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MATEMATICKO-FYZIKALNY CASOPIS SAV. 11. 1, 1961

SEMIGROUP COVERINGS OF GROUPS

By JAMES WIEGOLD, Munchester (England)

1. Introduction

This note arosc out of a problem posed some years ago in this journal by Prof.
Stefan Schwarz in his paper [I] on semigroups satisfying certain generalisations
of the cancetlation law. There it was found necessary to censider semigroups which
can be covered by pairwise disjoint proper subsemigroups all satisfying one of the
various cancellation laws — right, left, two-sided or a certain generalisation whose
precise nature does not concern us here — and the problem naturally arose as to
what structures are possible for such semigroups. The class formed by them is very
wide, and a complete characterisation seems to be a difficult undertaking; on the
other hand, Prof. Schwarz gave characterisations of commutative and of periodic
semigroups with these properties. This led to a determination of all abelian groups
which are unions of pairwise disjoint proper subsemigroups (all the cancellation
laws are then automatically satisfied): they are simply the abelian groups which
have elements of infinite order. This is certainly not valid in the domain of non-
abelian groups, and it is the aim of the present note to discuss the same problem,
together with others related to it, in this more general situation.

The author’s first contact with the subject was in the New Scottish Book, where
he misrcad the problem to read: what groups can be covered by subsemigroups none
of which is a subgroup? It turns out that this class of groups is relevant, in that
it properly contains the class just mentioned. Let us define four group-theoretical
properties, to be denoted by German capitals — for details see § 2:

: G is the union of subsemigroups none of which is a subgroup;

G has at least one aperiodic homomorphic image;

© G is the union of pairwise disjoint proper subsemigroups;

Q) 1) =7 1)

: G is not periodic, and has the property that whenever two elements a and b
have positive powers in common, then ab and « also have positive powers in common.

Obviously, periodic groups satisfy none of these properties, but on the other
hand, there exist (§ 2) non-periodic groups which also satisly none of them. Any
group possessing a property denoted by R is called a f-group, and the class of all

3



Pogroups is denoted by [¥] One of ows main results s the followime chain of in-

clusions:

and that they remain v whcir all groups considered wcre moctabohiarn, 1t seon,

likely that the middle incinsion can be sirepnziboned to o osteict one, bt ¥ oo beon

nnable to confirm this point. For many groups (e four proportios colncider £
mstance every non-periodic grovp i which all the two-pencaor subgroups ore

rilpotens cr free (this s meant 1o include the possibility of two-senorator free s d

fwo-genciator nilpotent nog-abeling subgroups in one and the same group) i~ an

Z-group.
Apart from the pariial crisation given by this asi-muontioned

resulis are of a sketeny noature, whunily (aking the form of condiiions ~ufiicn

not neeessary) or necessary (but aot sulficient) that a croup satisfy one or otaer

property. A simple Clough jur-reacihine vesult — and one wivich perhaps accounty
for somc of the dilficuities encountered — s that i ¥ denotes one of the properiiss
3.0, TLothen any groun which can be mapped homomorplically onto a d-2roap

is likewise a J-group. It means, of course, that the olasses aie oxeecdingly wide,
and for instance that any groap can be embedded in a group satisiying alfl three
properiies I, 3, T simultancously.

I thank Dr M. F. Newman for sume useful comments.

2. Prelimivaries

2.t. Groups will be written muitiphicativelv, with T standing for the unit clemant
and £ tor the unit subcroun of glf gromips occu:‘:‘inU. Iall elcmcnls‘ of i‘*.: aroup

are of finite order, we say that G is perisdio iF G s Fand only the unit clement hoas
finite order, that & is aperiodic; wiile nea-periodic s 1o impily ilml SOMS Gt
fias mhmtc order. iz, frare elemeats o GLoibe rransform I g of g by Jis denotad

N i - T T
by g", and the commutator ¢ 'h'gh by [o. k). The a-fold commuiotor [v, . v, . . ol

is defined inductively by the ruic by oo o) = Ty ooy, Loy o that s,
commuizators are leit-normed. 11y casy o see that for any group elements g. h and
any ntezer a1,

T (2.

2.2, 1 A and B are subscts of tiie group G the symboi [ 4, 8] denotes the subgroan

1

of G gencrated by all cominutators of the form [u. h, with ¢e 4 and he B. "he

lower central series of G iy

where v, , ((G) = [G. 7,(

series terminates in £ after a fnite number of steps, and a1 is the first integer ior

I for 7 22 0: & is milpotent of class # i the lower ceniral

J
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which 7,(G) = £ I s case v, (G) is contained in the centre of Gl a0 ooroll-
ary we conclude by an casy induction argument on A& that

T S T e R O I LI T S TR (2.2)

for any iteger £ and any clements v, v, ... v, of a niipotent group of class n.
We shall need the following facis aboui the tower central serics and nilpotent
sioups. the first two are very simple and well-known, the others as far as 1 Know,

W

2.3 D20 femma L7} Suppose ihat the grevn G iy generated by a subset N of ity

clenrents. Then, for cach n z Vo (G is generated by all tsansfornis by elements of G
of eli coninutators of the forn [y xs o v, o where xoe X forio= 1.2, 0+ 1L

vy <

2.0 120 lemma L.2) For any normal subsrowp N of ithe group G and any integer
O, (G V) == A/,A(r}’\////\/

o

bemme 250 Ler G be a nilpotent group generated by tvo clemenis ywliiclr have
commuing non-zero powers. Then (G is finite.

Prool. We proceed by induction on the nilpotency class of GL For class | the
result s trivial, since in that case (G0 s the unit group. Suppose then that we
Lnow the result Tor nilpotent groups of class fess than a, and let G be nilpotent of
class 7 and generated by two clements «. b such that [, 471 = 1 for some non-zero
integers 2. i Consider the facior-group Gy, (G). By 2.4, it is nilpotent of class
no— Loand so by the inductive hypothesis its derived group v,(G) /7, - (G) 1s finite.
It remains now to show that the subgroup 7, ((G) is finite. By 2.1, it is generated
by all transforms of all commutators of the form [x, x,. ..., x,). where each argu-
ment is a or b but these elements are all central, so that we have shown that 3, (G)
is a finitely generated abelian group. Next, equations 2.2 tell us that each of thesc

senerators iy of finite order, since
i 7] B 3
I={a’ b xy, o x,] = la.boxy, o, X, ]

Conscquently 7, (G), and therefore y,(G), is finite. This completes the proof of
the lemma.

It may be remarked that the conclusion of lemma 2.5 holds for any nilpotent
group generated by finitely many clements with commuting non-zero powers.

Lemma 2.6. /f a nilpotent group G is generated by two elements a, b which have
positive powers in common, then ab and a also have positive powers in common.

Proof. We again proceed by induction on the nilpotency class of G: when the
class is I, @ and b commute so that the result is immediate. Suppose that we know
the result for nilpotent groups of class less than n, and let G be nilpotent of class n
and generated by two elements a, b such that ¢ = b’ for some positive integers
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a, f. By the inductive hypothesis. if «,, b, are the images of a, b respectively in
the factor-group G/y,_(G), then for some positive integers p. o we have

(a/h,) =af.
This leads to an equation of the form
(ab)’ = da"g,

for some gey,_,(G). Now g is central in G and. by the previous lemma. has finite
£ 'n—1
order; hence, for some © > 0,

((ll))/n — uﬂrgr — uﬂr’

which completes the induction and the proof of the lemma.

Definitions and results on free groups and free products of groups are to be
found in [3, Volume 2].

Group-theoretical properties will be denoted by capital German letters: if ¢
satisfics property "1, we say that G is a ‘B-group, and denote the class of all sucn
groups by [B]. A group is said to be locally- if every finitely gencrated subgroup
has property &, this being more stringent than notion associated with ,local systems™
of subgroups (see for instance [3]). We shall next define in more detail the four
classes of groups mentioned in the introduction, and obtain some of their more
elementary properties.

If G is a group, by a frue subsemigroup of G we mean a subsemigroup which
is not a subgroup — that is, one which contains some element but not its inverse.
Clearly, a subsemigroup consisting of clements of finite order cannot be truc. so
that in particular periodic groups have no true subsemigroups. The group G is said
to satisfy property I if it can be covered by — in other words, is the set-theoretical
union of — true subsemigroups. The remark just made shows that a I-group must
be non-periedic; however, not all non-periodic groups have the property I:

Example 2.7. Let G be the infinite dihedral group generated by two elements
a, b with the defining relations a® = »* = 1. It is easy to see that «b has infinite
order, and that only powers of this element can have infinite order. We shall show
that the only subsemigroups of G which contain the element a are subgroups of G.
To that end, let S be such a subsemigroup. Then if g € S has finite order &, the inverse
"7 " also lies in S: while if g € S has infinite order, then g = (ah)” for some integer .
and S contains

a(ab)"a = (ba)" = (ab) ™" = ¢

This means that S is a group, as required.

In fact the same reasoning shows that no splitiing extension (see tor instance [3])
of an abelian group A4 by a cycle of order 2 inducing the inverting automorphism
of A can be a I-group.
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A proper subsemigroup of a group is one which is non-empty and strictly smaller
than the group; G is said to satisfy property T if it can be covered by pairwise dis-
joint proper subsemigroups. This property is more restrictive than the one just
mentioned, as we shall see in the next section. The following result of Schwarz

characterises all abelian T-groups:

2.8. [I, Veta 4.2.] A necessary and sufficient condition that an abclian group be
a T-group is that it contain elements of infinite order.

If a, b are elements of a group G, then following Schwarz [1] we say that a and b

. o . I . B .o

are equivalent if there exist positive integers o, f such that a* = b”. This is clearly
an equivalence relation on G, and we shall denote the equivalence class containing
the element @ by T,.

Lemma 2.9. /fG = U S, is a decomposition of the group G into the union of pair-

i€Vl

wise disjoint subsemigroups S;, and a is an arbitrary element of the subsemigroup Sy
then the whole equivalence class T,

a

of a is contained in S,,.

~ i~ .. . —— . .
Proof. Suppose that ¢* = A’ for some positive integers ., . Then b lics in some
component S, of the decomposition, and the disjointness condition cnsures that
S, =5,
If G is a group which contains at least one element of infinite order, and in which

all the equivalence classes 7, are subsemigroups of G, then we say that G has pro-
perty 2. Since the elements of finite order form an equivalence class, this is a proper
subsemigroup — and therefore normal subgroup — so that in fact any Z-group is
also a T-group: they form an extensive class, as we shall see later.

Next we define by transfinite induction the periodic series of an arbitrary group G,
15(G) € 1 (G) < ... € 1,(G) < ...,

as follows. The first term ny(G) is to be the unit subgroup, while if 4 is a limit ordinal.
7,(G) is 10 be the union of all n,(G) with u < 4. If 2 has an immediate predecessor y,
7;(G) is the subgroup of G generated by all elements which have tinite order modulo
7,(G). Each term of the series is normal, since the union of normal subgroups is
normal. and if ¢" lies in the normal subgroup 7,(G) for some element ¢ and some
integer n, then by 2.1,

()" = (¢") e, (G)

for arbitrary ¢ € G. The limit 7n.(G) of the periodic series of G is called the peak
of G. From the definition it follows that G/n.(G) is aperiodic if 7.(G) = G, so that
we have the following result in one direction:

Lemma 2.10. The group G has an aperiodic homomorphic image if and only if
nJ{G) < G.

Proof. We show that the factor-group G/N is aperiodic, then N 2 n.(G) — or
what is the same thing, that N contains all terms of the periodic series of G. It is
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clear that 7,(G) < N. Suppose we know that for every ordinal ¢ < 2 that 7, (G) & V.
If 7 is a limii ordinal, then obviously 7,(G) < N. If on the other hand 7 = u + 1
then 7,(G) is generated by clements which have finite order modulo 7 (G). Con-
sequently if 7;(G) were not contained in N there would be elements of non-trivial
finite order in the factor-group G/N. in contradiction to the hypotheses. Hence
n{G) = N < G. and we have the result.

Lemma 2.10 shows that G/nJ(G) is the unique maximal aperiodic homomorphic
image of G. if such a homomorphic inage exists. Groups whica have aperiodic
homomorphic images will be called J-groups: they form a class intermediate be-
tween {3] and [T

3. Main results

All the results to be proved in this section are based on the following simple
theorem.

Theorem 3.1, I/} stands for one of ithe properties I, T, 3, then any group which
can he mapped homomorphically onto a N-group is likewise a N-group.

Proof. For the property J the proof is immediate. Suppose next that G = U S,

iell
is a decomposition of the I-group G nto the union of true subsemigroups S;. and
that ¢ is a homiomorphism of the group H onto G. Then the complete inverse image 7;
of S; under @ is clearly a subsemigroup of H, and the T together cover H. Finally,
cach 7, is a true subsemigroup of M, since a homomorphic image of a subgroup is
a subgroup.

The proof for the property T follows along precisely similar lines.

However. the property & is not preserved in this way. To see this it is sufficient
to observe that the elements of finite order in an Z-group form a subgroup, and
that if H is any group where the elements of finite order do not form a subgroup,
then the direct product G x H is not an Z-group. Again, none of the properties
are preserved under the operations of taking homomorphic images — as we shall
see, the infinite cycle satisfies all four properties, but none of its proper homomorphic
images has any one of them.

Next we have some lemmas which tell us something about possible structure
theorems for the various classes of groups considered, but not much: they usually
take the form of sufficient conditions which are not also necessary.

Lemma 3.2. If every element of finite order in the group G is contained in some true
subsemigroup, then G is a I-group.

Proof. Clearly, every element of infinite order is contained in a true subsemigroup,
namely that consisting of its positive powers.

Corollary 3.3. Every aperiodic group is a I-group, so that every }-group is a I-group.



Lemma 3.4. [f every cleiient ¢f finite order in the group G compuites with some
clement of infinite order, then G is a T-group.

Proof. Suppose that the clement ¢ of finite order in G commutes with the cle-
ment b of infinite order. Then the subset consisting of all elements of the form «*b",
where « is un arbitrary integer and [ an arbitrary non-negative integer, is a truc
subsemigroup containing a. That it 1s a subsemigroup, is obvious; that it iIs truc
follows from the remark that # ' cannot be of the form a*h”. for non-negative f.

-

Lemma 3.2 now applies to give the result.

Corollary 3.5. Every group can be embedded in a group which satisfies the ihree
AR

properties 3. 3. T simultaneously.

Proof. Let 4 be an infinite cyciic group. Then A is clearly an J-group: by 2.8 it
is a T-group: and by lemma 3.2 itis a J-group. Thus if ¢ is our given group, theorem
3.1 tells us that the direct product G x A will suffice as an embedding.

Lemma 3.4 provides a sufficient condition which is not also necessary. For in-
stance. in the free product of an infinite cyclic group with a cyclic group of order 2,
the gencrator of the finite cvele commutes only with itself and with the unit clement;
however. the {ree product can be mapped homomaorphically onto the infinite cycle.

Lastly on the subject of I-groups:

Lemma 3.6, Amv group which can be expressed as the set-theoretical unien of
I-groups is itself a I-greup.

The proof is obvious, and is omitted. Thesc few results together display the width
of the class [ Y] and indicate that a characterisation of all I-groups will be far from
simple. Possibly casier (since less numerous) are the T-groups, to which we now
turn attention: but even here we come across difficulties arising presumably out of
the width of the class, and out of the very different structures that T-groups may
possess.

Lemma 3.7. Let G = U S; be any decomposition of the group G into the union

eV
of pairwise disjoint subsemigroups. Then the peak n.(G) of G is contained in that
subsemigroup S, which contains the unit element.

Proof. As usual, ny(G) = S,, and we assume inductively that for all ordinals
u < i, m(G) < S,. The case of a limit ordinal is again trivial, so we assume that
A=+ 1, and consider an arbitrary clement g of n,(G). This element can be
expressed as a product ¢ = g,g, -+ g,, where each g; has a positive power in 7,(G),
that is, in S,; consequently, owing to the disjointness of the S;, each g; must also
lie in §,, so that g€ S, as required.

P>
Corollary 3.8. Every T-group is an J-group.
Proof. The lemma shows that the peak of G is contained in a proper subsemi-

group, so that it is a proper subgroup of G.
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We have now established the following inclusions:
(3] =231 = [3] = [<)

It is not hard to show that the first and last inclusions may be replaced by strict
inclusions, even if we consider only metabelian groups.*

Example 3.9. Lct G be the direct product of an infinite cyclic group with an
infinite dihedral group. Then G is metabelian, and, since it can be mapped homo-
morphically onto the infinite cycle, it is a T-group. However, it is not an Z-group
since the elements of finite order do not form a subgroup.

Example 3.10. Let G be the group generated by 3 clements «, b. ¢ subject to

the 6 defining relations
at=h? = = [a. boc] =[b,coa] =[cca . b] =1

We first of all observe that G = n,(G) and therefore that G is not an j-group. How-
ever, we shall show that it is a metabelian I-group:

(i) G is metabelian. By 2.3. y,(G) is gencrated by the transforms of the commutators
[a. b]. [a, ¢], and [b, c]: but the relations

[a, b]" = {a, b, L. I)]h =[a. b]" " [a. b] = |a.b]

and the similar ones for the other two commutators show that ;(G) is generated
by the three commutators themselves. Next, the relations

i;(l~ [):Ilu. ] . [(l, [)]urtu' _ ([(“ I)] Al)ca( _ ([Ll. l’J —I}u(. _ iid_ b]

and others like them show that y,(G) is abelian.

(i1) v,(Q) is free abelian on the generators {a, b}, [a. ¢]. [b, ¢]. For this we take an
auxiliary infinite dihedral group H generated by two elements . /" subject to the
defining relations ¢ = /* = 1, and suppose that

[a, b [a. ] [b. ] =1
is a relation between the generators of y,(G). Then, by von Dyck’s Theorem (sec [3]),
the mapping ¢ given by ap = d. bp = f. cp = | extends to a homomorphism of G
onto H. The given relation becomes [d, f]° = I, and this clearly micans that /. = 0.
Similarly we show that g = v = 0 and the result follows.

(iii) Every clement of finite order in G commutes with an clement of infinite order,
so that G is a I-group. It is routine to check that G/y,(G) is elementary abelian of
order & and that we may choose the set V = [I, a. b, ¢, ub, ac, be. abe) as a set
of coset representatives of G imodulo y(G), so that every clement of G is of the
form vv for some x € y,(G) and some ve V. We look for the elements of finite order.

(I) v = 1. Here only the unit element has finite order,

(I1) ¢ = a, b, or ¢. Obviously we may take v = « as typical. Now the element xa

* That is, groups with abelian derived groups.
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has finite order if and only if its square does; but (_.\‘a)2 = xx’e7,(G) and this has
finite order if and only if x* = x~'. Computation shows that only elements of the
form x = [a b)* [a, ¢]" have this property, and then of course the element [h, ]
commutes with xa.

(I © = ab. ac, or be. This time we take v = ab as typical. Here

(xab)* = xabxab = xx"|a, b].

[t is casy to see now that (xab)* must be of the form [a, b]**""; clements in this
category thus have infinite order and do not concern us.

(IV) ¢ = abc. Again it turns out that elements of the form xahc are of infinite
order.

This completes the example.

It is likely that there exists a group generated by elements of finite order and yet
having elements of infinite order in its centre, but 1 have been unable to construct

~
hes
1%

one. Such a group would of course be a I-group without being an J-group; a can-

didate is the group generated by two clements a, b subject to the relations

at = bt =1, (aby* = (ba)*.
The clement (¢h)* is certainly central, and | can see no reason why it should have
finite order.

The last remaining inclusion is more difficult, and in fact 1 have been unable to
decide whether there exists an J-group which is not also a T-group. The existence
of such a group would entail the existence of an aperiodic group with the same
property — every homomorphic image of a non-T-group is itself non-T. It seems
very likely that such groups exist, and | would conjecture that there exist positive
INtegers 1, 1. 8. Aoy« ... Ay, ity such that the group K generated by two clements
a. b with the defining relations

am — l?”, ”/.,'1)11,”/.3l}111 H/‘bl"‘ =1

is aperiodic. Certainly K is non-3; for in any decomposition K = U S; of K into
re

the union of disjoint subsemigroups, ¢ and b lic in the same subsemigroup S, on
account of the relation 4™ = b"; while the third relation implies that ¢ ' and b
lic in S so that in fact S = K. [ know of no method of testing whether K is aperiodic
or not.

In any case we have established the following theorem. in which the letter WX
denotes the property of being metabelian:

Theorem 3.11. The classes [3), [3), [T]. [Z] satisfy the inclusions
(31 = [3] = [T] = [€]

[3] A [ = (3] A [ 2 [2] A (] 5 [S] A DA

11



Finally we come to an extension of Schwarz’s theorem 2.8 to a much wider class
ol groups. We say that G has property X if it i1s not periodic, and if every two-generator
subgroup is cither nilpotent or fice.

Theorem 3.12. Every X-group is an Z-group.

Proof. Let G be any group satisfying property X: then we have to show that
every cquivalence class T, is a subsenmigroup of . To this end let b, ¢ be equivaiont
te the element ¢, so that b and ¢ arc equivalent and have positive powers in commeon.
If now b and ¢ together generate a nilpotent subgroup, then lemma 2.6 tells us thai
bc and b have positive powers in common. and henee that fic e T, Otherwise b and «
generate a free subgroup. In that case the subgroup must have rank net move than 2,
being generated by 2 elements: it cannot have rank exactly 2. since h and ¢ are
patently not free gencrators: hence it is of rank 1. and » and ¢ must be powers of
one and the same element. Thus again be e 7, and in all cases 7 15 a subsemigrovn
of G.

Coreilary 313, The various classes of groups considered satisfy the equalitics

[X] A [3] =[x~ [3] = [K] 2 12 = (8] A [2] = (&),

in pariicular: a locally nilpotent group can be covered by pairvise disjoint proper
subsemigroups if and only if it contains elements of infinite ordei.
Another corollary, to the proof this time, is the following:

Corollary 3.14. Every non-trivial locally [ree groun is the union of pairwise disjoint
proper commutative subsemigroups.

Proof. If two elements of a locally free group have positive powers in common
they must commute.

Theorem 3.12 is most useful as a source of counterexamples. As an instance of
its usc we begin with the observation that any group G for which the factor-group
G/y,(G) is non-periodic has property T, and ask whether the converse is also truc.
The answer is no, for B. H. Neumann gives in [4] an example of a locally frec group F
which coincides with its derived group. This means, of course, that we can make
a T-group in which the factor-group to the derived group has any preassigned
(abelian) structure: for instance if 4 is an abelian group, the direct product 4 x F = f/
has property T, and yet H/y,(H) is isomorphic with 4.
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HOKPOLITHWE T'PYILIT HOAYIPYIilHIAMHA
Jlwenme M adintoan
Posionice

f)) ACM 1OBOPU L, 410 Tpynna & YAOBJACSTBOP €1 COOTBCTCIRCAND YCAOBUAM!

- 00 b INMHEHMC YACTHYHBIX HOJOAYIPYHINL, CPCaH KOTOPLIX HECT HHU ONHOMU Ipyitibe;

Soecm G
Yoo O Aeet xo1a Obl ONH ANCPUOIMUYSCRKUIE TOMOMOPDILIH 00pas;
Troecin G o= 00 peaMICHUC TTOMAPHO HCHSPECCRAIONTHXCS COBCTBCHHBIX HOUANOJYIPYII;

Z 0 cenn {7 HC SIBASCTCH FePHOAMICCKON 1 pylinoi, u o' = »"(a, b e G, i, n-—HarypaibHbIC YHcia)
BIACHCT 30 COOOH a*  (ah) 119 HELOTODBIX 5, /.

NJace rpyiiil, YIOBICTBOPSHOUIMX yeaosuio N odo3nayum suaxom (). B Hacrosicit craibe
aoRasbisacrest: (D) (N 2{(T)D(2). M3 pesyabraros CTarbi CACAYIOT HEKOTopuie 0800teHns

PE3VALIATOR CTATbi [1], B KOTOPOH W3yHannch TPYINTbl, YAOBIETBOPAIOIING YCI0BHIO (T).
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