^k. 

Lemma 3.3. Let q e ]6,co] and p g [1,/?(_)-![. Then there exists a constant 
L3 = L3(q,p) < 00 such that _, 

fh\G(s,x,-)\2
L

P„l{ As <_ Lsh'-eM" 
Jo 

for aj.„ e 0 and he [0,T]. 
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Proof. From Theorem 1.2 we obtain easily 

J \G(s, x, .) |*, ( e ) ds^dj s~0^ As, 

and the desired estimate follows. D 

Corollary 3.3. Let q e ]6, oo], r e ]f(q), oo]. Tiien one has 

l-t+h 
J \G(t + h - s,x, -)g(s)\2

L2{ff) ds < L3(q,f)i^\g\l,.^nL,,(ff))h'-1-'3M^ 

for allxeff,te [0, T[, h 6 [0,T -1] and for any g e Lr([0, T]\ L"(ff)). 

Lemma 3.4. For arbitrary q 6 ]<9,oo], p e [l,/%)_1[ and a e ]0,1 - 0(q)p[ 
there exists a constant L4 = L4(q,p, a) < oo such that 

j \G(s + h, x, •) - G(s, x, -)|2L
P,, [ff) ds ^ Lit1-"-^" ha 

for allxeff,te [0,T[ and he[0,T- t[. 

Proof. From (1.1) and Theorem 1.2 we have 

\~^G(v,x,y)\ = \^G(v,x,y)\ 

^ Civ-1-1" exp ( -c\X-^ 

for all x,y e ff,v e [0,T]. Hence 

dr 
rh 

s=C 2 / (s + r)-1-d'idr<iC2hs-1-d'i. 
Jo 

Take an a e ]0,1 - »%)p[ and set g = a/(2p). Then 

\G(s + h,x,y) -G(s,x,y)\ 

<Cjfc««-«<1+*«){|G(«,*,»)|1-« + |G(- + fc,-!Iv)|--*} 

/ | ^ _ „ |i/Ci-/0> 
<; Cih»r*-*»uQ \c(g - l) — 1 

+ e,/.*s-«<1+<w(s + ft)-*1-*)"*expfc(e-1)I,*"1? [1/( " '1 
\ I (a + n r I / 

-./i(*,ar,»)+/3(s,*»»)-

|G(s + ft,se,V)-G(s,x,y)\= \f ~G(s+ r,x,y)dr\ 



ii/(i-ř<) 
ds 

L*'(ff) 

First, 

<_ C2/h2™ /" a-2*-9"* exp L(Q ~ 1) 

<iC4h
a f s - Q - " ( ^ d s 

Jo 

and the last integral is convergent by the choice of a. Further, 

/ \h(8,x, -)\%w ds <: C-0h
a J s-2«(i+Md)(a + h )-p_-.-2„_+2W_/^ d s 

= C0h
a I s-° ( 1+'J")(s + /,)-««>'>+»«'». ds = h. 

Jo 

Note that and - 0(q)p = ud{a - (1 + 2/g)p} < 0, thus we have 

s - a ( l + „ M ) ( s + ft)-/3(g)p+_^ ^ s-a(l+_J.)s-(J(,)p+_<iM _ --_-/%)p_ 

Hence 

h^C0h
a f S-O-P(I)P ds 

Jo 

and, since a + /J(.)p < 1, the integral is finite, which completes the proof. • 

Corollary 3.4. Let } £ ]«,»], r S ]7(9), oo] and a 6 ]0,1 - 0(q)r[. Then we 
have 

Jj(G(t + h-s,Xr)_G(t_s^.))g{s)^ds 

« Lt{q,?,ay/*t«--)/*-f>M \g\i,.([QtT]]L„W)h
a^ 

for all t £ [0,r[, h € [0 ,T - t], x £& and for any g _ Lr([0,T]; _*(_*)). 
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4. PROOFS 

Proo f of T h e o r e m 2.1. For every u e L2(G) one has 

[S(t-s)Z(s)u}(-) = J G(t-s,;y)Z(s,y)u(y)dy. 

Hence (see e.g. [19], Theorem VI.23) 

||S(< - s)Z(s)\\2
{m) = \G(t - s, -, 0.7(5, • )&(„„„ . 

This yields 

J \\S(t-s)Z(s)\\2
HS)ds = J J^JjG(t - s,x,y)\2 dx^\Z(s,y)\2 dyds 

^rx(// t- s )" /m^(-^i^i l / ( ]" ))<te) |^ ' j' ) | ad !'ds 

^ C , At-s)-rf/(2m)|Z(5,0|2
L2(tf )ds 

Jo 
/ ,T \ 2/r / ,-T \ 1/^ 

< C , ( / \Z(s,-)\lHtf)ds) / s -^/( 2™) d s 

and it remains to note that df/(2m) < 1 provided r > 4m/(2m - d). If Z G ^2,r,2 
then 

E\JZ(t)\\He) =E J \\S(t - s)Z(s)\\2
(lis) ds < C2E\Z\l-{[onL,{e)) 

by the preceding estimate. D 

The proofs of Theorems 2.2 and 2.3 are based on the possibility to switch between 
the Hilbert space approach to stochastic evolution equations and the random fields 
setting, namely on the following lemma. 

Lemma 4.1. Let B(t) be an (^t)-adapted one-dimensional Wiener process on 
n. Let ip: [0,T] x Q —> L2(6) be an (^t)-adapted measurable stochastic process 
satisfying 

(4.1) E [ |v(a)li»(t-)ds<oo, 
Jo 
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and such that for \d-almost every x e G, (<p(s,uj)(x), 0 < s ^ T) is a well-defined 

real valued (^ t ) -adapted measurabie stochastic process. Define 

Kt:nx<?^R, (u>,x)t—¥ f <p(s)(x)dB(;), 0<t<^T. 
Jo 

Then 

(4.2) / <p(s) dB(s) = Kt in L2(n x G) 
Jo 

for every t £ [0,T]. 

P r o o f . Fix t € [0, T]. First, note that the definition of Kt is correct, since (4.1) 

implies 

\d{x eG; E f \<p(s)(x)\2 ds = oo} = 0. 

Hence Kt(-,x) is well-defined for A^-almost every x e G, and Kt G L2(n x G). The 

assertion (4.2) is obvious if <p is a step function. The general case may be proved by 

a standard approximation argument. • 

Let Z satisfy the assumptions of Theorem 2.2. By the definition of the stochastic 

integral we have 

Jz(t, •) = ] T f S(t - s)Z(s)ek dWk(s) in L2(I2; L' 
k=iJo 

{<?))• 

Hence there exists a subsequence {ln} such that for Arf-almost every x e ff, 

Jz(t,x)= lim Y \ \ \ S(t-s)Z(s)ekdWk(s))(x) P-almost surely. 
"-^°° k=1 Wo ) 

Further, we claim that the series 

£ / [S(t-s)Z(s)ek](x)dWk(s) 
k=iJo 

converges in L2(n) for A^-almost every x € 0. Indeed, 

f^E f \(G(t-s,x,-)Z(s,-),ek(-))\
2ds = E f \G(t - s,x, -)Z(s, -)\\Hff) ds < oo 

k=i Jo Jo 
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by Corollary 3.1, so the independence of {Wk} yields 

E J2 / [S(t-s)Z(s)ek](x)dWk(s) =zZE |[5(t-s)Z(*)«](*)|2ds 
k=n

 Jo k=n J° 

= lZE I \( G(t - s,x,y)Z(s,y)ek(y)dy\ ds 

= TE \(G(t-s,x,-)Z(s,-),ek(-))\
2ds 

1__ Jo '.n-
-í-0. 

Consequently, by Lemma 4.1 we obtain 

Lemma 4.2. Let 2m > d, q G ]9,oo], r G h(q),oo] and Z G -*1*,-,-- Then for 
each t G [0,T] there exists a measurable set JV(t) C ̂  such that AdM'M) '= 0 and 

P{Jz(t,x) = JT f[S(t-s)Z(s)ek}(x)dWk(s)} = l 
k=iJo 

for every x G 0\jY(t). 

Lemma 4.3. Suppose that 2m. > d, let q e ]8,oo], r G ]7(<z),oo], and a G 
]0,2m(l - j3(q)f) A 2F[. Then there exists a constant L5 = L5(<7, r, (5, a) < oo such 
that 

-S|J*(«,»i) - Jz(t,x2)\
s ^ LsT^-^-^^^lZH^xi -x2\

aS'^) 

for any Z G ̂ V , , and for all * € fO, T], xX) x2 6 6 \ Jf(t). 

Proof . Proceeding as in the proof of Lemma 4.2, using the Burkholder-Gundy 
inequality and Corollary 3.2 we obtain 

E\Jz(t,xi)-Jz(t,x2)\
5 

= EFT f {[S(t - s)Z(s)ek](xi) - [S(t - s)Z(s)ek](x2)}dWk(s)\ 
\k=iJo 

* ClE(J -5l[5(* - -)-*M--K*l) - [S(t - s)Z(s)e,](i2)|
2 ds 

= CiE (J\[G{t - s,x,, •) - G(t - s,x2, -)}Z(s, -)\lHff) d 

^ CtE [L^r^fl-rt^-^-^m^ |^|2,.([0,r];L„u>-))|.x1 - X2\«l 

and Lemma 4.3 follows. 
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P r o o f of T h e o r e m 2.2. First, using the above procedure and Corollary 
3.1 we get 

E\Jz(t,-)\{S(ff) = J^E\Jz(t,x)\sdx 

^CiLEOflG{t~s'x'')z(s'')|2L2(<?)ds) dx 

$ C2\\Zl{r,r 

Now, let s e ]0,6[, where 6 is defined in Theorem 2.2. Then one can choose an 
a e ]2fs, 2m(l - f3(q)r) A 2f[. Lemma 4.3 and the Fubini theorem yield 

íff̂ îľ"-̂  ЗüJe \x - y\d+sS 

CsiZfs,r,q JJo \x - rf***-*-™ dxdy. 

Since S(-s+a/(2r)) > 0 the double integral is finite, therefore there exists a constant 

L < oo such that 

E\Jz(t,-)\w.,,(ff)^L\Z\\,r,q, 

which proves (2.1). Now note that if S > d/b and A 6 [0, b-d/S[ then one can choose 

an s e }d/S + A,6[. Consequently, Ws's(0) <-t Vx(0) by Theorem 1.1. D 

P r o o f of C o r o l l a r y 2.2. Fix A 6 [0,6[ and find S € [2,oo[ such that 

A + d/S < b. Define stopping times TN, N e N, by 

TN(u)=mf{te[0,T]; J \Z(s,;U>)\r
L,(ff)ds2N}, 

with the convention inf 0 = T. Setting 

ZN(8,;u) = X{rN(„)>s}Z(s,;u>), NeK 

we can easily see that ZN 6 ^ V , , , thus Jz"(t, •) 6 Vx(ff) F-almost surely for any 

fixed t 6 [0,T] due to Theorem 2.2. Moreover, let (2N = {w; w ( w ) = T } , then for 

any t e [0,T] one has 

JZN (t, •) = Jz(t, •) P-almost surely on ON 

according to a well known property of stochastic integrals. Obviously, 

P(n\ | J 12A,) =0 
N>.1 

by the choice of the process Z, and Corollary 2.2 follows. D 
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Proof of T h e o r e m 2.3. As usual, we denote by 3)(ff) the space of all 
•^'-functions with compact supports in ff, and by &'(ff) its dual space (i.e., the 
Schwartz distributions on ff). As was already mentioned, the proof proceeds along 
the lines of the proof of Theorem 2.2, so we will discuss only the differences. 

Fix t _ ]0,T], a multi-index v with \v\ < k, and a process Z _ S^s^.q- Let us 
define operators ms e L(L2(ff)) by 

msf = J^D"G(s,;y)f(y)dy, f E L2(ff). 

Then 

E f ||m,_.Z(a)||fHS)d.<oo 
Jo 

by the same argument as in the proof of Theorem 2.1, so we can set 

M(t,-)= J mt-sZ(s)dW(s). 
Jo 

Repeating the proof of Lemma 4.2 we find a set § C ff such that \a(<S) = 0 and 

P{M(t,x) = V / [mt-sZ(s)ek](x)dWk(s)} = 1 
k=iJo 

for any x £ ff\S. We aim at proving 

(4.3) P{D"Jz(t, •) = M(t, •) in 9>'(ff) } = 1. 

To avoid clumsy notation, we verify (4.3), with no essential loss of generality, only in 
the case v = (1,0,... ,0). Let <p _ 9(ff) be arbitrary but fixed, set e = (1,0,..., 0) £ 
Ud and find h0 > 0 such that 

supp(^C f] (ff + he). 
IM<ho 

First, note that 

(4.4) lim [ Jz(t,x)'p{x + he)~ip(x) dx= [ Jz(t,x)D^(x)dx inL
2(n) 

h^0jff ft Jff 

by the dominated convergence theorem. Moreover, for h e [-ho, ho] one has 

ie)_ 

h !. JzЏtЯ)Ф±MzÆ.åx 

= \ \ j JZ(t,x-he)<p(x)dx- í Jz(t,x)p(x)dx\ 

f Jz(t,x-he)-Jz(t,x) 
= I i jí i—'-<p(x)dx. 
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Further, we proceed as in the proofs of Lemma 4.3 to obtain the following estimates: 

Jz(t,x-he)-Jz(t,x) ,_.. J , , . I2 

' + M(t,x)\tp(x)dx\ 

>2 

+ M(t,x)\ dx 

Һ 

I J z ( t , x - / i e ) - J z ( t , x ) 
< MЪ{o) / j 

<**«/.-Êiľ/.{ 
/l 

G ( . - a , x - f t e , y ) - G ( t - . , x , y ) 
/Í 

MW/Í|\ 
+ D 1 / G ( t - s , x , y ) p ( s , y ) e f c ( y ) d y d w _ ( s ) dx 

f'| f G ( t - s , x - f c e , - ) - G ( t - s , x , - ) 
ft 

1 I 2 

+ D " G ( í - s , x , - ) >Z(s,-) dsdx 
) \L*{0) • 

. .. | 7 | . / / • t l G ( t - . , x - h e , - ) - G ( . - . , x , - ) 

i_r 

+ D " G ( t - s , x , - ) dsdx. 
llY(<?) 

Obviously, 

l i m { ^ 
h-H) ( /l 

for any x,y € ^ , s G ]0,T] and by the mean value theorem we have 

H m „ v . , x - / . e , y ) - G ( . , x , y ) + _ „ G ( s ^^ ÿ ) , Q 

, G ( £ l x _ _ _ / t e , y ) - G ( s , x , y ) + I 

ft 

_ ( „ + 1 ) M _ ™ , , e x p , _ c , _ _____ + e x p - c _ c | x - ^ e - y | " \ + e x D ( _ c [ _ j _ _ y | 

for a _• £ ]0,1[- S° applying the dominated convergence theorem twice we obtain 

f ft\G(s,x-he,)-G(s,x,-) _„__, , f , , 
lim / / M - 3 y - - - - - + _>"G(s ,_ . ) dsdx = 0. 
h->oj0Jo I " IL'I'(C) 

This yields 

(4.5) hm ]ff J z ( t , x ) y ( a + ^ " y ( T ) dx =_ - j ^ M(t,xMx) dx in L 2 ( r . ) . 
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Comparing (4.4) and (4.5) and taking into account that <p was arbitrary we see that 

(4.6) P { / Jz{t,x)D"v{x)dx = - f M{t,x)<p{x)dx\ = 1 

holds for any f £ ®{ff). The space 3>{ff) is separable and first countable, hence 

p { / Jz{t,x)D"iP{x)dx = - / M{t,x)ip{x)dx for all tp e $>{ff) 1 = 1 , 

which is equivalent to our claim (4.3). 

Finally, the required estimate 

E\M(t,-)\w.,.w<L-Z-l„ 

can be derived by .exactly the same procedure as the related estimate of Jz in the 

proof of Theorem 2.2. D 

P r o o f of C o r o l l a r y 2.3. Fix t € ]0,T], j 6 { 1 , . . . , m ) with r,- < k and 

Z e 3~6,r,q; take he dff arbitrary. We may assume that the coefficients bju of the 

operator B,- are defined on the whole ff and hiu € %'i™-rj+,>{ff). We know that 

there exists a measurable set S C ff such that \d{&) = 0 and 

P{BjJz{t,x) = £ / ( / B jG( . - S, * ,»)£(*.«)- , (») dt>) dw , ( s )} = 1 

for any x e ff \ S. Let us find yi e ff\S satisfying yt —> h as ( -T CO; we aim at 

proving that 

(4.7) lim E\BjJz{t,yi)\s = 0. 

Since yi £ S v/e obtain 

a i B j J - t * , * ) , 1 < C 1 s ( / ' | B j G ( * - « ' ! " ' - ) 2 ( « . 0 l l . ( t - ) d s 

at \ «Aw 

lBiG(5'y''')|2^ ( t f)
dsJ 

By the properties of the Green function, 

lim BjG{s,yi,z) = 0 
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for any s € ]0,T] and z 6 0. Furthermore, as has been already established, 

^v\BjG(s,yl,-)\
2l,{e)<C2s-^k)\ 

hence 

Mm J \BjG(a, yi, -)\Z'{„) ds = 0 

by the dominated convergence theorem, and (4.7) holds true. At the same time 
BjJz(t,-) 6 "#(0) P-almost surely, so (4.7) yields that BjJz(t,h) = 0 almost 
surely. Therefore, Corollary 2.3 follows by continuity of BjJz(t, •) on 80. • 

To prove Theorem 2.4 we need the following lemma. 

Lemma 4.4. Assume that 2m > d, q € ]6, oo], r 6 ]~f(q), oo], and S G [2,oo[. 
Then for any a G ]0,1 — 0(q)f[ there exists a constant L6 = Le(q, r, S, a) < oo such 
that 

(4 8) E\Jz(h,x)-Jz(t2,x)\s <L,Ts^-^-a^y2tZtir,q\h-h\aS/^ 

holds for all Z G Pt™, h,h 6 [0,T] and any x G 0 \ (J/(h)U/(fe)). 

P r o o f . For definiteness, assume that h < t2. If x 0 ̂ (h) U Jf(t2) then 
by Lemma 4.2, the Burkholder-Gundy inequality, and by Corollaries 3.3 and 3.4 we 
have 

E\Jz(t2,x)-Jz(h,x)\s 

E j_\{ f\s(t2-s)Z(s)ek](x)dWk(s)- f \s(h - s)Z(s)ek](x) dWk(s) 
triUo Jo 

_) [\s(t2-s)Z(s)ek](x)dWk( 
k=i • / t l 

_l f ' {[-?(*_ - s)Z(s)ek](x) - [S(h - s)Z(s)ek](x)\dWk(s 
k=iJo ' 

<CLE 

+ CiE _ 
k=iJo "• 

a ti \ 5/2 

\G(t2-s,x,-)Z(s,-)\l2{(r)dsJ 

+ C2EU l\[G(h - s,x, •) - G(h - s,x, -)]Z(s, -) | 2
L 2 ( í ř ) ds 

< CŮZÍÍr,q {{h ~ »!)(--«•««/(«* +THl-mT->)/(*T-)(h - *.)•«/<»)} , 

which proves (4.8). 
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Set 

^ = {({h,xl),(t2,X2)) £ {[0,T\x 0)2 : xuX2 $ ^(h)U ^(t2)}-

Obviously, A 2 a + 2 ( ^ ) = 0. Combining Lemmas 4.3 and 4.4 we obtain 

Corollary 4 .1 . Under the assumptions of Theorem 2.4, for any a e ]0,1 - ^(ij)f [ 

there exists a constant L7 = L7(q, r, S, a) < oo such that 

E\j*(tuxi) - Jz(t2,x2)\
6 < L7T^rr-m-«rr)nmsir^Xi) _ it2,Xi)\

aS/m 

for any Z £ &s,T,t and all {(ti,x1),(t2,x2)) G ([0,T] x e f \ ^ . 

P r o o f of T h e o r e m 2.4 a n d C o r o l l a r y 2.5. We can complete the 

proof of Theorem 2.4 proceeding in the same way as in the proof of Theorem 2.2. 

We repeat the main steps as now we are interested in the dependence of constants 

on T. First, 

E\jZ^€'(p,T[^)<ClJjjE^JjG(t-s,x,-)Z(s,-)\lHe)^ did* 

^CAZíiro Í t^-^rr)/(2-r) dt 
Jo 

^ opHi-wm/ím | _ | | r if. 

Further, for any a e ]2fs, 1 - I3(q)r[ we have 

T[xa \(t,y) - (T,X)\*+I+°S 

< CT'^r—WtW/WlZlj,.,, 
'I / 

J]0,T[xØ J]0, 

by Corollary 4.1. Hence for any g fulfilling 

(4.9) 0 < _ < _ ( i - M - . 

there is a constant C5 (dependent on g) such that the estimate 

holds. 
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To prove Corollary 2.5, assume that (2.3) is fulfilled and take s > A + (d + l)/6, 
then 

- ^ W ' • > ! » . < - , < ^l j Z(-'-)|^([o,r]x^, « C*E\jz(;.)\S

w.,fQQtTlxff) 

$ C 5 C,T«|Z|L., 

for any g satisfying (4.9). Since we can take s arbitrarily close to A + (d + 1)/S the 
proof is completed. • 
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