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Matematický časopis 22 (1972), No. 2 

RECONSTRUCTING A GRAPH FROM THE INCIDENCE 
RELATION ON ITS EDGE SET 

BOHDAN ZELINKA, Liberec 

We consider a connected undirected graph G without loops and multiple 
edges. Our goal is to reconstruct G if we know its edge set E and the relation o 
of incidence on this set. (This means that (e±, e2) e Q, where e\eE, e2eE, 
if and only if the edges e±, e2 have a common end vertex.) We suppose t h a t G 
has at least two edges; the reverse case is trivial. The theorem of Whitney [2] 
asserts that this reconstruction is possible for any finite graph without loops 
and multiple edges which is not isomorphic to any of the graphs in Fig. 1. 

Fig. 1 

H . A. J u n g [1] has proved this theorem also for infinite graphs. Here we shall 
describe the algorithm of such a reconstruction. 

For this purpose we need to construct the subfamily 3% of the family exp E 
of all subsets of E such that any R e 3/1 is the set of all edges incident with 
some vertex of G and any such set is in 3k. Then to every R e 3& we can assign 
a vertex u(R) and we join two vertices u(R\), u(R2) for R\ e 3&, R2 e 3i by an 
edge if and only if R± n R2 #= 0. The graph thus obtained is evidently that 
graph G. 

By 3%n, where n is a positive integer less than four, we denote the family 
of all sets R <zz 3% which have the cardinality n. The family 3% — (3%\ U 3?2VJ 
U 3g3) will he denoted by «£?*. 

At first we construct the subfamily 3P of exp E defined as follows. 
If P c E, we put P E 3P if and only if the following two conditions are 

satisfied: * 
(a) Any two edges of P are incident to each other. 
(b) There does not exist any set P' <zz E such that the condition (a) would 

be satisfied in P' and P would be a proper subset of P'. 
By 3Pn, where wis a positive integer less than four, we denote the family 
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of all sets P e0 which have the cardinality n. The family 0—(0\KJ02U 
U 03) will be denoted by 0*. 

Now we shall give some lemmas. Most of them will be given without proofs, 
because the proofs are simple and may be left to the reader. 

Lemma 1. Let P e 0*. Then there exists a vertex v incident with all edges 
of P and only with these edges. 

This lemma says that 0* cz 0*. Evidently also 0* cz 0*, therefore 
0* — 0*. 

Lemma 2. Let P e 03. Then either there exists a vertex v which is incident 
with all edges of P and only with these edges, or the edges of P with their end 
vertices form a triangle. 

Lemma 3. Let P e 02. Then P is a pair of incident edges which do not belong 
to any triangle. 

Lemma 4. Let P e 0\. Then the graph G consists of one edge and its end 
vertices. 

This is a trivial case; therefore in the following we shall assume that 0\ 0. 

Lemma 5. Let P\ e 0*, P 2 e 0*, P\ + P 2 . Then the intersection P\ n P 2 

either is empty, or contains only one element. 

Lemma 6. Let P\ e 03, P 2 e 0* U 02. Then the intersection P\ n P 2 either 
is empty, or contains one or two elements. If it contains two elements, then P\ 
is the set of edges of a triangle. If it contains only one element, then P\ is the set 
of edges incident to som.e vertex. 

Lemma 7. Let P\ e 03, P 2 e 03, P i + P 2 . Then the intersection P\ n P% 
either is empty, or contains one or two elements. If it contains two elements, 
then one of the sets P\, P 2 is the set of edges of a triangle, the other is the set of all 
edges incident with some vertex. 

Lemma 8. Let P e 03. Then there exist at most three sets of 0 such that their 
intersections with P contain two elements each. 

Lemma 9. Let P e 03, P' e 03, P" e 03, P"'e 03 be pairwise different. 
Let \P n P ' | - \P n P"\ = |P n P'"\ = 2. Then either at least one of the sets 
P', P", P'" has a non-empty intersection with a set of 0*, or P is the set of edges 
of a triangle, or G is the complete graph with four vercites (Fig. 2). 

Proof . Assume that P is the set of edges incident with some vertex . Then 
P ' , P", P'" are the sets of vertices of triangles. The edges o f P u F U P" U P'" 
with their end vertices form a subgraph of G isomorphic to the complete 
graph with four vertices. Thus either the third case occurs, or this subgraph 
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is proper. If this subgraph is proper, then at least one of its vertices must have 
a greater degree in G than in this subgraph, i.e. greater than three, and the 
first case occurs. 

Lemma 10. Let PESPZ,P' e SPZ, P"e SPZ. Let \PnP'\ = \Pn P" 2 and let 
P have a non-empty intersection with no other set of 0 except for P' and P". Then 
P is the set of edges of a triangle. 

Lemma 11. Let P e SP*, P' e SP*, P" e S?3, P'" e SP*. Let these sets be pair wise 
different and \P n P'\ = \P n P"\ = 2, \P n P'"\ = 1. Let P have a non-empty 
intersection with no other set of SP except for P', P", P'". Then either P is a set 
of edges of a triangle, or G is isomorphic to the graph in Fig. 3. 

Fig. 2 Fig. 3 Fig. 4 

Proof . Assume that P is the set of edges incident with some vertex. Let 
P =z {ei, e2, 63}. Then without the loss of generality P n P' — {ei, e2}, 
P n P" = {e2, es}. Let e' (or e", respectively) be the edge of P' (or P", res­
pectively) not belonging to P . We have e' =# e", because P' and P" can have 
at most one common element. The edges e2, e', e" are pairwise incident (because 
according to Lemma 7 the sets P' and P" are sets of edges of triangles), thus 
the set {e2, e'', e"} is a subset of some set Po of P . This set Po must be equal 
to P'", because P has a non-empty intersection with no other set of SP except 
for P', P", P'". As the cardinality of P'" is three, we have {e2, e', e"} P'" 
and the common end vertex of e2, e', e" is not incident with any other edge. 
The same holds evidently for the common end vertex of ei, e2, es (because 
P G SP). The common end vertex of ei and e' must be of the degree two; 
otherwise the set of the edges incident with it would form a set of SP with 
a non-empty intersection with P . The same holds for the common end vertex 
of e3 and e". Thus we obtain a graph isomorphic to the graph in Fig. 3. 

Lemma 12. Let PeSPz, P' e SPZ, P" E SPZ, P'" E SP*, P"" e SPZ, P' 4= P"', 
P'" * P"". Let \P n P'\ = \P n P"\ = 2, \P n P'"\ = \P n P""\ = l and let P 
have an intersection of the cardinality two with no other set of SP than P', P". 
Then P is the set of edges incident with some vertex. 

Lemma 13. Let P e SP*, P' e SPZ. Let \P n P'\ = 2 and let P have a non-
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empty intersection with no set of 2P except for P'. Then either P is the set of edges 
of a triangle, or the graph G is isomorphic to the graph on Fig. 4. 

Lemma 14. Let P G ^ 3 , P' e 0>s, P " e 0>3. Let \P n P'\ = 2, \P n P"\ 1 
a/irI /el P Ẑ ave ^m intersection of the cardinality two with no set of & except for P \ 
Then P is the set of edges incident with some vertex. 

Lemma 15. If P e ^ 3 and P has an intersection of the cardinality two with 
no set of SP, then either P is the set of edges incident with some vertex, or the graph G 
is a triangle. 

The result of these fifteen lemmas will be summarized in the following 
lemma. 

Lemma 16. Let a graph G be connected and not isomorphic to any of the graphs 
in Figs. \, 2, 3, 4. Let its edge set E and the relation Q of incidence on it be given. 
Then we can find out, which sets of £P are the sets of edges of triangles and which 
are the sets of edges incident with some vertex. 

Proof . If P ^ 0>%, it evidently cannot be a set of edges of a triangle. For 
P G # 3 the recognizing algorithm is presented by the block scheme in Fig. o. 
The steps of this algorithm follow from the preceding lemmas. The symbol ^ 3 

means the subfamily of ^ 3 consisting of the sets of edges incident with some 

\GIVEN P6 63\ 

HAS P A NON-EMPTY 
INTERSECTION WITH 
SOME SET OF 6, „ 6*? 

RESULT 
P C63' 

i 
WITH HOW MANY SETS 
OF 6j HAS P INTERSECTIONS 
OF THE CARDINALITY TWO? 

HAS PAN INTERSECTION \ 
OF THE CARDINALITY ONE 
WITH SOME SET OF 5, ? 

<IИ 
HAS SOME OF THESE 
SETS A NON-EMPTY 
INTERSECTION WITH 
A SET OF 6* ? 

© 
WITH HOW MANY 
SETS OF 6 j HAS 
P INTERSECTIONS 
OF THE CARDINA­
LITY ONE ? 

WHAT CARDINALITY 
HAS THIS 
INTERSECTION ? 

é Љ 

Fig. 5 (Read & for Ó.) 
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vertex, the symbol SP"Z means the subfamily of SPz consisting of the sets of edges 
of triangles. Evidently ^ = l 3 ) ^ n « = a 

Now let us mention also the vertices of the degrees two and one. 

Lemma 17. Let e be an edge contained only in one of the sets of SP2 U ^ 3 U SP*. 
Then e is incident with a vertex of the degree one. 

Lemma 18. Let e be an edge contained only in one of the sets of SP'Z and not 
contained in any of the sets of SP2 U «^3 U SP*. Then e is incident with two vertices 
of the degree two. 

Lemma 19. Let e be an edge not contained in any intersection of two sets 
of SP2 U SP'Z U SP*, but contained in an intersection P U P', where P e ^ U 
U ^ 3 U SP*, P' e SP\. Then the edge e is incident with exactly one vertex of the 
degree two. 

Now a theorem can be expressed. 

Theorem. Let G be a connected undirected graph with at least two edges and 
without loops and multiple edges. If we know its edge set E and the relation O 
of incidence on it, we can reconstruct G in the following way: 

(1) IVe construct the family SP of subsets of E such that P cz E is in SP if and 
only if the following two conditions are satisfied: 

(a) Any two edges of P are incident to each other. 
(b) There does not exist any set P' a E such that the condition (a) would 

be satisfied in P' and P would be a proper subset of P'. 
(2) IVe decompose SP into the subfamilies ^2, SP%, SP* such that SP2 means 

the family of sets of SP of the cardinality 2, SP% the family of sets of SP of the cardi­
nality 3 and SP* =-- SP — {S?2 U SP*). 

(3) If SP2 U SP* #= 0, then G is not isomorphic to any of the graphs on Figs. 1. 
2, 3, 4. TVe go to (5). If SP2 U SP* - 0, we proceed to (4). 

(4) With the help of Lemmas 9, 11, 13 and 15 we find out, whether G is isomorp­
hic to some graph in Figs. 1, 2, 3, 4. If it is, the procedure is finished. If not, 
we proceed to (5). 

(5) IVe construct SP'Z by the algorithm described by the block scheme in Fig. 5. 
(6) IVe construct S%2 as the family consisting of all sets of ^ 2 , and further 

of all sets {e±, C2), where e± is contained in some set P e SP\ and not contained 
in any set of ^ U ^ U SP* and e2 is contained in the same set P. 

(7) We costruct S%\ as the family of all sets {e}, where e is contained only in one 
of the sets of SP2 U SP'% U SP* and in none of the sets of SP"Z. 

(8) IVe put 01 = Mi U ^ 2 U ^ 3 U SP*. 
(9) To any set of S% we assign a vertex in a one-to-one manner and join such 

pairs of vertices that the corresponding sets have non-empty (i.e. one-element) 
intersections. 

168 



The proof of this theorem follows from the preceding lemmas. 

Example. We have given E = {ei, . . . , ei6} and the relation O = {{ei, e2}y 

{ei, e3}, {ei, e4}, {ei, e5}, {e2, e3}, {e2, e5}, {e2, e6}, {e2, e7}, {e2, e9}, {e2, e i 0}, {e2, e i2}, 
{e2, e]5}, {e3, e4}, {e3, e6}, {e3, e7}, {e3, e9}, {e3, ei0}, {e3, e i2}, {e3, e i5}, {e4, e5}, 
{e4, e6}, {e5, e6}, {e6, e7}, {e6, e9}, {e6, ei0}, {e6, ei2}, {e6, e i5}, {e7, e8}, {e7, e9}, 
{ei, eio}, {e7, eJ2}, {e7, e i5}, {e8, e9}, {e9, ei0}, {e9, ei2}, {e9, e i5}, {ei0, en}, {ei0, e i2}, 
{eio, ei$}, {ei2, ei3}, {ei2, ei5} {ei3, eu}, {ei4, ei5}, {eu, eu}}. 

1)( and (2). 02 = {{eio, en}, {e]2, e&}, {eu, e)5}}, 03 = {{e]5 e2, e3}, {ei, e2, e5}, 
{ei, e3, e4}, {ei, e4, e5}, {e2, e5, e6}, {e3, e4, e6}, {e4, e5, e6}, {e7, e8, e9}, {ei3, ei4, ei6}}, 
0* {{e2, e3, e6, e7, e9, e10, ei2, ei5}}. 

(3) 0 — 03 =\= 0, thus G is not isomorphic to any of the graphs in Figs. I, 
2, 3, 4. 

(5) {ei, e2, e3} e 03, {ei, e2, e3} n {e2, e3, e6, e7, e9, e i0, e i2, ei5} = {e2, e3} is 
of cardinality 2, {e2, e3, e6, e7, e9, e]0, ^12, ei5} e 0* => {ej, e2, e3} e 0'd {ei, e2, e5} e 
e 03, {ej,e2, e5} n {e2, e3, e6, e7, e9, ei0, ei2, ei5} = {e2} is of cardinality 1, 
{e2, e3, e6, e7, e9, ej0, e32, ei5} e 0* => {ex, e2, e5} e 0S. {ei} e3, e4} e 03, {ei, e3, e4} n 
{e2, e3, e6, e7, e9, ei0, ei2, ei5} = {e3} is of cardinality 1, {e2, e3, e6, e7, e9, ei0, e]2, 
ei5} e 0* => {ei, e3, e4} e 03. {e±, e4, e5} e 03, {ei, e4, e5} n {e2, e3, e6, e7, e9,ei0, 
ei2, ei5} 0, 0* = {{e2, e3, e6, e7, e9, eio, ei2, e i5}}; {e±, e4, e5} has intersections 
of cardinality 2 with two sets {ei, 62, e5}, {e4, e5, ee} of 03. {e±, e4, e5} has inter­
sections of cardinality 1 with three sets {ej, e2, es}, {e2, e5, ee}, {e3, e4, ee} of 03, 
thus with more than two sets, which implies {ei, e4, e5} e 0S. {e2, e5, ee} e 03, 
{e2, e*>, e6} n {e2, e3, e6, e7, e9, ei0, ei2, ei5} = {e2, e6} is of cardinality 2, {e2, e3, 
e6, e7, e9, e i0, ei2, eJ5} e 0* => {e2, e5, e6} e 0"3. {e3, e4, e6} e 03, {e3, e4, e6} n 
n {e2, e3, e6, e7, e9, eio, ei2, ei5} = {e3, e6} is of cardinality 2, {e2, e3, e6, e7, e9, e i0, 
e\2, ei5} G 0* => {e3, e4, e6} e 0"3. {e4, e5, e6} e 03, {e4, e5, e6} n {e2, e3, e6, e7, e9, 
^io, ei2, ei5} _ {e6} is of cardinality 1, {e2, e3, e6, e7, e9, eio, ei2, ei5} e 0* => 
-> {̂ 4, e5, e6} e ^ 3 . {e7, e8, e9} e 03, {e7, e8, e9} n {e2, e3, e6, e7, e9, e i0, ei2, ei5} — 

{e7, e9} is of cardinality 2, {e2, e3, e6, e7, e9, ei0, ei2, ei5} e 0* => {e7, e8, e9} e 0"3. 
{e\3, eu, ei6} e 03, {e]3, ei4, eie} n {ei2, ei3} = {ei3} is of cardinality 1, {e]2, ei3} e 
e 02 ^> {ei3, eu, e16} e 0S. 

(6) 02 consists of the elements {eio, en}, {ei2, ei3}, {ei4, ei5} of 02, furthe r 

of the pairs {e7, e8}, {e8, e9}, because e8 e {e7, e8, e9} e 0'3' and e8 <£ P for any 
P e 02 U 0S U 0*, e7 and e9 are contained in the same set {e7, e8, e9} e 0S as e8* 

(7) 0i consists of the sets {en}, {ei6}, because en (or ei6, respectively) is con­
tained in {eio, en} e 02 (or in {ei3, ei4, e^} e 0'3, respectively) and in no other 
set of 02 U 0'3 U 0*. 
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(8) We have ^ = {{eu}, {ei6}, {ei0, en}, {ei2, era}, {ei4, ei5}, {e7, e8}. {e8, e9}, 
{e],e2, e5}, {ei, e3, e4}, {ex, e4, e5}, {ei, e5, e6}, {e]3, ei4, ei6}, {e2, e3, e6, e7, e9, eio, 
^12, ei5}}. 

(9) After assigning vertices to the sets of Si and joining them in the described 
wa}T, we obtain the graph in Fig. 6 

Fig. 6 

We can generalize our considerations also for disconnected graphs. Assume 
that no connected component of G is isomorphic to any of the graphs in 
Figs. 1, 2, 3, 4 and any of them contains at least two edges. We can define 
the relation R on the set E such that two edges are in the relation R if and only 
if they are either equal or incident to one another (thus R is the reflexive 
closure of Q). Then we make the transitive closure TR of R. This relation 
is a relation of equivalence; each class of this equivalence is the set of edges 
of a connected component of G. 

For graphs with loops or multiple edges the Theorem is not true. Fig. 7 
shows us two graphs (one of them with a double edge), which have the same 
E and O, but are not isomorphic. Such a case can occur in every graph, in which 
two edges exist, which join the same pair of vertices and one of their end 
vertices is incident onlyr with those edges. Fig. 8 shows two graphs, one of 

Fis. 7 Fig. 8 
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them with a loop, which have the same E and O but are not isomorphic. This 

case can evidently occur in each graph with a loop. 
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