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MATEMATICKO-FYZIKALNY ČASOPIS SAV, 11. 1, 1961 

S E M I G R O U P COVERINGS OF G R O U P S 

By J A M E S W I E G O L D , Manchester (England) 

1. Introduction 

This note arose out of a problem posed some years ago in this journal by Prof. 
Stefan Schwarz in his paper [1] on semigroups satisfying certain generalisations 
o\^ the cancellation law. There it was found necessary to consider semigroups which 
can be covered by pairwise disjoint proper subsemigroups all satisfying one of the 
various cancellation laws — right, left, two-sided or a certain generalisation whose 
precise nature does not concern us here — and the problem naturally arose as to 
what structures are possible for such semigroups. The class formed by them is very 
wide, and a complete characterisation seems to be a difficult undertaking; on the 
other hand, Prof. Schwarz gave characterisations o\^ commutative and of periodic 
semigroups with these properties. This led to a determination of all abelian groups 
which are unions of pairwise disjoint proper subsemigroups (all the cancellation 
laws are then automatically satisfied): they are simply the abelian groups which 
have elements of infinite order. This is certainly not valid in the domain of non-
abelian groups, and it is the aim of the present note to discuss the same problem, 
together with others related to it, in this more general situation. 

The author's first contact with the subject was in the New Scottish Book, where 
he misread the problem to read: what groups can be covered by subsemigroups none 
of which is a subgroup? It turns out that this class of groups is relevant, in that 
it properly contains the class just mentioned. Let us define four group-theoretical 
properties, to be denoted by German capitals — for details see § 2: 

3: G is the union of subsemigroups none of which is a subgroup; 

VV. G has at least one aperiodic homomorphic image; 
T: C7 is the union of pairwise disjoint proper subsemigroups; 
8: G is not periodic, and has the property that whenever two elements a and b 

have positive powers in common, then ab and a also have positive powers in common. 
Obviously, periodic groups satisfy none of these properties, but on the other 

hand, there exist (§ 2) non-periodic groups which also satisfy none of them. Any 
group possessing a property denoted by % is called a ^-group, and the class of all 



^-groups is denoted by [f]- t)ne of our main results is the foiiowing chain of in­

clusions: 

p ] -> [•] -- f o = [31. 

and that they remain valid when ail groups considered arc me.aheham it seem > 

likely that the middle inclusion can bo strong!bene-;! to a strict one, but \ hive boon 

unable to confirm this point. Fo;* many groups Vie lour properties coincide: f v 

instance every non-periodic ^oy^p in which ail the two-generator subgroup--* ere 

niipotcm or free (this is meant to include the possibility o r iwo-jenerator free a • _i 

iwo-generator nilpotenl non-abehao subgroups in owe and the same group) o an 

2-group. 

Apart from the partial characterisation given by this last-mentioned iact. t h : 

result;; are of a sketchy uaUrc, usually iaking the form of conditions vufiicient (but 

not necessary) or necessary (but not sufficient) that a group satisfy one or omcr 

property. A simple (hough iar-renching result - and one v\hich perhaps accounts 

for some of the difficuliicN encountered - is that if ft denotes one of the properties 

.1, oh ^h then any group whicn can be mapped homomorphlcaily onto a ^-group 

is likewise a yT-group. It means, of course, that tno classes arc exceedingly wide. 

and for instance that any group can be embedded in a g roup satisfying ail three 

properties o, p, X simultaneously. 

I thank Dr M. F. Newman for some useful comment*. 

2. Preliminaries 

2.1. Groups will be written nmiliphcabvciv, with ! standing for the unit clement 

and £ for the unit subgroup of ail groups occurring. If ail elements of the group G 

are of finite order, we say that G is periodic; if G # E and only the unit element !UN 

finite order, that G is aperiodic; while turn-periodic is to imply that some clement 

has infinite order, if g, h arc elements of G, the transform h~ ]gh of g by // is denoted 

by g\ and the commutator g ]h ~'gh by |g. //]. The /?-fold commutator ho . v, \-] 

is defined inductively by the ruic [x j , .v ? , ...,.w,] = ["[v. , x2 w,. T, w,, j : that is, 

commutators are ieft-normed. It is easy to see that for any group elements g. !i and 

any integer n, 

<*'T -•-•• I::'-'/'. ( 2 . D 

2.2, If A and B are subsets of the group G, the symbol [A, B] denotes the subgroup 
of G generated by all commutators of the form [O, b], with a e A and he B. The 
lower central series of G is 

G = 7:>(G) ^ y-M') ^ ••• ^ 7niG) ~^ •••• 

where yn+l(G) = [G. yn(G)\ for // li 0: G is mlpotent of class // if the lower central 
series terminates in E after a finite number of steps, and n is the first integer for 
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which y„(G) — E. In this case y„... ,(G) is contained in the centre of (J. :.:_2 a> ;. coroll­

ary \\c conclude by an easy induction argument on k that 

!-V';..Y2 vfI] - [ .v^.v, , . . . , v„] = [ . v , , ^ , v j (2.2) 

l\>r amy integer /• unci any elements x,,x2, ...,.v,, of a niipotent group of class n. 

We shall need the following facts about the lower central scries and niipotent 
gioiipv. The first two arc very simple and well-known, the others, as far as I know, 
new: 

2.}. [2, lemma 1.7] Suppose that the grout) G is generated by a subset X if its 

dements. Then, for each n = 1, y,;(G) is generated by all tiansforms by elements of (i 

o/'ali comnuuators of the form [x{, ,v?, , ., .vM , . ] , where x-, e X for i == J. 2, ...,/? H- 1. 

2.4. |2, lemma 1.2] Ear any normal subgroup N of the group G and any integer 

u T 0, y„(G"'V) =•- y„(G)/V/N. 

Leinni?'. 7.5° Let G be a niipotent group generated hv two elements which have 

commun'ng non-zero powers. Then yffJ) is finite. 

Proof . We proceed by induction on the nilpotency class of G. For class I the 

result is trivial, since in that case y,(G) is the unit group. Suppose then that we 

know the result for niipotent groups of class less than n, and let G be niipotent of 

class // and generated by two elements a, b such that [a\ b!] = 1 for some non-zero 

integers _, /J. Consider the factor-group G/y;i . j(G). By 2.4, it is niipotent of class 

n — 1, and so by the inductive hypothesis its derived group 7i(G)/y„- i(G) is finite. 

li remains now to show that the subgroup y,,_,(G) is finite. By 2.1, it is generated 

by all transforms of all commutators of the form [x, , N2 NJ, where each argu­

ment is a or b; but these elements are all central, so that we have shown that yn_x(G) 

is a finitely generated abelian group. Next, equations 2.2 tell us that each of these 

generators is of finite order, since 

1 = [ « V / / , . v 3 , . . . . . v „ ] = [>, / , , . v , , . . . , . v„ f ; . 

Consequently yn_t(G)^ and therefore y^G ) , is finite. This completes the proof of 

the lemma. 

It may be remarked that the conclusion of lemma 2.5 holds for any niipotent 
group generated by finitely many elements with commuting non-zero powers. 

Lemma 2.6, If a niipotent group G is generated by two elements a, b which have 
positive powers in common, then ab and a also have positive powers in common. 

Proof . We again proceed by induction on the nilpotency class of G: when the 
class is 1, a and b commute so that the result is immediate. Suppose that we know 
the result for niipotent groups of class less than n, and let G be niipotent of class n 

and generated by two elements a, b such that aa = bfi for some positive integers 



a, [J. By the inductive hypothesis, if ax, b, are the images of a. b respectively in 

the factor-group G/yn-{(G), then for some positive integers p, a we have 

(«,/>.)" = «T-

This leads to an equation of the form 

(ab)" = a"g, 

for some g e yn_x(G). Now # is central in G and, by the previous lemma, has finite 

order; hence, for some T _ 0, 

(#/>)' = a g = a , 

which completes the induction and the proof of the lemma. 

Definitions and results on free groups and free products of groups are to be 

found in [3, Volume 2]. 

Group-theoretical properties will be denoted by capital German letters; if G 

satisfies property s^, we say that G is a ^-group, and denote the class of all such 

groups by [%]. A group is said to be locally-1^ if every finitely generated subgroup 

has property s]>, this being more stringent than notion associated with ,,local systems"* 

of subgroups (see for instance [3]). We shall next define in more detail the four 

classes of groups mentioned in the introduction, and obtain some of their more 

elementary properties. 

If G is a group, by a true subsemigroup of G we mean a subsemigroup which 

is not a subgroup — that is, one which contains some element but not its inverse. 

Clearly, a subsemigroup consisting of elements of finite order cannot be true, so 

that in particular periodic groups have no true subsemigroups. The group G is said 

to satisfy property I if it can be covered by — in other words, is the set-theoretical 

union of — true subsemigroups. The remark just made shows that a 1-group must 

be non-periodic; however, not all non-periodic groups have the property I : 

Example 2.7. Let G be the infinite dihedral group generated by two elements 

a, b with the defining relations a2 = b2 = 1. It is easy to see that ab has infinite 

order, and that only powers of this element can have infinite order. We shall show 

that the only subsemigroups of G which contain the element a are subgroups o( G. 

To that end, let S be such a subsemigroup. Then if g e S has finite order k, the inverse 

gk~ l also lies in S; while if g e S has infinite order, then g = (ab)"1 for some integer /;/, 

and S contains 

a(ab)ma = (ba)m = (ab)~m = i f 1 -

This means that S is a group, as required. 

In fact the same reasoning shows that no splitiing extension (see for instance [3]) 
of an abelian group A by a cycle of order 2 inducing the inverting automorphism 
of A can be a I -group. 



A proper subsemigroup of a group is one which is non-empty and strictly smaller 

than the group; G is said to satisfy property T if it can be covered by pairwise dis­

joint proper subsemigroups. This property is more restrictive than the one just 

mentioned, as v/e shall see in the next section. The following result of Schwarz 

characterises all abelian T-groups: 

2.8. [V Veta 4.2.] A necessary and sufficient condition that an abelian group be 

a ^-group is that it contain elements of infinite order. 

If a, h are elements of a group G, then following Schwarz [1] we say that a and h 

are equivalent if there exist positive integers a, /? such that aa = bfi. This is clearly 

an equivalence relation on G, and we shall denote the equivalence class containing 

the element a by Ta. 

Lemma 2.9. If G = u S, is a decomposition of the group G into the union of pair-

wise disjoint subsemigroups S,-, and a is an arbitrary element of the subsemigroup S;,, 

then the whole equivalence class Ta of a is contained in Sp. 

Proof . Suppose that aa = h(i for some positive integers a, fl. Then h lies in some 

component Sq of the decomposition, and the disjointness condition ensures that 

s„ = S,. 
If G is a group which contains at least one element of infinite order, and in which 

all the equivalence classes Ta are subsemigroups of G, then we say that G has pro­

perty 9 . Since the elements of finite order form an equivalence class, this is a proper 

subsemigroup — and therefore normal subgroup — so that in fact any 9-group is 

also a T-group; they form an extensive class, as we shall see later. 

Next we define by transfinite induction the periodic series of an arbitrary group G, 

7i0(G) c 7r,(G) c ... c 7rA(G) c ..., 

as follows. The first term n0(G) is to be the unit subgroup, while if/, is a limit ordinal. 

7T;(G) is to be the union of all nfl(G) with D < / . If/, has an immediate predecessor //, 

7r;(G) is the subgroup of G generated by all elements which have finite order modulo 

7iu(G). Each term of the series is normal, since the union of normal subgroups is 

normal, and if gn lies in the normal subgroup nfl(G) for some element g and some 

integer //, then by 2.1, 

(gT = U'T e*„(G) 

for arbitrary a e G. The limit n*(G) of the periodic series of G is called the peak 

of G. From the definition it follows that G/n*(G) is aperiodic if n*(G) cz G, so that 
we have the following result in one direction: 

Lemma 2.10, The group G has an aperiodic homomorphic image if and only if 
71.(G) cz G. 

Proof . We show that the factor-group G/N is aperiodic, then N =2 n*(G) — or 

what is the same thing, that N contains all terms of the periodic series of G. It is 



clear that nu(G) <= N. Suppose we know that for every ordinal p < A that nfl{G) c= N. 

if / is a limit ordinal, then obviously nk(G) ^ N. If on the other hand /. = // 4- 1 

then 7i;(G) is generated by elements which have finite order modulo rt(G). Con­

sequently if 7rA(G) were not contained in N there would be elements of non-tri\iaI 

finite order in the factor-group G/N, in contradiction to the hypotheses. Hence 

7r*(G) c= N cz G. and we have the result. 

Lemma 2.10 shows that G/n*(G) is the unique maximal aperiodic homomorphic 

image of G, if such a homomorphic image exists. Groups which have aperiodic 

homomorphic images will be called ^-groups: they form a class intermediate be­

tween [ J ] and [T], 

3. Main results 

All the results to be proved in this section are based on the following simple 

theorem. 

Theorem 3.1. IfV stands for one of the properties I , X, X then any group which 

can he mapped liomomorphically onto a y})-group is likewise a "})-group. 

Proof . For the property ^ the proof is immediate. Suppose next that G = u S-

is a decomposition of the I -group G into the union of true subsemigroups S-. and 

that (p is a homomorphism of the group // onto G. Then the complete inverse image T, 

of Si under cp is clearly a subsemigroup of H, and the 7, together cover H. Finally, 

each T, is a true subsemigroup of H, since a homomorphic image of a subgroup is 

a subgroup . 

The proof for the property T follows along precisely similar lines. 

However, the property 2 is not preserved in this way. To see this it is sufficient 

to observe that the elements of finite order in an 2-group form a subgroup, and 

that if H is any group where the elements of finite order do not form a subgroup, 

then the direct product G x H is not an 2-group. Again, none of the properties 

are preserved under the operations of taking homomorphic images — as we shall 

see, the infinite cycle satisfies all four properties, but none of its proper homomorphic 

images has any one of them. 

Next we have some lemmas which tell us something about possible structure 

theorems for the various classes of groups considered, but not much; they usually 

take the form of sufficient conditions which are not also necessary. 

Lemma 3.2, If every element of finite order in the group G is contained in some true 

subsemigroup, then G is a 1-group. 

Proof . Clearly, every element of infinite order is contained in a true subsemigroup, 

namely that consisting of its positive powers. 

Corollary 3.3. Every aperiodic group is a x-group, so that every ^s-group is a I-grOup. 



Lemma 3.4. if every clement of finite order in the group G commutes with some 

element of infinite order, then G is a 7-group. 

Proof . Suppose that the element a of Unite order in G commutes with the ele­

ment b of infinite order. Then the subset consisting of all elements of the form aabl\ 

where a is an arbitrary integer and [i an arbitrary non-negative integer, is a true 

subsemigroup containing a. That it is a subsemigroup, is obvious; that it is true 

follows from the remark that b { cannot be of the form O7//, for non-negative />'. 

Lemma 3.2 now applies to give the result. 

Corollary 3.5. Every group can be embedded in a group which satisfies the three 

properties I , /,, X simultaneously. 

Proof . Let A be an infinite cyclic group. Then A is clearly an vVgroup; by 2.8 it 

is a T-group: and by lemma 3.2 it is a i '-group. Tims if G is our given group, theorem 

3.1 tells us that the direct product GxA will suffice as an embedding. 

Lemma 3.4 provides a sufficient condition which is not also necessary. For in­

stance, in the fvee product of an infinite cyclic group with a cyclic group of order 2, 

the generator of the finite cycle commutes only with itself and with the unit clement; 

however, the free product can be mapped homomorphicaliy onto the infinite cycle. 

Lastly on the subject of 1-groups: 

Lemma 3.6. Any group which can be expressed as the set-theoretical union of 

!-groups is itself a I -group. 

The proof is obvious, and is omitted. These few results together display the width 

of the class [J] , and indicate that a characterisation of ali I-groups will be far from 

simple. Possibly easier (since less numerous) are the X-groups, to which we now 

turn attention: but even here we come across difficulties arising presumably out of 

the width of the class, and out of the very different structures that X-groups may 

possess. 

Lemma 3.7. Let G = u S,- be any decomposition of the group G into the union 
i e \H 

of pairwise disjoint subsemigroups. Then the peak 7i*(G) Of G i;v contained in that 

subsemigroup Sp which contains the unit element. 

Proof . As usual, n0(G) ^ Sp, and we assume inductively that for all ordinals 

p < / , 7r.,(G) _= Sp. The case of a limit ordinal is again trivial, so we assume that 

1 = p + 1, and consider an arbitrary element g of nx(G). This element can be 

expressed as a product g = g{g2 ••• gn, where each gt has a positive power in njfi), 

that is, in Sp; consequently, owing to the disjointness of the Sf, each gj must also 

lie in Sp, so that ge Sp, as required. 

Corollary 3.8. Every T-group is an ^-group. 

Proof . The lemma shows that the peak of G is contained in a proper subsemi­

group, so that it is a proper subgroup of G. 
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We have now established the following inclusions: 

[ I ] 2 ft] 2 [D] 2 [2] . 

It is not hard to show that the first and last inclusions may be replaced by strict 
inclusions, even if we consider only metabelian groups.* 

Example 3.9. Let G be the direct product of an infinite cyclic group with an 

infinite dihedral group. Then G is metabelian, and, since it can be mapped homo-

morphically onto the infinite cycle, it is a T-group. However, it is not an 2-group 

since the elements of finite order do not form a subgroup. 

Example 3.10. Let G be the group generated by 3 elements O, b, c subject to 

the 6 defining relations 

ü2 - >~2 b2 = c2 = [a, b, c] = [b, c\ a] = [c\ O, b] = V 

We first of all observe that G = 7i,(G) and therefore that G is not an ^-group. How­

ever, we shall show that it is a metabelian I -group: 

(i) G is metabelian. By 2.3, y,(G) is generated by the transforms of the commutators 

[O, b], [O, c], and [b, c]; but the relations 

[O, b]a = [a, b]~\ [O, b]h = [O, b] \ [O, />]<• = [a, b] 

and the similar ones for the other two commutators show that 7i(G) is generated 

by the three commutators themselves. Next, the relations 

[«, />]'"•-1 == [„, />]""" = ([a, /> ]" 'r = ([«. /']•')'" = b>- >'] 

and others like them show that y{(G) is abelian. 

(ii) >'i(G) is free abelian on the generators [a, b], [O, c], [b, c]. For this we take an 

auxiliary infinite dihedral group H generated by two elements cL f subject to the 

defining relations d1 = f2 = 1, and suppose that 

[a, bf[a, c]"[b, c]v = 1 

is a relation between the generators of >i(G). Then, by von Dyck's Tlieorem (see [3]), 

the mapping cp given by cup = cL bcp = f ccp = 1 extends to a homomorphism of G 

onto H. The given relation becomes [d, f\ = 1, and this clearly means that /. = 0. 

Similarly we show that f.i = v — 0 and the result follows. 

(iii) Every element of finite order in G commutes with an element of infinite order, 

so that G is a 1-group. It is routine to check that Gfyx(G) is elementary abelian of 

order 8 and that we may choose the set V — [1, a, b, c\ ah, ac\ bc\ abc] as a set 

of coset representatives o[ G modulo /i(G), so that every clement oi^ G is of the 

form \v for some x e yx(G) and some v e V. We look for the elements of finite order. 

(I) v = 1. Here only the unit element has finite order. 

(II) v = a, b, or c. Obviously we may take v = a as typical. Now the element xa 

* That is, groups with abelian derived groups. 

10 



has finite order if and only if its square does; but (NO)2 = xx° ey{(G) and this has 

finite order if and only if xa = x_1. Computation shows that only elements of the 

form .v = [O, b]A [O, c]n have this property, and then of course the element [b, c] 

commutes with xa. 

(III) r = Ob, Or, or be. This time we take v = Ob as typical. Here 

(xab)2 = xabxab = xxba[a, /?]. 

It is easy to see now that (xab)~ must be of the form [O, b]~/+ ; elements in this 

category thus have infinite order and do not concern us. 

(IV) r = Obc. Again it turns out that elements of the form xabc are of infinite 

order. 

This completes the example. 

It is likely that there exists a group generated by elements of finite order and yet 

having elements of infinite order in its centre, but I have been unable to construct 

one. Such a group would of course be a J-group without being an ^-group; a can­

didate is the group generated by two elements O, b subject to the relations 

O4 = b4 = 1, (Ob ) 4 = (bO ) 4 . 

The element (Ob) is certainly central, and I can see no reason why it should have 

finite order. 

The last remaining inclusion is more difficult, and in fact I have been unable to 

decide whether there exists an J-group which is not also a 1-group. The existence 

of such a group would entail the existence of an aperiodic group with the same 

property — every homomorphic image of a non-1-group is itself n o n - 1 . It seems 

very likely thai such groups exist, and I would conjecture that there exist positive 

integers ///, O, .v, AX , //< , ..., / s , //s such that the group K generated by two elements 

O. b with the defining relations 

am = b\ a^\fU\'AlW11 ...a^W1" = 1 

is aperiodic. Certainly K is n o n - 1 ; for in any decomposition K = u S{ of K into 

the union of disjoint subsemigroups, a and b lie in the same subsemigroup S, on 

account of the relation am = bn\ while the third relation implies that a and b 

lie in S so that in fact S = K. I know of no method of testing whether K is aperiodic 

or not. 

In any case we have established the following theorem, in which the letter l'i 

denotes the property of being metabelian: 

Theorem 3.11. The classes [1], [̂ s], [1] , [2] satisfy the inclusions 

[2] = ra => [X] => ts], 

[J] n m\ ^ K] n [««'] => [T] n [M] => [S] n [!>.]. 

11 



Finally wc come to an extension of Schwarz\s theorem 2.8 to a much wider class 
of groups. We say that (7 has property X if it is not periodic, and if every two-generator 
subgroup is either nilpotent or free. 

Theorem 3.12. Every x-group is an Z-group. 

Proof . Let G be any group satisfying property X: then we have to show that 
every equivalence class Ta is a subscmigroup of G. To this end let b, c be equivalent 
to the element a, so ;hat b and c arc equivalent and have positive powers in common. 
If now b and c together generate a nilpotent subgroup, then lemma 2.6 tells us that 
be and b have positive powers in common, and hence that br e Tu. Otherwise b and c 
generate a free subgroup. In that case the subgroup must have rank not more than 2, 
being generated by 2 elements; it cannot have rank exactly 2. since b and c are 
patently not free generators; hence it is of rank 1, and b and c must be powers ol 
one and the same clement. Thus again bee 7",,, and in all cases Tit is a subscmigroup 
of G. 

Corollary 3.13. The various classes of groups considered satisfy the equalities 

[X] n [AJ = [X] n ft] = [X] n [ J ] = [*] n [2] = [X]. 

in particular: a locally nilpotent group can be covered by pairwisc disjoint proper 
subsemigroups if and only if it contains elements of infinite order. 

Another corollary, to the proof this time, is the following: 

Corollary 3.14. Every non-trivial locally free group is the union of pairwisc disjoint 
proper commutative subsemigroups. 

P r o o f . If two elements of a locally free group have positive powers in common 
they must commute. 

Theorem 3.12 is most useful as a source of counterexamples. As an instance of 
its use we begin with the observation that any group G for which the factor-group 
G/y{(G) is non-periodic has property T, and ask whether the converse is also true. 
The answer is no, for B. H. Neumann gives in [4] an example of a locally free group F 
which coincides with its derived group. This means, of course, that we can make 
a T-group in which the factor-group to the derived group has any preassigned 
(abelian) structure: for instance if A is an abelian group, the direct product A x F = // 
has property X, and yet Hjyx{H) is isomorphic with A. 
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Ь>дем т в о р и гь, ч т группа С удовлет вор см ело г веге I в е т о условиям: 
.5: если С - обьединение частичных подполугрупп, среди которых нет ни одной группы; 
/.: если (/ пмее< хо1я бы один апериодический гомоморфный образ; 

т

; : если С — обьединение попарно непересекающихся собственных подполугрупп; 

2 : если С не является ."синодической I руппой, и ат = />" (а, 1)е (*-, >'•'!, "-— натуральные числа) 
влечет за собой а" (а!))' для не.согорых л, /. 

Класс групп, удовлетворяющих услозию ч.{> обозначим шаком (;:•). В настоящей статье 
доказывается: (~Г)зэ (Д ) ^ (Т )~э ( с ). Из результатов статьи следуют некоторые обобщения 
р е з у л ы а т в статьи [1], в которой изучались группы, удовлетворяющие условию (X). 
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