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MATEMATICKY CASOPIS
ROENIK 22 1972 ¢isLo 2

ON A PAIR OF MANIFOLDS WITH CONNECTION

ANTON DEKRET, Zilina

In paper [5] the manifold with connection is considered as a quintuple
(B, E, D, 0,C), where E(B, F, G, P) is a fibre bundle (F = G/H, dim F >
> dim B, H is a closed subgroup of @) associated to the principle bundle
P(B, @), ® = PP-1is a groupoid associated to P, C is a connection of order 1
on @, ¢ is a global section of £ with the following property: the development
C 1(z)(o) of o by means of C is a regular jet for any = € B. In the present paper
we consider the manifold with connection as it is considered in [5].

On the torsion form of a pair of manifolds with connection

Let the &#(B,E,®,o0,C) be a manifold with connection. Kolaf using
Svec’s definition in [6] defines the torsion form of the manifold & as fosllows:
Let po: G — G/H be the canonical projection. Let Q be the curvature form
of the connection C. Let R be the reduction of the principal bundle P de-
termined by the section o¢. Then

Uyptox(Q), uen(z) N R

is the torsion form of & at the point x € B. We consider the torsion form like
the above one.

1. In this paper the index ¢ will have the values 1, 2. Let V, T, T's be vector
spaces (dim 7T = v;, dim V = m, m < min (v1, v2)), y : T' - T1 @ T2 be a iso-
morphism, pr; : Ty @ T2 —T; is the natural homomorphism. Let &: V T
be a monomorphism with the following property: priyé: V —T; are mono-
morphisms.

Denote Z = im &, Z; = im (priyé); dim z = dim Z; = m. The restriction
of the homomorphism priy to Z determines the isomorphism #;:Z - Z;
and thus 7;&: V —Z; is an isomorphism. Let o be a vector 2-form on V
with values in 7' determined by a tensor t €7 ®2 A V*. Then w; = priyw
is a vector 2-form on V with valuesin T';. Let ¢ : T — T[Z, &; : Ty — T/ Z; be na-
tural homomorphisms. The form ew;, resp. gw;, will be called &-reduction of
w, or of w;, respectively. Denote S = y~1(Z; @ Zz) < T'. Obviously Z < 8. Let
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w:T —T|S be the natural homomorphism. The vector 2-form uw on V with
values in 7'/S will be called &-semireduction of w. Let Sz =y (O @ Zz) and
let ps be the natural homomorphism 7' — 7'/S;. The form pew will be called
the second &-semireduction of w. Similarly usew is the first &-semireduction of
the form w.

Let the &-reduction of w, resp. of w;, vanish. Then the form w, resp. w;,
is a 2-form with values in Z, or in Z;, respectively, and thus the forms £ 1o,
(n:&)1w; are 2-forms on V with values in V.

Definition 1. We shall speak that the forms w1, ws form a &-reduction pair
(shortly an r-pair) if their &-reductions vanish and if

(1) (&) on = (28) .
The following lemmas are obvious.

Lemma 1. The form o vanishes if and only if the forms wy, ws vanish.

Lemma 2. The &-semireduction of o vanishes if and only if the &-reductions of
the forms w1 and w> vanish.

Lemma 3. The second &-reduction of the form o vanishes if and only if the
forms w1 and the E-reduction of wsvanish.
A similar lemma can be expressed about the first &-reduction of w.

Lemma 4. The &-reduction of the form o vanishes if and only if the forms w1
and ws form a &-reduction pair.

Proof of Lemma 4. Let the &reduction of » vanish. Then it is obvious
that &-reductions of the forms w; and ws vanish and & o = (;&) 'w;. Con-
versely let the forms w1 and ws form a &-reduction pair. Let u; € V, us € V. As
the forms ejw1, e2we vanish, wi(u1, uz) € Z; and thus there are s; € S1, s2 €S2
unambiguously, so that o(ui, u2) = s; + s2. Denote w;(ur, ws)  prip(ss +
+ 8) -2 €Zi, pi'2;) =yi€Z. When we use (1), wo get

(&) lo(ur, ue) = (728) Twa(uy , us)

and thus y1 — y2 — y. As priy(y) = 2 thus y = s; 1 s2 and thus ew(uy, u2)
= 0, i. e. the &reduction of the form o vanishes.

Note 1. Let the &-semireduction of w vanish. The form o is a 2-form with
values in § = y YZ; + Z2) and its reduction can be called the jumbled re-
duction of the forms w1 and ws. The jumbled reduction of wq, w2 is a 2-form
with values in §/Z and it vanishes 1f and only if »; and w: form a &-reduction
pair.

2. In this paper we shall use the standard notation of the thcory of jets
(see [2]). Our considerations are in the category C*. Let M, Vy, V, be differen-
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tiable manifolds; dim J = m, dim V; = v;. Denote p; : V3 X Vo= V; the
natural projection. The following assertions are obvious:

a) X eJ (DM, Vi x Vi) = p X eJ (M, V).

b) Xy e (M, V1), XaeJI(M, Vz) = there is a unique jet X e JI(M, Vi X
X Vo) so that p; X — X; . X is regular if some jet of the jets X, X is regular.

¢) XedJ (M, Vi x Vsa) is semiholonomic, resp. holonomic if and only if
piX are semiholonomic, resp. holonomic.

Definition 2. Let Xy e JI(M, V1), Xoe JL(M, Va). We shall speak that jets
X1, X3 are holonomicly connected if there is a semiholonomic r-frame h at x € I
so that jets X1k and Xoh are holonomic.

Let N, M be differentiable manifolds. Let X e J7(}, N). The contact ele-
ment kX at the point f°X € N determined by X is a set of jots XhL!, where &
is a semiholonomic frame at «X € M and L, is the group of invertible r-jets

on km from O into O. We shall speak that kX is holonomic if there is in XAL!,
a holonomic jet.

Lemma 5. Let X € Ji(M, Vi X Vs). Then kX is holonomic if and only if
X and p:X are holonomicly connected.

Proof. Let £X be holonomic. Then there is a frame h at x € M so that Xh
is a holonomic jet. Hence p;(X%) is holonomic. But p;(X%) — (p;X)h and
thus p1X, p2X are holonomicly connected. Conversely let p1 X and p.X be
holonomicly connected. Then there is a semiholonomic r-frame % so that
(piX)h are holonomic. It results from the assertion ¢, that X7 is a holonomic
jet and thus kX is holonomic.

Lemma 6. Let N, M, V be differentiable manifolds; dim N — n, dim M =

m <dimV =v. Let XeJAN, M), YeJs (M, V) and let ¥ be regular
and holonomic. Then Y X is holonomic if and only if X is a holonomic jet.

Proof. Let 2; be a holonomic 2-frame at a € N, ks be a holonomic Z—framo
at pIX and ks be a holonomic 2-frame at f3Y. Let Y have in the frames %,
h3 the co-ordinates:

Y k'Yhe - (2450, =12 .. 0;p.j=1,2,...,m.
Let X have in the frames h;, ks the co-ordinates:
X _B'Xhi=(d,dk ), k=1,2,...,m; wt=12 ...

u’

Then Y X has the co-ordinates

YX = (h5' Yho)(h3'X 1) = (o), 0% ,),

u, t
where

B Bk B B P Bk
vu ?/kaur ?’u,t - y[),jaua’l + yka’ st

It is obvious that if X is holonomic then Y X is holonomic. Let Y X be holo-

ic. T B B B
nomic. Then O vy, — v, = o[, 4.
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As yf, ;; = O we have
B Bk
(2) 0= Viu, ] = Y, 11+

As Y is regular we can suppose without loss of generality that det (y§) 5 0,
where 8,k = 1,2, ..., m. Thus we get from (2) for any stable index [u, t]
and for = 1,2, ..., m a homogeneous system of equations with the un-

knowns af‘u, g k=1,2, ..., m, the determinant of which does not vanish.
Thus af, 5 =0. Q. E. D.

Lemma 7. Let N, M, V be differentiable manifolds, dim N — dim M. Let
X eJ(N, M) be a regular holonomic r-jet. Let Yedy (M, V). Then YX is
holonomic if and only if Y is holonomic.

Proof. It is obvious that if Y is holonomic, Y X is holonomiec, too. Let
YX be holonomic. As X is regular and dim N = dim M X is invertible and
thus X—' is holonomic. Hence (YX)X-1= Y is holonomiec.

Lemma 8. Let X e J2(M, Vi X Va), dim M < dim V. Let p2X be holonomic
and regular. Then kX is holonomic if and only if p1X is holonomic.

Proof. If p; X is also holonomic, then X is holonomiec and thus £X is holo-
nomic. Let kX be holonomic. Then there is a semiholonomic 2-frame A at
oX so that XA is holonomic and thus p,(XA) = (p;X)h is holonomic. As p.X
is holonomic, then from Lemma 6 we get: % is holonomic. Then from Lemma 7
we get: p X is holonomic.

Let us suppose dim M = m < min (dim V; = v, dim Vs = vs). Let X €
€ J2(M, Vi X V) be a regular semiholonomic jet with this characteristic:
p1X, p:X are regular, too. Denote

T =Tp(Vi X Va), Ti="Tp,(Vi)=puT, V =Tx().

We can identify 7' =T; @ Ts. Let k1 be a holonomic 2-frame at x € M and
hs be a holonomic 2-frame at pIX € V1 X Va. Let (23,2} ), y=1,2,...,

v+ 1,...,00+v; p,j=1,2,...,m be co-ordinates of the jet X in the
frames h1 and he. Then (x;,x, ;) «=1,2,...,v1 are co-ordinates of the
jet X in the frames hi, by and (a2, a2%f), p=1,2, ..., va, are co-

ordinates of p»X in the frames h; and p2hs. Difference tensors (the notion
of the difference tensor of a semiholonomic 2-jet was introduced by Koldr
in [5]) determined by the jets X, p;X have the components 4(X)eT ®2 A
ANV*ial, qov=12, .., 0,41, ..., 004w, ApX)eT1 ®% A\ V*:ah, a0,
a=1,2,...,0m APX)eTs®?2 A V*x;:tﬁ, g=1,2,...,v; p,j =1,
2, ..., m. From this we obviously get

(3) A(PiX) = pi A(X).
Vector 2-forms determined by 4(X), A(p:;X) will be called difference forms
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of jets X, p;X and denoted w, w;. From (3) we get: w; = dp;jw. When we
denote & = ds = s,, where s(¥) is a local mapping such that g}X = jls(y),
we can with regard to the regularity of jets X, p1X, p2X do all considerations
of paragraph 1. Now the subspaces Z, Z; are contact subspaces determined
by the jets p3X, Bap:X. Instead of the &-reduction and the &-semireduction
we shall speak of the reduction and the semireduction of the difference form.

Kolat proved in [5]: The reduction of the difference form of the semiholo-

nomic 2-jet X vanishes if and only if the contact element kX is holonomiec.
Hence we get from Lemma 2.

Lemma 9. The semireduction of the difference form o of the jet X € JA(I,

Vi X V2) vanishes if and only if contact elements kp1X, kp:X are holonomic.
From Lemma 3 we get.

Lemma 10. The second semireduction of the difference form w vanishes if
and only if pix is holonomic and if the contact element kp: X ts holonomic.
From Lemma 5 we get.

Lemma 11. The reduction of the difference form w vanishes if and only if the
jets p1X, p2X are holonomicly connected.

Corollary of Lemmas 4 and 11. The difference forms w;, ws of the jets
p1X, p2X form an r-pair if and only if the jets p1X, p2X are holonomicly
connected.

Now Lemma 8 can be expressed as follows:

Lemma 8'. Let the difference form wz of the jet p: X vanish. Then the reduction
of the difference form w of the jet X € JA(M, Vi X V3) vanishes if and only if
the difference form w; vanishes.

3. Application for the torsion form.We first rccall some notions of the
theory of spaces with connection; see [2] and [5]. Let P(B) G, n) be a prin-
cipal fibre bundle. The Lie-groupoid associated to the principle fibre bundle P
is a set of equivalence classes ® = P x P/G with the projections ¢ and b,
which are defined as follows: @ = {(u1, u2)}, a O = 7(us), bO = muy. Further
O1.0:  {(wa,uz)} . {(uz, u3)} = {(u1, us)} and I, = {(u, w)}, (Where mu — x)
is the unit of @ over x € B. Kol4f in [4] uses the modified form of Ehresmann’s
definition of the connection on @. An element of connection of the order r
on @ at x € Bis a jet X € JI(a1(z), b, B) sach that f°X = 1,. Denote QN;(di)
the set of elements of connection of the order r on @ at x € B. The connection
of the order r on @ is a section Cy : B - Qr(®) — U @Qu®). C, is the first

2€B
prolongation of the connection Cr. If Ci(x) = jlo(¢), then

(4) O1(x) = j;C1(t) - o(t),
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where C1(2) . o(¢) is the image of the jet Ci1(f) in the mapping o(f) e @ (x) = @.
Let E(B, F, {, P) be a fibre bundle associated to the principal fibre bundle
P(B, G, 7). ® is a groupoid of operators on E:

O = (u1, u2) €D, f= (u2,v)€bauy= O(f) = (u1, ) €Ea,)

where v € F. Let o be a section on E. C,*()(0) is the development of the section
o by means of the element Cr(x). Further we shall use:

(%) Cil(@)(0) = jule™(t) [o()])

where
Cr(x)  Jae(t).
(6) O171(@)(0) = CT'@)(J2[C7'(1)(0)]); see [4] or [5].

Let 1P(B, G1, ), 2P(B, G2, m2) be principle fibre bundles. Denote I,
= 1P, x2P,, where P, = a;'(z).P = |J P, is the fibre product of 1P

€D
and 2P. The projection & on P is defined by n(P;) = « . P has the structure

of the principle fibre bundle P(B, G1 X G2, x), where the group ¢ X G-
acts on P on the right according to the rule

(Pz)G1 X G2 — (APz)G1 X (2P2)Gs.

Let i@ be a Lie groupoid associated to ‘P, @ be a Lie groupoid associated to P.
As 1@ = 1P X iP|G; and @ = P x P|G1 X G2, then any couple (!0, 20)
where 0 €i® and a1(10) = a2(20), bi1(1O) = bx(20) (a;, b; are projections
on @) determines a unique element @ € @ and conversely. Then @ is such
a set of couples (10, 20), 10 € i®, that a1(10) = a»(20), b1(10) — b2(20). Denote
;)i : @ —i® the map defined by p;(10, 20) = i@. Let iC' be the connection
of order 1 on '®. It is easy to see that there is a unique connection C; of order 1
on @ such that 2)501 = 1C;. Let iE(B, F;, (;, 'P) be a fibre bundle associated
with ?P. Denoto B, = 1E,; X 2E,. The fibre product £ = |J E. can be iden-

rel3

tified with the fibre bundle E(B, F; X Fs, G1 X G2, P) associated to P on
which the group G1 X G: acts on the left avcording to the rule

G1 % Gz(l’wl X Fg) = G](F]_) X Gz(l‘wg).

Denote p;: L —*tE maps determined by natural projections K, —‘E, for
any x € B. Let ic be a global section on !Z. Then there is a unique section
on E determined by

o(x) = [10(2), 20(x)] € Fa.
Definition 3. 4 pair of manifolds with connection is a couple of manifolds

LB, B, 1D, 16,101), LB, 2E, 2D, %0, 2Ch).
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It is clear from the foregoing consideration that there is a unique manifold
with the connection & (B, E, @, o, (1), which is determined by the couple
of manifolds with connection. This manifold we shall call the representative
of the pair.

The following relations result from (4), (5), (6)

il = i
iy @)(0) = DiCy (@)(Pilo)).

Then

(7) pilC (@)(0)] = iC] '(x)(0).

Let y; be the torsion form of %; and y be the torsion form of &, which we
shall call the torsion form of a pair of manifolds with connection. Kolai
showed in [5] that the torsion form of a manifold with connection was able
to be identified at x € B with —AC] '(x)(s). The following relation

pi:}cw =Y

results from (3) and (7).
Nov, Lemmas 9, 10, 11 imply

Theorem 1. The semireduction of the torsion form of a pair of manifolds with
connection vanishes if and only if pi and w2 vanish; i. e. if and only if the contact
clements k(" '(x)1(0), 2C] '()(20) are holonomic.

Theorem 2. The second semireduction of the torsion form of a pair of manifolds
with connection vanishes if and only if y1 vanishes and the reduction of . vanishes
i. e. if and only if the jet 'O '(2)(10) is holonomic and the contact element k2C'; " (x)
(20) is holonomic. .

Theorem 3. The reduction of v vanishes if and only if y, and e determine
r-pair; i. e. if and only if jets 1Cy Y(x)(01), 20, (2)(02) are holonomicly connected.

We are going to determine the co-ordinate condition for the vanishing of
the reduction of the torsion form of the pair of manifolds with connection.
Let us recall some notations:

Fi — G[/I{l'9 Ei = TG(HZ)} iely i()'2> ) ieh

is a basis in G;, ig or I, rosp. is the reduction of the principle fibre bundle
iP, or P, respectively, which is determined by the section ‘o, or o, resp. Let
{p, or iQ resp. be the restrinction of the fundamental form of the connection
iI", which represents the connection {C' on ‘P (see [4]), or of the curvature
form of this connection resp., with regard to a local section w: U — iR,
U < B.
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ip =l @ les + tw* @ e, s=1,2,...,n =dimF;
A———ni—}—l, ...,7‘i=dime,

where ;e;€H;. We can suppose that iw!; iw?; ..., io™, m = dim B, are in-
dependent on the section . Then

i =gk, a=m+1,...,n;; k=1,2,....m
and
2k = b;flwf, det [b’;[ £0,j5,k=1,...,m.

The form Q can be written
’I:Q e iQS@ies + in ®i61,
s=1,2,...,n, A=m+1,...,7.

Let p; : P —>iP be the natural projection. Let ¢ be a scalar form and f be
a function on ¢P. We will denote

PZBE@ fszf

@ = lgdp; + 2@dp; is a fundamental form of the connection I" on P restricted
to the section » : U — R (v(x) = [*»(x), 2v(z)]) and thus

iRY = ialipk
2k = Bid, det Bi| + 0.

Likewise Q = 1Q dp; + 2Q dps is a restriction of the curvature form of the
connection I" on P with regard to the section ». The reduction of the torsion
form of the manifold % vanishes if and only if

Q0 __ ik,
~ - )
20k = B¥ 1007, see [5];

and thus the reduction of the torsion form of the pair of manifolds with connec-
tion vanishes if and only if

i0x = igliQk,
20k — BIQY.

Point similarity and point equivalence of manifolds of the pair of manifolds
with connection

4. Let F = G|H be a homogeneous space in which the Lie group G acts
on the left; ¢ is the class in F' determined by H. Let B be a differentiable
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manifold. Let U be an open set in B,ze U,feF. Let U — f be a constant
mapping from B in F. The r-jet of this mapping will be denoted f*). X e
eJ(B, @), we shall denote X;= X(f), where the symbol on the right-
hand side denotes the r-th anholonomic prolongation of the operation of the
group G on F.

Definition 4. Let 'F = G[Hy, 2F = GQ[H; be homogeneous spaces. We shall
speak that the jets X e Jo(B,1F), Y e J'(B, 2F) are G-adjoint if there are a jet
ZeJ:(B, @) and the points fi €1F, fre?F so that X = Z;,, Y = Z;,.

Let “1(B,E, ®,10,C), F(B,2E, D,2%,C) be a pair of manifolds with
connection. Now 1, 2 are fibre bundles associated to P(B, ). Let F =
= G[H; be their type fibres. We shall denote p . g the operation of the group &
on P; iR is the reduction of the principal fibre bundle P determined by the
section ‘o; ‘R, is the fibre of iR over x € B. Let r, € 1R, r2 € 2R;. It is obvious
that ‘R; = r; . H;. The equality r;.g = r, determines a map x:1BR; X
X 2R; —G. Let relR,, Fc2R;, then r.hy =1, r2. ho = #(h; € H;) and
thus r . highe = 7. Hence HigHz = im ». HigH> is a class of the decomposi-
tion of the group @ by the double module (H;, H»), i. e. HigHs € G|(H1, Hs);
se¢ [1]. We shall denote D = G(H1, Hs). Thus we get the map ¢: B— D;
Q(CL‘) = ngffz.

Definition 5. We shall say that manifolds F1, S of a pair of manifolds with
connection which have a common principal fibre bundle, are D-similar at x € B
when there is a neighbourhood U of xe€ B and d€ D so that q(U) = d.

Let I'(p) be the representative of the connection C at p € P, I' 1(p)(io)
be the development of the section ‘c by means of I'(p); see [4].

Theorem 4. The manifolds &1, P2 of a pair of manifolds with connection,
which have a common principal fibre bundle P, are D-similar at x € B if and
only if the jets I'1(p)(io), I'1(p)(2c) are G-adjoint (n(p) = ).

Proof. Let p € Py. Let I'(p) = jlo(t), where o(¢) is a local section on (B,
a, P) defined on a neighbourhood U of x € B. Let %1, &> be D-similar. Let
q(U) = d e D. Let gy € G be a representative of d. Then there is a local section
u(t) = r; of (AR, x, B) defined on U, so that »; . go is a local section on (2R, x,
B). Now lo(t) = (r¢, c1), 20(t) = (r¢ . go, c2), where c¢; €F is the element
determined by the class H; in G/H;. Let us denote g; € G the elements de-
termined by o(f) . g: = r;. We get the mapping 6 : U - G, 6(f) = ¢9:. Now

I'Y(p)(to) = jao~1(t)(Ya(t)) = jilo™2(t)(rs, €1)] =
= jalo 1(t)(e(t) . gs,e1)] = Jalo2(6)((8), ge(cr))] = jrlge(er)].
I'1(p)(o) = jilo~ (t)(a(t))] = jalo 2 (t)(rs - go, c2)] =
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= jo M O)(rr, go(e2)] = Julgugo(e2)]
and thus I'"'(p)(lo) and I'"'(p)(s) are G-adjoint. Conversely let I' }(p)('o)
and I 1(p)(30) arc G—adjoint; a(p)  «. Then
I'(p)(io) — Julg )],

where ¢; is @ mapping 6: U~ G, 6(t) — g: and fieiF. Let fi  s(ci) si€
€. Let s2 = s1. ¢g9. From the definition of the development of the section
by means of I'(p) we get

(8) oMt (Mo (t)) = gesi(cr) — o7H(E)(o(t), gisi(cr)) =
=0 1)) - ges1, 1),
) 0 H()(Fa(t)) = gesa(c2) = o H(t)(0(?), gisa(c2)) —

= 071()(0(¢) . gts190, ¢2).
From (8) and (9) we get: o(f) - ges1 € 1Ry, o(f) - gis190 € 2R; and thus go € q({) € D
for any t e U, i. e. the map q(¢) is constant on U". The manifolds &1, &> are
D-similar at xe B. Q. E. D.

5. Let X € JX(B, F). We shall say that 1X’, 2X are (-congruent if there
is ¢go €, so that 2X = ¢yl X.

Let us consider a special pair of manifolds with connection %1(B, E, I,
lg,0), (B, E, P,2%,C).C0"(x) denotes the r-th prolongation of C at
x € B, I'n(p) (where z(p) = x) denotes the representative of C¢y(x) at p € Px,
'™ 1(p)(o) denotes the (r 4 1)-th development of the section ¢ into F and
thus I'0-1(p)(s) € J4TY(B, F). It is obvious that if I'™-1(p)(le), I'"-1(p)(%c)
are (-congruent, I'0-1(p. g)(te), I'™ 1(p. g)(2¢) are G-congruent, too.

Definition 6. We shall say that &1, &2 are G-equivalent of the order (r + 1)
at x € B if the jets I'n=Y(p)(lo), I'0~Y(p)(%0) are G-congruent (n(p) — ).

Note. Let &1, &, be G-equivalent of the order 2 at « € B. Then: I 1(p)(1o)
is holonomic < I 1(p)(20) is holonomic. Then: y; = 0 <>y, — 0. We obtain:
If &1, &2 are (-cquivalent of the order 2 at a € B, the first semireduction,
the 2-nd semireduction, respectively, of the torsion form of the pair %, K7
vanishes it and only if the torsion form vanishes.

It is easy to prove the following characteristic of the G-equivalence of the
order 1 of the manifolds &1, &a: F1, s are G-equivalent of the order 1
at x € B if and only if there are a jet ¥ e J3(B, ), go € ¢ and p € P, so that
I'(p) . YeJ(R,n, B) and I'(p).goY € JL(2R, n, B), where the symbols
I'(p) . Y and I'(p).goY indicate the first prolongation of the operation of
the group ¢ on P.
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