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MATEMATICKO-FYZIKALNY CASOPIS SAV, 12. 3. 1962

SEMIGROUP COVERINGS OF GROUPS 11

JAMES WIEGOLD, Manchester (England)

1. Introduction

The purpose of this note is to confirm two conjectures made in [1]. A groupis
called* a D-group if it is the union of non-empty pairwise disjoint proper subsemi-
groups, and an J-group if it has at least one aperiodic homomorphic image. It was
proved in [1] that every D-group is an J-group, and conjectured that the converse
is not true. We shall confirm this by showing that the group G generated by two
clements a, b with defining relations

a = b’ ab(a’h)’ ab® = 1 (L.1)

ia aperiodic — it was pointed out in [, page 11] that no group with defining rela-
tions like (1.1) can be a D-group: this fact is very easy to establish. The second derived
group J,(G) of G is the cycle generated by b'®, so that it is central and in particular G
is soluble of length 3.

The other conjecture concerned the existence of a group generated by elements
of finite order and having non-periodic centre. Here the construction is considerably
casier than that of G: in the group J generated by two elements a, b with defining
relations

a=b*=1, [lld’ b], [a,b]l. a] = [[[a*, b, [a, b]], b] = 1, (1.2)

the clement [[a?, b], [a, b]] — obviously central — has infinite order. This element
generates the second derived group of J, so that J is also soluble of length 3.
1 have been unable to construct metabelian examples.

2. The group G
Let us first examine the defining relations

a’ = b2, aba*ba*ba*ba*ba*bab* = 1

* All notation not explained here is to be found in [1].
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of G. As @® and b? are central in G, the second of these can be rewritten as
baba*ba*ba*ba*ba’bab = 1,
b-'b*a2a’ba*b~'b*a-'a*baa-2a*b-'b*a*ba'a*b~'b*ab = 1,
[b, a*] [b, a] [a%, b] [a, B] B%a'® = 1,
and finally as
[[a*, 8], [a, B]) 6'° = 1. Q.1

Now the derived group 6,(G) of G is generated by all commutators of the form
[@*, b*], where 4 and u are integers; but 4> and b* are central so that 2 may be taken
modulo 3 and u modulo 2, which means that &,(G) is generated by [a?, b] = u
and [a, b] = v. Relation 2.1 shows that [u, v] is central in G, which gives immediately
that 8,(G) is central and cyclic, with b'® as generator. Further, ,(G) is necessarily
second nilpotent — in fact it turns out that is a free second nilpotent group on the
generators u, v. We shall show that G is aperiodic by constructing it as a double
splitting extension with central amalgamations.

The starting-point is a free second nilpotent group H, on two generators, that is,
we take a group H, by two elements u, and v, with defining relations

[ug, Vg, Up]l = [Ug, Vg, U] = 1. (2.2)
The mapping B, of the generators of H, given by
Uofo = ug ', vofo = U(;l

clearly respects the defining relations (2.2), so it generates an automorphism (also
called f3,) of order 2 of H,. Let B, be the splitting extension* of H, by an infinite
cycle whose generator b, induces 8, on H,:

_ . b e R
By = Gp(uo, vo, by; [ug, vo, Uo] = [Ug, Vo, o] = 1, > = uy . ve" = v ). (2.3)
Then B,, as an extension of an aperiodic group by an aperiodic group, is aperiodic:

2 .
further, [u,, vy] and by are central, since
0 0 0

[uo, Uo]h“ = [uo_ls U(;l] = [ug, vol,
= = g = (00 = v
The first of these relations follows from the first of the identities
g™, K"l = [g, (™
(ghy" = g"h"[h, g™~ "2, (2.4)

valid for any integers m, n and any elements g, & of a second nilpotent group.

* In general, we write Gp(X; R) for the group generated by a set X of elements with defining
relation R, and Gp(X) if R is understood or unimportant.
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Clearly, as H, intersects the cycle generated by b, trivially, the centralcycle
generated by [uo, vo] b3 intersects H, and the cycle Gp(bo) trivially. Thus, if &
is the canonic homomorphism of B, onto B = B,/C,, then H = H,® ~ H,, and
b = by® has infinite order, so that:

2.5. In the group B generated by three elements u, v, b with defining relations
[u, v,u] = [u,v,v] =1, ub = -1, =1 [u,v] = b-'°,

the subgroup H = Gp(u, v) is free second nilpotent and b has infinite order.

Lemma 2.6. (i) In B, Gp(b) n H = Gp(b'®) = Gp([u, v)).

(ii) B is aperiodic.

Proof. (i) It is clear that H n Gp(b) = Gp(b'°). Let now x € H n Gp(b) so that
X = ho® = byd where hye H, and A is an integer. Then (hybg?*) @ =1 so that
hoby* is a power of [ug, vo] by®, say [ug, v,]°h4%%; hence by * = by®¢ so that x =
= b* = b='°%c Gp(b'®). This completes the proof of the first part.

(i) It is not difficult to see that every element of B can be written in the form

g = uvPu, v]'b°

with suitable integers o, f3, y, 6. We distinguish two cases:

(A) If 6 is even, b° is in the centre of B, and, as [u, v] is in the centre of B (both
these follow immediately from the fact that 4% is central in B,), then for any
interger a,

gn — (uxv[})n [IJ, U]n;'bnri

But (u*t®)" = v [u, v]® for some @, by 2.4; hence

gn — u:znvlfn[u’ v](-)’bnb'

for some @', If g" = 1 for some n #+ 0, then, as [u, v] = b~ ', ™" lies in the
cycle generated by b. The first part of the lemma then gives that u™v?" lies in the
cycle generated by [u, v], so that since H is free second nilpotent on u nad v, na =
= nfi = 0. Consequently « = # = 0, g = [u, v]’b°, so g lies in the cycle generated
by bh: and this means it can have finite order if and only if it is the unit element.

(B) If ¢ is odd, say 0 = 25’ + 1, then
g = w’vPblu, v]' b**.
so that
g = u b vPblu, v)*7b*
= u o (W) b2 u, 0%

Y R 2y 146042
= wlu=v=Pu, v]*7 p* +2,
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using throughout the fact that b” is central. Finally

& = ™ v [, o5
_ [u’ v]27+aﬂb46’ +2

— p-16Qv+ap)+45 42 (by 2.4)

__ p4d42_16¢
=) A

for some integer &. Now 40’ + 2 — 16¢ & 0 since 26’ + 1 * 8¢; hence g2 has
infinite order and some must g.

Thus we have proved that only the unit element of B is of finite order, and B
is aperiodic.

It will turn out that B is the normal closure of b in the original group G (we shall
not prove this) — hence the use of the letter 4 in defining B.

The next stage is to form a splitting extension of B by an infinite cycle. For clarity
at this point we take an isomorphic copy B, of B with generators u,, v,, b, and
defining realtions analagous to those given at 2.5. It is a matter of simple routine
to verify that the mapping o, of the generators of B, defined by

-1 -1 -1
Uy =0y, D10 = Uyl byay = byv,

respects the defining relations of B,. Thus o, generates an endomorphism (also
called o) of B,. Further, o3 is the identity automorphism, as

U8 = (u,ocl)‘1 = ulufl, ulaf = 1)1a1(ulotl)‘1 = uluflvl = u; l

vt = oy Vo = oo =t o) = () = L
b = byay(0,2)"" = by "o = by l =
byai = byoy ()~ = byo o, = by.

This means that o, has a two-sided inverse and is consequently an automorphisin
of order 3 of B,. Form the splitting extension of B; by an infinite cycle whose genc-
rator a, induces «; on B, : this is a group G generated by four elements u, ., v,.b,.q,
with defining relations

lug, v, uy] = [ug, v, 0] =1, u'{‘ :ufl» l”i' = L';l~ } 5 e

bi'o = [u, v, ul =o', o =wpr', by =bul (28)
Again G, is aperiodic and it is routine to verify that b} and «} are central in G, .
Let A,, C, be the cycles generated by a, and b; %a; respectively. Then C, is central
in G, and misses B, and A, so that if ¥ is the canonic homomorphism of G, onto
G, = G,/C,, then By ~ B, and a,{y = a has infinite order. Thus we have proved
the first part of the following lemma — the second is proved in a manner completely
analagous to that of Lemma 2.6 (i):

Lemma 2.9. In the group G, generated by elements u, v, b, a with defining relations

[u, v, u} = [u,v,v] = 1, u =ut, =", b1t

= [u, v],
u =1, v = u!, b = bv?, a® = b2,

the subgroup B = Gp(u, v, b) is aperiodic and A = Gp(a) is infinite.
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(ii) BN 4 = Gp(a®) = Gp(b?).
We can now prove the main result.

Theorem 2.10. G, is aperiodic.

Proof. Since B is normal in G, and a® € B, every element of G, can be put in one
of the forms h, ha, ha® with h € B. Obviously, if 4 is of finite order, # = 1 because B
is aperiodic. We shall show first that every element of the form 4a is of infinite order.
As G/B is of order 3 so that (ha)® € B, the element ha can have finite order if and only

if (ha)® = 1. Now
(ha)* = haha = haha='a* = hh" 'a?,

(ha)® = hh* 'a*ha = hh" 'a*ha=%d*
= hh""'h*"’a’
= hh*"'h b
It is casy to check that /i can be expressed in the form

h = u*Plu, v] b°

for suitable integers «, f3, y, 0. Once again there are two cases, depending on the

parity of d.

(A) If & is even, b’ is central so that as a> is central,
hh Wb = hh* h'b?
= 1P (W) (W W) (0F) [u, 1]’ b0 +2
— o ou=YuPo= =Y [u, 0] 7hY0+?

—x, —f, - - 3y - 3042
— LIIUﬁUiH 0, ﬂU ILI/}U /}[Ll, 17] ¥+ DB ll'(z)b J 4 :

(from 2.7)

this from 2.4, where for any integer k, ®(k) = k(k — 1)/2. A little computation

now gives

q-2

/l/]“ - lhz b2 — [L{, U]:;;.+q.(m_r[;(1)+12+21ﬂb35+ 2.

If this is 1, then as [u, v] = ='° and b has infinite order,

30 + 2 = 163y + @(f) — P(2) + o> + 2xf3).

But 0 = 20’ so that
35 + 1 =803y + () — P(2) + o + 2ap).

We shall obtain a contradiction by showing that the right hand side of this equation

is never congruent to 1 modulo 3. First,

833y + D(f) — P(a) + o + 2ap)

il

=B +a® +a—f + ap.

2AP(B) — P(2) + o + 2ap)
BB — 1) —a(a — 1) + 20 + af

(mod 3)
(mod 3)
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The rest is routine: one verifies that f* + o> + a — f§ + af is always congruent
to 0 or 2 modulo 3, in all the 9 cases arising out of the 3 congruences modulo 3
possible for each of o and f.

Hence if 6 is even, ha is of infinite order.

(B) If 6 is odd, say 6 = 26’ + 1, then

h = uvPbz,
where z = [u, v]’b*? is in the centre of G,. Then
hhb? = uoPb(u® ) (™) b (U (1" bb2 23,

and consideration of the image of this element in G,/Gp(u, v) shows it (the orginal
element) to be of the form v'6°+%" for some v’ € Gp(u, v). If it is 1, then by lemma
2.6(i), b>*+°% lies in Gp(b'®). This means that 5 + 65’ is divisible by 16, which is
a manifest contradiction. Thus 4A°~ 'h“ ’b? is never the unit element, and it follows
that ha has infinite order.

The proof concludes with the remark that 4a® must also have infinite order, since

(ha*)* = ha*ha® = hh*~’a*
= hh*’a’a

is of the form A'a with 4’ € B.

It remains only to show that G, is isomorphic with G. The defining relations
of G, in terms of the generators u, v, a, b are

[u, v,u] = [u,v,v] =1, uw=u", v=v
u' = v, v* = up—! b = bv"',
b= =[u,v], o’ =b
From these it follows straight away that
v =(b"")b = [a, b]
u = v°v = [a, b]°[a, b] = [a*, b]

so that G, is generates by a and b. One now readily verifies that the first 8 defining
relations of G, are consequences of the last two; these are precisely the relations 2.1,
so that in fact G and G, are isomorphic.

To sum up, define a C-group to be one whose second derived group is central. With the
notation of [1],

Theorem 2.11 [8] N [€] > [D] N [€].

3. The group J

Here we shall only state results: the proofs are a matter of simple routine.
We again start with a free second nilpotent group on two generators:

H = Gp(u, v; [u, v, u] = [u,v,v] = 1),
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and form the splitting extension of H by a cycle of order 2 whose generator b induces
the automorphism of order 2 of H generated by the mappings u - u=', v - v~ ':

1

H = Gp(u,v,b; [uyv,u] = [u,v,0] =1, b> =1, u’ =u=", v® = v-").

In this » and v still generate a free second nilpotent group, so in particular [u, v]
is of infinite order. Next form the splitting extension J of B be a cycle of order 3
whose generator a induces the automorphism of B defined by the mappings

_1
u—->v-, v - w?, b bv':

J is generated by u, v, a, b with the defining relations of B together with

3 —1 ~1 -1
a =1, u' =v"", v* = uv b = bv~".

B

Note (as with G) that v = [a, b], u = [a?, b] so that J is generated by a and b, and
that [u, v] is central, as

[u, v]° = [u-?t, v”l] = [u, v]

[w, 0" = [0~ ", wo="] = [0=", 4] = [u, v].

This completes the example, except for the simple verification that the group J
constructed here is in fact that mentioned in the introduction.
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MNOKPBITUE I'PYIII NOJNIYTPYNITAMU

Jxeitmc Yaironn

Pesome

Hactoswas cratbs saBiaseTcs npogosnkenuem ctathu (1). B cratbe (1) BBeAeHO NOHATHE T-Ipynnibl
(O10 rpynna, sBAAIOWAACA OObEAMHEHHEM IMOMAPHO HENCPECEKAOIUMXC COOCTBEHHBIX MOAMOJY-
rpynn) u NOHATHE \\-rpynnsl (3TO Tpynna, KOTopas UMeeT XOTsi Obl OJUH anepuoauvecKuit roMo-
MopdHbIit 06pa3) U A0Ka3bIBACTCS, 4TO BCsikass T-rpyra sBNseTcsi -rpynoi. B Hactosiei craTbe
nocrpoeHa rpynna G, KoTopas siBAS€TCs (-FPYNNoi, HO He sBiseTcs T-rpynmnoit. Kpome Toro,
NOCTPOEH MPUMEDP TPYMIbl ¢ OOPA3YIOWMMHU KOHEYHOTO TMOPSAAKA, UEHTP KOTOPOU HE sIBNSETCA Ie-
PHOAMYECKOW Tpynmnou.
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