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MATEMATICKO-FYZIKÁLNY ČASOPIS SAV, 12. 3. 1962 

SEMIGROUP COVERINGS OF GROUPS II 

JAMES WIEGOLD, Manchester (England) 

1. Introduction 

The purpose of this note is to confirm two conjectures made in [1], A group is 
called* a T)-group if it is the union of non-empty pairwise disjoint proper subsemi-
groups, and an 3-group if it has at least one aperiodic homomorphic image. It was 
proved in [1] that every D-group is an 3-group, and conjectured that the converse 
is not true. We shall confirm this by showing that the group G generated by two 
elements a, b with defining relations 

a3 = b2, ab(a2b)5 ab2 = 1 (1.1) 

ia aperiodic - it was pointed out in [1. page 11] that no group with defining rela­
tions like (LI) can be a D-group: this fact is very easy to establish. The second derived 
group O2(G) of G is the cycle generated by b16, so that it is central and in particular G 
is soluble of length 3. 

The other conjecture concerned the existence of a group generated by elements 
of finite order and having non-periodic centre. Here the construction is considerably 
easier than that of G: in the group J generated by two elements a, b with defining 
relations 

a3 = b2 = \, [[[a2, b], [a, b]], a] = [[[a2, b], [a, b]], b]=\, (1.2) 

the element [[a2, b], [a, b]] — obviously central — has infinite order. This element 
generates the second derived group of J, so that J is also soluble of length 3. 

1 have been unable to construct metabelian examples. 

2. The group G 

Let us first examine the defining relations 

a3 = b2, aba2ba2ba2ba2ba2bab2 = 1 

* All notation not explained here is to be found in [1]. 
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of G. As a3 and b2 are central in G, the second of these can be rewritten as 

baba2ba2ba2ba2ba2bab = 1, 

b-1b2a-2a3ba2b-1b2a-1a3baa-2a3b-ib2a2ba~1a3b-lb2ab = 1, 

[b,a2][b,a][a2,b][a,b]b8a12 = 1, 
and finally as 

[[a\b]Aa,b]]b16 = 1. (2.1) 

Now the derived group O\(G) of G is generated by all commutators of the form 
[ak, bM], where X and \i are integers; but a3 and b2 are central so that X may be taken 
modulo 3 and \x modulo 2, which means that bx(G) is generated by [a2, b] = u 
and [a, b] = v. Relation 2.1 shows that [u, v] is central in G, which gives immediately 
that S2(G) is central and cyclic, with b16 as generator. Further, O\(G) is necessarily 
second nilpotent — in fact it turns out that is a free second nilpotent group on the 
generators u, v. We shall show that G is aperiodic by constructing it as a double 
splitting extension with central amalgamations. 

The starting-point is a free second nilpotent group H0 on two generators, that is, 
we take a group H0 by two elements u0 and v0 with defining relations 

[u0, v0, u0] = [u0, v0, v0] = 1. (2,2) 

The mapping fi0 of the generators of H0 given by 

w0/?o = Mo *, v0f}0 = vo"1 

clearly respects the defining relations (2.2), so it generates an automorphism (also 
called p0) of order 2 of H0. Let B0 be the splitting extension* of H0 by an infinite 
cycle whose generator b0 induces po on H0: 

B0 = Gp(u0, v0, b0; [u0, v09 u0] = [u0, v0, v0] = 1, w0° = w(7 \ vo° = vo"1). (2.3) 

Then B0, as an extension of an aperiodic group by an aperiodic group, is aperiodic: 
further, [u0, v0] and b0 are central, since 

[w0, v0]
ho= [u0\ vo"1] = [uo, v0l 

C 2 = (uo ' V° = u0, vhf = (v0
 l)b° = v0 . 

The first of these relations follows from the first of the identities 

[gm, A"] = [g, h]m" 

(gh)'» = gmhm[h, g f c«- l)l2, (2.4) 

valid for any integers m, n and any elements g, h of a second nilpotent group. 

* In general, we write Gp(^; R) for the group generated by a set X of elements with defining 
relation R, and Gp(X) if R is understood or unimportant. 
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Clearly, as H0 intersects the cycle generated by b0 trivially, the centralcycle 
generated by [u0, v0] bj6 intersects H0 and the cycle Gp(b0) trivially. Thus, if <P 
is the canonic homomorphism of B0 onto B = B0/C0, then H = H0<2> ~ H0, and 
b = b0<P has infinite order, so that: 

2.5. In the group B generated by three elements u, v, b with defining relations 

[u, v, u] = [u, v, v] = 1, ub = u"1, vb = v-1, [u, v] = b-16, 

the subgroup H = Gp(u, v) is free second nilpotent and b has infinite order. 

Lemma 2.6. (i) In B, Gp(b) n H = Gp(b16) = Gp([u, v]). 
(ii) B is aperiodic. 

Proof, (i) It is clear that H n Gp(b) => Gp(b16). Let now x e H n Gp(b) so that 
A- = h0<Z> = bo0 where h0 e H0 and 2 is an integer. Then (h0b0

x) <P = 1 so that 
bob0

 A is a power of [u0, v0] b0
6, say [u0, v0]^b0

6^; hence bo^ = b0
6^ so that x = 

= bx = b-16^e Gp(b16). This completes the proof of the first part. 

(ii) It is not difficult to see that every element of B can be written in the form 

g = uavp[u, v]yb6 

with suitable integers oc, ft, y, 3. We distinguish two cases: 

(A) If S is even, bd is in the centre of B, and, as [u, v] is in the centre of B (both 
these follow immediately from the fact that b0 is central in B0), then for any 
interger n, 

g» = (u
xvp)n [u, v]nybnd 

But (uV)" = irnvftn[u, vf for some 0, by 2.4; hence 

gn = trvfin^ v]Wbn8 

for some O''. If gn = 1 for some n 4 0, then, as [u, v] = b-16, ua/,v/jn lies in the 
cycle generated by b. The first part of the lemma then gives that w^t/" lies in the 
cycle generated by [u, v], so that since H is free second nilpotent on u nad v, not = 
= n/l = 0. Consequently a = /? = 0, g = [u, v]ybd, so g lies in the cycle generated 
by b; and this means it can have finite order if and only if it is the unit element. 

(B) If 6 is odd, say S = 26' + 1, then 

g = u°v/b[u, v]yb2d\ 
so that 

2 g2 = iŕvßbďvßb[u, v]2 Að' 

= u«vß(uavß)h-'b2[u,v]2 *0 

= uVu~*v->, v]2^b4(5' + 2, 
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using throughout the fact that b2 is central. Finally 

g
2 = [u-\v-t][u,v]2yb*d' + 2 

= [u ,v ] 2 ^b 4 * ' + 2 

= £ _ l 6 ( 2 y + a / n + 4 < 5 ' + 2 ( t y 2 . 4 ) 

_ » 4 < 5 ' + 2 _ 1 6 E 

for some integer s. Now 43' 4- 2 — 16e =f= 0 since 2d' + 1 4= 88, hence g2 has 
infinite order and some must g. 

Thus we have proved that only the unit element of B is of finite order, and B 
is aperiodic. 

It will turn out that B is the normal closure of b in the original group G (we shall 
not prove this) — hence the use of the letter b in defining B. 

The next stage is to form a splitting extension of B by an infinite cycle. For clarity 
at this point we take an isomorphic copy Bt of B with generators u{, vl5 b, and 
defining realtions analagous to those given at 2.5. It is a matter of simple routine 
to verify that the mapping oci of the generators of B{ defined by 

uioci = vj"\ v1ocl = u!vi"\ b{a{ = b^i"1 

respects the defining relations of Bx. Thus ax generates an endomorphism (also 
called a<) of B{. Further, a\ is the identity automorphism, as 

w i a i = (^ i a i ) _ 1 — ̂ i w T\ U{CL\ = y1a1(w1a1)~1 = u{vx
lvx = u{\ 

vja2 = (uxvx\ ax = vx
xvxux = u[ , vxax = ( u . ^ ) ^ 1 = v,; 

bja2 = bia^v^,)-1 = b{Vilv{ux
l = bxu[x, 

b{oc\ = b{a{(u{oc{)-
1 = b{v{-

1v{ = b{. 

This means that a t has a two-sided inverse and is consequently an automorphism 
of order 3 of B{. Form the splitting extension of Bx by an infinite cycle whose gene­
rator a{ induces ocx on B{: this is a group G{ generated by four elements u{, vx,b{,a{ 

with defining relations 

[u t , v19ut] = [u l9 vl,vl\ = i, ui1 = ur1, v!1 = vr\ 

b;i6= [u 1 ? ^] , ui1 = vx~\ vr = u^r\ br = b{V{-\ 

Again G{ is aperiodic and it is routine to verify that b2 and a\ are central in G,. 
Let A{, Cx be the cycles generated by a{ and b^ai respectively. Then Cx is central 
in Gx and misses B{ and Ax so that if \\f is the canonic homomorphism of G{ onto 
G0 = G{jCly then Bxi/t _̂  Bx and ax\j/ = a has infinite order. Thus we have proved 
the first part of the following lemma — the second is proved in a manner completely 
analagous to that of Lemma 2.6 (i): 

Lemma 2.9. In the group G0 generated by elements u, v, b, a with defining relations 

[u, v, u] = [u, v, v] = 1, ub = u"\ vb = v"1, b-16 = [u, v], 

u* = v-\ vfl = uv"\ ba = bv~\ a3 = b2, 

the subgroup B = Gp(u, v, b) is aperiodic and A = Gp(a) is infinite. 
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(ii) B n A = Gp(a3) = Gp(b2). 

We can now prove the main result. 

Theorem 2.10. G0 is aperiodic. 

Proof. Since B is normal in G0 and a3 e B, every element of G0 can be put in one 
of the forms h, ha, ha2 with he B. Obviously, if h is of finite order, h = 1 because B 
is aperiodic. We shall show first that every element of the form ha is of infinite order. 
As G/B is of order 3 so that (ha)3 e B, the element ha can have finite order if and only 
if (ha)3 = 1. Now 

(ha)2 = haha = haha~la2 = hha~la2, 

(ha)3 = hha~xa2ha = hha~1a2ha~2a3 

= hhQ-xha~2a3 

= hha-xha~2b2. 

It is easy to check that h can be expressed in the form 

h = uavp[u,v]'bd 

for suitable integers a, p, y, S. Once again there are two cases, depending on the 
parity of O\ 

(A) If S is even, bd is central so that as a3 is central, 

////''"7zfl~V = hh(,2hab2 

= uav(i(ua)a2(vp)a2(ina(v(i)a[u, v]3yb3d + 2 

= u'v^vu-^fir^v-^uv-y'u, v]3yb3S + 2 (from 2.7) 
= uavhairau-h-auh-p[u, v]-y+<Kfi)-<K*)b-* + 2. 

this from 2.4, where for any integer k, <l>(k) = k(k — l)/2. A little computation 
now gives 

hha']ha'2b2 = [|/jl,]
3>- + W)-«/'(«)+«2 + 2 ^ 3 i + 2 > 

If this is V then as [u, v] = b"16 and b has infinite order, 

33 + 2 = 16(3y + <£(/?) - 0(a) + a2 + 2a/?). 

But S = 26' so that 

3d' + 1 = 8(3y + #08) - 0(a) + a2 + 2a/?). 

We shall obtain a contradiction by showing that the right hand side of this equation 
is never congruent to 1 modulo 3. First, 

8(3y + <P(P) - <P(a) + a2 + 2a/?) = 2(<P(p) - 0(a) + a2 + 2a/?) (mod 3) 

= p(fi - 1) - a(a - 1) + 2a2 + ap (mod 3) 

= P2 + a2 + a - P + ap. 
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The rest is routine: one verifies that p2 + a2 + a - /? + a/? is always congruent 
to 0 or 2 modulo 3, in all the 9 cases arising out of the 3 congruences modulo 3 
possible for each of a and fi. 

Hence if 3 is even, ha is of infinite order. 

(B) If 3 is odd, say 3 = 26' + 1, then 

h = u"vfibz, 

where z = [u, v]yb2d is in the centre of G0. Then 

hha2hab2 = uavpb(ua2)\vayba2(ua)\vaybab2z\ 

and consideration of the image of this element in G0/Gp(u, v) shows it (the orginal 
element) to be of the form v'b5 + 6d' for some v' e Gp(u, v). If it is \, then by lemma 
2.6(i), b5 + 63' lies in GP(b16). This means that 5 + 63' is divisible by 16, which is 
a manifest contradiction. Thus hha~'ha~2b2 is never the unit element, and it follows 
that ha has infinite order. 

The proof concludes with the remark that ha2 must also have infinite order, since 

(ha2)2 = ha2ha2 = hha"V 
= hha~2a3a 

is of the form h'a with h! e B. 
It remains only to show that G0 is isomorphic with G. The defining relations 

of G0 in terms of the generators u, v, a, b are 

[u, v, u] = [u, v, v] = \, ub = u_1, vb = v"1, 

ua = v-1, va = uv"1, ba = bv"1, 

b-16 = [u, v], a3 = b2. 

From these it follows straight away that 

v = (b-l)ab = [a, b] 

u = vav = [a, b]a[a, b] = [a2, b] 

so that G0 is generates by a and b. One now readily verifies that the first 8 defining 
relations of G0 are consequences of the last two; these are precisely the relations 2A, 
so that in fact G and G0 are isomorphic. 

TO sum up, define a H-group to be one whose second derived group is centra/. \\ 1th the 
notation of [1], 

Theorem 2.11 [S\] n [(£] 3 [T>] n [<£]. 

3. The group J 

Here we shall only state results: the proofs are a matter of simple routine. 
We again start with a free second nilpotent group on two generators: 

H -= Gp(u, v; [u, v, u] = [u, v, v] = 1), 
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and form the splitting extension of H by a cycle of order 2 whose generator b induces 
the automorphism of order 2 of H generated by the mappings u->u_1, v -• v_1: 

H = G/?(u, v, b; [u, v, u] = [u, v, v] = V b2 = 1, u* = u"1, vb = v"1). 

In this u and v still generate a free second nilpotent group, so in particular [u, v] 
is of infinite order. Next form the splitting extension J of B be a cycle of order 3 
whose generator a induces the automorphism of B defined by the mappings 

u -> v" , v-»uv_1, b->bv_1: 

J is generated by u, v, a, b with the defining relations of B together with 

a
3 = V ua = v"1, ^ = Wi;-

1, #» = £-;--. 

Note (as with G) that v = [a, b], u = [a2, b] so that J is generated by a and b, and 
that [u, v] is central, as 

[u,v]b= [u -Sv - 1 ] = [u,v] 

[u, v]a = [v-1, uv-1] = [v-1, u] = [u, v]. 

This completes the example, except for the simple verification that the group J 
constructed here is in fact that mentioned in the introduction. 
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П О К Р Ы Т И Е Г Р У П П П О Л У Г Р У П П А М И 

Джеймс У а й г о л д 

Р е з ю м е 

Настоящая статья является продолжением статьи (1). В статье (1) введено понятие Ф-группы 
(это группа, являющаяся объединением попарно непересекающихся собственных подполу­
групп) и понятие ^-группы (это группа, которая имеет хотя бы один апериодический гомо­
морфный образ) и доказывается, что всякая 'З.-группа является ^-группой. В настоящей статье 
построена группа С, которая является ^-группой, но не является Ф-группой. Кроме того, 
построен пример группы с образующими конечного порядка, центр которой не является пе­
риодической группой. 
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