James Wiegold Semigroup Coverings of Groups. II.

Matematicko-fyzikálny časopis, Vol. 12 (1962), No. 3, 217--223

Persistent URL: http://dml.cz/dmlcz/126321

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1962

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

SEMIGROUP COVERINGS OF GROUPS II

JAMES WIEGOLD, Manchester (England)

1. Introduction

The purpose of this note is to confirm two conjectures made in [1]. A group is called * a \mathfrak{D} -group if it is the union of non-empty pairwise disjoint proper subsemigroups, and an \mathfrak{F} -group if it has at least one aperiodic homomorphic image. It was proved in [1] that every \mathfrak{D} -group is an \mathfrak{F} -group, and conjectured that the converse is not true. We shall confirm this by showing that the group G generated by two elements a, b with defining relations

$$a^{3} = b^{2}, \qquad ab(a^{2}b)^{5} ab^{2} = 1$$
 (1.1)

ia aperiodic – it was pointed out in [1, page 11] that no group with defining relations like (1.1) can be a \mathfrak{D} -group: this fact is very easy to establish. The second derived group $\delta_2(G)$ of G is the cycle generated by b^{16} , so that it is central and in particular G is soluble of length 3.

The other conjecture concerned the existence of a group generated by elements of finite order and having non-periodic centre. Here the construction is considerably easier than that of G: in the group J generated by two elements a, b with defining relations

$$a^{3} = b^{2} = 1,$$
 [[[a^{2}, b], [a, b]], a] = [[[a^{2}, b], [a, b]], b] = 1, (1.2)

the element $[[a^2, b], [a, b]]$ – obviously central – has infinite order. This element generates the second derived group of J, so that J is also soluble of length 3.

I have been unable to construct metabelian examples.

2. The group G

Let us first examine the defining relations

$$a^3 = b^2, \qquad aba^2ba^2ba^2ba^2ba^2bab^2 = 1$$

* All notation not explained here is to be found in [1].

of G. As a^3 and b^2 are central in G, the second of these can be rewritten as

$$baba^{2}ba^{2}ba^{2}ba^{2}ba^{2}bab = 1,$$

$$b^{-1}b^{2}a^{-2}a^{3}ba^{2}b^{-1}b^{2}a^{-1}a^{3}baa^{-2}a^{3}b^{-1}b^{2}a^{2}ba^{-1}a^{3}b^{-1}b^{2}ab = 1,$$

$$[b, a^{2}] [b, a] [a^{2}, b] [a, b] b^{8}a^{12} = 1,$$

ly as

and finally as

$$[[a2, b], [a, b]] b16 = 1.$$
(2.1)

Now the derived group $\delta_1(G)$ of G is generated by all commutators of the form $[a^{\lambda}, b^{\mu}]$, where λ and μ are integers; but a^3 and b^2 are central so that λ may be taken modulo 3 and μ modulo 2, which means that $\delta_1(G)$ is generated by $[a^2, b] = u$ and [a, b] = v. Relation 2.1 shows that [u, v] is central in G, which gives immediately that $\delta_2(G)$ is central and cyclic, with b^{16} as generator. Further, $\delta_1(G)$ is necessarily second nilpotent – in fact it turns out that is a free second nilpotent group on the generators u, v. We shall show that G is aperiodic by constructing it as a double splitting extension with central amalgamations.

The starting-point is a free second nilpotent group H_0 on two generators, that is, we take a group H_0 by two elements u_0 and v_0 with defining relations

$$[u_0, v_0, u_0] = [u_0, v_0, v_0] = 1.$$
(2.2)

The mapping β_0 of the generators of H_0 given by

$$u_0\beta_0 = u_0^{-1}, \qquad v_0\beta_0 = v_0^{-1}$$

clearly respects the defining relations (2.2), so it generates an automorphism (also called β_0) of order 2 of H_0 . Let B_0 be the splitting extension* of H_0 by an infinite cycle whose generator b_0 induces β_0 on H_0 :

$$B_0 = Gp(u_0, v_0, b_0; [u_0, v_0, u_0] = [u_0, v_0, v_0] = 1, u_0^{b_0} = u_0^{-1}, v_0^{b_0} = v_0^{-1}).$$
(2.3)

Then B_0 , as an extension of an aperiodic group by an aperiodic group, is aperiodic: further, $[u_0, v_0]$ and b_0^2 are central, since

$$[u_0, v_0]^{b_0} = [u_0^{-1}, v_0^{-1}] = [u_0, v_0],$$

$$u_0^{b_0^2} = (u_0^{-1})^{b_0} = u_0, \qquad v_0^{b_0^2} = (v_0^{-1})^{b_0} = v_0$$

The first of these relations follows from the first of the identities

$$[g^{m}, h^{n}] = [g, h]^{mn}$$

$$(gh)^{m} = g^{m}h^{m}[h, g]^{m(m-1)/2},$$
 (2.4)

valid for any integers m, n and any elements g, h of a second nilpotent group.

^{*} In general, we write Gp(X; R) for the group generated by a set X of elements with defining relation R, and Gp(X) if R is understood or unimportant.

Clearly, as H_0 intersects the cycle generated by b_0 trivially, the centralcycle generated by $[u_0, v_0] b_0^{16}$ intersects H_0 and the cycle $Gp(b_0)$ trivially. Thus, if Φ is the canonic homomorphism of B_0 onto $B = B_0/C_0$, then $H = H_0\Phi \simeq H_0$, and $b = b_0\Phi$ has infinite order, so that:

2.5. In the group B generated by three elements u, v, b with defining relations

$$[u, v, u] = [u, v, v] = 1,$$
 $u^b = u^{-1},$ $v^b = v^{-1},$ $[u, v] = b^{-16},$

the subgroup H = Gp(u, v) is free second nilpotent and b has infinite order.

Lemma 2.6. (i) In B, $Gp(b) \cap H = Gp(b^{16}) = Gp([u, v])$. (ii) B is aperiodic.

Proof. (i) It is clear that $H \cap Gp(b) \supseteq Gp(b^{16})$. Let now $x \in H \cap Gp(b)$ so that $x = h_0 \Phi = b_0^{\lambda} \Phi$ where $h_0 \in H_0$ and λ is an integer. Then $(h_0 b_0^{-\lambda}) \Phi = 1$ so that $h_0 b_0^{-\lambda}$ is a power of $[u_0, v_0] b_0^{16}$, say $[u_0, v_0]^{\xi} b_0^{16\xi}$; hence $b_0^{-\lambda} = b_0^{16\xi}$ so that $x = b^{\lambda} = b^{-16\xi} \in Gp(b^{16})$. This completes the proof of the first part.

(ii) It is not difficult to see that every element of B can be written in the form

$$g = u^{\alpha} v^{\beta} [u, v]^{\gamma} b^{\delta}$$

with suitable integers α , β , γ , δ . We distinguish two cases:

(A) If δ is even, b^{δ} is in the centre of *B*, and, as [u, v] is in the centre of *B* (both these follow immediately from the fact that b_0^2 is central in B_0), then for any interger *n*,

$$g^n = (u^x v^\beta)^n [u, v]^{n\gamma} b^{n\delta}$$

But $(u^{\alpha}v^{\beta})^n = u^{\alpha}v^{\beta n}[u, v]^{(\alpha)}$ for some Θ , by 2.4; hence

$$g^n = u^{\alpha n} v^{\beta n} [u, v]^{(\beta)'} b^{n\delta}$$

for some Θ' . If $g^n = 1$ for some $n \neq 0$, then, as $[u, v] = b^{-16}$, $u^{\alpha n} v^{\beta n}$ lies in the cycle generated by b. The first part of the lemma then gives that $u^{\alpha n} v^{\beta n}$ lies in the cycle generated by [u, v], so that since H is free second nilpotent on u nad v, $n\alpha = n\beta = 0$. Consequently $\alpha = \beta = 0$, $g = [u, v]^{\gamma} b^{\delta}$, so g lies in the cycle generated by b; and this means it can have finite order if and only if it is the unit element.

(B) If δ is odd, say $\delta = 2\delta' + 1$, then

$$g = u^{\circ} v^{\beta} b[u, v]^{\gamma} b^{2\delta'}.$$

so that

$$g^{2} = u^{\alpha}v^{\beta}bu^{\alpha}v^{\beta}b[u, v]^{2\gamma}b^{4\delta'}$$
$$= u^{\alpha}v^{\beta}(u^{\alpha}v^{\beta})^{h-1}b^{2}[u, v]^{2\gamma}b^{4\delta'}$$
$$= u^{\alpha}v^{\beta}u^{-\alpha}v^{-\beta}[u, v]^{2\gamma}b^{4\delta'+2},$$

219

using throughout the fact that b^2 is central. Finally

$$g^{2} = [u^{-\alpha}, v^{-\beta}] [u, v]^{2\gamma} b^{4\delta' + 2}$$

= $[u, v]^{2\gamma + \alpha\beta} b^{4\delta' + 2}$
= $b^{-16(2\gamma + \alpha\beta) + 4\delta' + 2}$ (by 2.4)
= $b^{4\delta' + 2 - 16\varepsilon}$,

for some integer ε . Now $4\delta' + 2 - 16\varepsilon \neq 0$ since $2\delta' + 1 \neq 8\varepsilon$; hence g^2 has infinite order and some must g.

Thus we have proved that only the unit element of B is of finite order, and B is aperiodic.

It will turn out that B is the normal closure of b in the original group G (we shall not prove this) – hence the use of the letter b in defining B.

The next stage is to form a splitting extension of B by an infinite cycle. For clarity at this point we take an isomorphic copy B_1 of B with generators u_1 , v_1 , b_1 and defining realtions analagous to those given at 2.5. It is a matter of simple routine to verify that the mapping α_1 of the generators of B_1 defined by

$$u_1 \alpha_1 = v_1^{-1}, \quad v_1 \alpha_1 = u_1 v_1^{-1}, \quad b_1 \alpha_1 = b_1 v_1^{-1}$$

respects the defining relations of B_1 . Thus α_1 generates an endomorphism (also called α_1) of B_1 . Further, α_1^3 is the identity automorphism, as

$$u_{1}\alpha_{1}^{2} = (v_{1}\alpha_{1})^{-1} = v_{1}u_{1}^{-1}, \quad u_{1}\alpha_{1}^{3} = v_{1}\alpha_{1}(u_{1}\alpha_{1})^{-1} = u_{1}v_{1}^{-1}v_{1} = u_{1}; v_{1}\alpha_{1}^{2} = (u_{1}v_{1}^{-1})\alpha_{1} = v_{1}^{-1}v_{1}u_{1}^{-1} = u_{1}^{-1}, \quad v_{1}\alpha_{1}^{3} = (u_{1}\alpha_{1})^{-1} = v_{1}; b_{1}\alpha_{1}^{2} = b_{1}\alpha_{1}(v_{1}\alpha_{1})^{-1} = b_{1}v_{1}^{-1}v_{1}u_{1}^{-1} = b_{1}u_{1}^{-1}, b_{1}\alpha_{1}^{3} = b_{1}\alpha_{1}(u_{1}\alpha_{1})^{-1} = b_{1}v_{1}^{-1}v_{1} = b_{1}.$$

$$(2.7)$$

This means that α_1 has a two-sided inverse and is consequently an automorphism of order 3 of B_1 . Form the splitting extension of B_1 by an infinite cycle whose generator a_1 induces α_1 on B_1 : this is a group G_1 generated by four elements u_1, v_1, b_1, a_1 with defining relations

$$\begin{bmatrix} u_1, v_1, u_1 \end{bmatrix} = \begin{bmatrix} u_1, v_1, v_1 \end{bmatrix} = 1, \qquad u_1^{b_1} = u_1^{-1}, \qquad v_1^{b_1} = v_1^{-1}, \\ b_1^{-16} = \begin{bmatrix} u_1, v_1 \end{bmatrix}, \qquad u_1^{a_1} = v_1^{-1}, \qquad v_1^{a_1} = u_1 v_1^{-1}, \qquad b_1^{a_1} = b_1 v_1^{-1}. \end{bmatrix}$$
(2.8)

Again G_1 is aperiodic and it is routine to verify that b_1^2 and a_1^3 are central in G_1 . Let A_1 , C_1 be the cycles generated by a_1 and $b_1^{-2}a_1^3$ respectively. Then C_1 is central in G_1 and misses B_1 and A_1 so that if ψ is the canonic homomorphism of G_1 onto $G_0 = G_1/C_1$, then $B_1\psi \simeq B_1$ and $a_1\psi = a$ has infinite order. Thus we have proved the first part of the following lemma – the second is proved in a manner completely analagous to that of Lemma 2.6 (i):

Lemma 2.9. In the group G_0 generated by elements u, v, b, a with defining relations

$$[u, v, u] = [u, v, v] = 1, \qquad u^{b} = u^{-1}, \qquad v^{b} = v^{-1}, \qquad b^{-16} = [u, v]$$
$$u^{a} = v^{-1}, \qquad v^{a} = uv^{-1}, \qquad b^{a} = bv^{-1}, \qquad a^{3} = b^{2},$$

the subgroup B = Gp(u, v, b) is aperiodic and A = Gp(a) is infinite.

(ii) $B \cap A = Gp(a^3) = Gp(b^2)$.

We can now prove the main result.

Theorem 2.10. G_0 is aperiodic.

Proof. Since B is normal in G_0 and $a^3 \in B$, every element of G_0 can be put in one of the forms h, ha, ha^2 with $h \in B$. Obviously, if h is of finite order, h = 1 because B is aperiodic. We shall show first that every element of the form ha is of infinite order. As G/B is of order 3 so that $(ha)^3 \in B$, the element ha can have finite order if and only if $(ha)^3 = 1$. Now

$$(ha)^{2} = haha = haha^{-1}a^{2} = hh^{a^{-1}}a^{2},$$

$$(ha)^{3} = hh^{a^{-1}}a^{2}ha = hh^{a^{-1}}a^{2}ha^{-2}a^{3}$$

$$= hh^{a^{-1}}h^{a^{-2}}a^{3}$$

$$= hh^{a^{-1}}h^{a^{-2}}b^{2}.$$

It is easy to check that h can be expressed in the form

$$h = u^{\alpha} v^{\beta} [u, v]^{\gamma} b^{\delta}$$

for suitable integers α , β , γ , δ . Once again there are two cases, depending on the parity of δ .

(A) If δ is even, b^{δ} is central so that as a^{3} is central, $hh^{a^{-1}}h^{a^{-2}}b^{2} = hh^{a^{2}}h^{a}b^{2}$ $= u^{x}v^{\beta}(u^{x})^{a^{2}}(v^{\beta})^{a^{2}}(u^{x})^{a}(v^{\beta})^{a}[u, v]^{3\gamma}b^{3\delta+2}$ $= u^{x}v^{\beta}(vu^{-1})^{x}u^{-\beta}v^{-\alpha}(uv^{-1})^{\beta}[u, v]^{3\gamma}b^{3\delta+2}$ (from 2.7) $= u^{x}v^{\beta}v^{\alpha}u^{-\alpha}u^{-\beta}v^{-\alpha}u^{\beta}v^{-\beta}[u, v]^{3\gamma+\phi(\beta)-\phi(\alpha)}b^{3\delta+2};$

this from 2.4, where for any integer k, $\Phi(k) = k(k - 1)/2$. A little computation now gives

$$hh^{a^{-1}}h^{a^{-2}}b^{2} = [u, v]^{\Im_{\gamma} + \Phi(\beta) - \Phi(\alpha) + \alpha^{2} + 2\alpha\beta}b^{3\delta + 2}.$$

If this is 1, then as $[u, v] = b^{-16}$ and b has infinite order,

$$3\delta + 2 = 16(3\gamma + \Phi(\beta) - \Phi(\alpha) + \alpha^2 + 2\alpha\beta).$$

But $\delta = 2\delta'$ so that

$$3\delta' + 1 = 8(3\gamma + \Phi(\beta) - \Phi(\alpha) + \alpha^2 + 2\alpha\beta).$$

We shall obtain a contradiction by showing that the right hand side of this equation is never congruent to 1 modulo 3. First,

$$8(3\gamma + \Phi(\beta) - \Phi(\alpha) + \alpha^2 + 2\alpha\beta) \equiv 2(\Phi(\beta) - \Phi(\alpha) + \alpha^2 + 2\alpha\beta) \pmod{3}$$

=

$$\beta(\beta-1) - \alpha(\alpha-1) + 2\alpha^2 + \alpha\beta \pmod{3}$$

$$=\beta^2+\alpha^2+\alpha-\beta+\alpha\beta.$$

The rest is routine: one verifies that $\beta^2 + \alpha^2 + \alpha - \beta + \alpha\beta$ is always congruent to 0 or 2 modulo 3, in all the 9 cases arising out of the 3 congruences modulo 3 possible for each of α and β .

Hence if δ is even, *ha* is of infinite order.

(B) If δ is odd, say $\delta = 2\delta' + 1$, then

$$h = u^{\alpha} v^{\beta} b z,$$

where $z = [u, v]^{\gamma} b^{2\delta'}$ is in the centre of G_0 . Then

$$hh^{a^{2}}h^{a}b^{2} = u^{\alpha}v^{\beta}b(u^{a^{2}})^{\alpha}(v^{a^{2}})^{\beta}b^{a^{2}}(u^{a})^{\alpha}(v^{a})^{\beta}b^{a}b^{2}z^{3},$$

and consideration of the image of this element in $G_0/Gp(u, v)$ shows it (the orginal element) to be of the form $v'b^{5+6\delta'}$ for some $v' \in Gp(u, v)$. If it is 1, then by lemma 2.6(i), $b^{5+6\delta'}$ lies in $Gp(b^{16})$. This means that $5 + 6\delta'$ is divisible by 16, which is a manifest contradiction. Thus $hh^{a^{-1}}h^{a^{-2}}b^2$ is never the unit element, and it follows that ha has infinite order.

The proof concludes with the remark that ha^2 must also have infinite order, since

$$(ha^{2})^{2} = ha^{2}ha^{2} = hh^{a^{-2}}a^{4}$$

= $hh^{a^{-2}}a^{3}a$

is of the form h'a with $h' \in B$.

It remains only to show that G_0 is isomorphic with G. The defining relations of G_0 in terms of the generators u, v, a, b are

$$[u, v, u] = [u, v, v] = 1, \qquad u^{b} = u^{-1}, \qquad v^{b} = v^{-1}, u^{a} = v^{-1}, \qquad v^{a} = uv^{-1}, \qquad b^{a} = bv^{-1}, b^{-16} = [u, v], \qquad a^{3} = b^{2}.$$

From these it follows straight away that

$$v = (b^{-1})^a b = [a, b]$$

 $u = v^a v = [a, b]^a [a, b] = [a^2, b]$

so that G_0 is generates by *a* and *b*. One now readily verifies that the first 8 defining relations of G_0 are consequences of the last two; these are precisely the relations 2.1, so that in fact G and G_0 are isomorphic.

To sum up, define a \mathfrak{C} -group to be one whose second derived group is central. With the notation of [1],

Theorem 2.11 $[\mathfrak{K}] \cap [\mathfrak{C}] \supset [\mathfrak{D}] \cap [\mathfrak{C}].$

3. The group J

Here we shall only state results: the proofs are a matter of simple routine. We again start with a free second nilpotent group on two generators:

$$H = Gp(u, v; [u, v, u] = [u, v, v] = 1),$$

and form the splitting extension of H by a cycle of order 2 whose generator b induces the automorphism of order 2 of H generated by the mappings $u \to u^{-1}$, $v \to v^{-1}$:

$$H = Gp(u, v, b; [u, v, u] = [u, v, v] = 1, b^{2} = 1, u^{b} = u^{-1}, v^{b} = v^{-1}).$$

In this u and v still generate a free second nilpotent group, so in particular [u, v] is of infinite order. Next form the splitting extension J of B be a cycle of order 3 whose generator a induces the automorphism of B defined by the mappings

$$u \to v^{-1}, \quad v \to uv^{-1}, \quad b \to bv^{-1}:$$

J is generated by u, v, a, b with the defining relations of B together with

$$a^{3} = 1$$
, $u^{a} = v^{-1}$, $v^{a} = uv^{-1}$, $b^{a} = bv^{-1}$.

Note (as with G) that v = [a, b], $u = [a^2, b]$ so that J is generated by a and b, and that [u, v] is central, as

$$[u, v]^{o} = [u^{-1}, v^{-1}] = [u, v]$$
$$[u, v]^{a} = [v^{-1}, uv^{-1}] = [v^{-1}, u] = [u, v].$$

This completes the example, except for the simple verification that the group J constructed here is in fact that mentioned in the introduction.

REFERENCES

 [1] Wiegold James, Semigroup coverings of groups, Matematicko-fyzikálny časopis SAV 11 (1961), 3 - 13.

Received January 27, 1962.

Department of Mathematics, Manchester College of Science and Technology, Manchester I, England

ПОКРЫТИЕ ГРУПП ПОЛУГРУППАМИ

Джеймс Уайголд

Резюме

Настоящая статья является продолжением статьи (1). В статье (1) введено понятие \mathfrak{D} -группы (это группа, являющаяся объединением попарно непересекающихся собственных подполугрупп) и понятие \mathfrak{T} -группы (это группа, которая имеет хотя бы один апериодический гомоморфный образ) и доказывается, что всякая \mathfrak{T} -группа является \mathfrak{T} -группой. В настоящей статье построена группа *G*, которая является \mathfrak{T} -группой, но не является \mathfrak{D} -группой. Кроме того, построен пример группы с образующими конечного порядка, центр которой не является периодической группой.