
Matematický časopis

Igor Kluvánek
An Example Concerning the Projective Tensor Product of Vector Measures

Matematický časopis, Vol. 20 (1970), No. 2, 81--83

Persistent URL: http://dml.cz/dmlcz/126379

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/126379
http://project.dml.cz


M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 20 1970 Č Í S L O 2 

AN EXAMPLE CONCERNING THE PROJECTIVE TENSOR 
PRODUCT OF VECTOR MEASURES 

IGOR KLUVANEK, Kosice 

If 2 ^ 1xn and D^=1Hri are unconditionally ( = subseries) convergent series 
of elements of locally convex linear spaces X and Y, respectively, it is natural 
to ask whether the series S*=1 S* = 1 xn(^)ym is also unconditionally convergent 
in the space X® Y, the projective tensor product of X and F . (See e. g. [1; 
Chpt. IV] for terminology used.) The aim of this note is to show that the 
answer is in the negative in general by exhibiting a counter-example in which 
X = Y is a reflexive Banach space. The same space and technique have been 
vised in [5] for constructing two commuting, strongly complete, Boolean 
algebras of projections, both of bound 1, but such t h a t the algebra of projections 
they generate is unbounded. In our example the partial sums of 2 TiXn

r^ym 

are unbounded. 
E x a m p l e . For k = 1, 2, . . . let Xjc be the linear space of all functions f 

onNA: = {1, 2, . . . , 2k}. Let the norm on Xjc be defined by | | | = max{|f(s) | : s = 
= 1, 2, . . . , 2k}. Let X be the space consisting of all sequences x = (£k)k=1, 
where £jc e Xk, k = 1, 2, . . . and S"= 1 |^ |2 < oo. The norm in X is defined 
hy\x\ = (^1\^)'. 

If n is an integer ^ 1 let kn be the integer for which 

kn-l kn 

2 2* < n ^ 2 2i 

i=l i=l 

(we use the convention S^=1 = 0). Pu t 

kn-l 

sn = n — ^ 2*« 

Let gkn be the element of Xkn such that £kn(sn) = 1 and £kn(s) = 0 for s e Nkn, 
s =j= sn. Let xn = (Snk)^=1, where £nk = kn

x £kn for k = kn and gnk = 0 for 
H f e - Clearly, xn e X for n = 1 , 2 , . . . . The series S^=1 xn is unconditionally 
convergent, since S*=1 k~n < oo. 
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Let, for k = 1 ,2 , . . . , Zk be the linear space of all functions £ on Nk X Nk. 
Let the norm in Zk be given by the formula ||£|| = inf 2f=1|&] \rjt\, where the 
infimum is taken over all representations of £ in the form £(s, t) = 2f=1 £i(s) ni(t) 
with |f E Xk, rji e Xk. Let Z be the space consisting of all sequences z = (£k)k x 

with £keZk, k= 1,2, . . . , such that 2£=1 ||CA:||2 < oo. Again, the norm is 
given by \\z\\ = (2£=1 Ilt*ll2)*. 

If x = (£k)k=1 and y = (t)k)k=1 are two elements of X, let z = xy be the 
element of Z defined by z = (£k)k=1, where £k(s, t) = £k(s) rjk(t), (s, t) e Nk x Nk, 
k = 1,2, ... . The mapping (x, y) -> xy is clearly a bilinear operation on X X X 
with values in Z. I t is bounded, in fact \\xy\\ ^ \x\ \y\. 

We use a result from [4; pp. 368—369], viz. for k = 1, 2, . . . , there is a func
tion ojk in Zk taking values 0 and 1 only such tha t ||G>*|| ^ 2**"1. Denote 
by Qk the set of all couples (n, m) such that 2 ^ 2* < n, m ^ 2*=1 2* and 
ojk(sn, srn) = 1. Since k~2 2^k~1 -> oo and cok e Zk we can construct a sequence 
(xn)„=1 C X belonging to a representation of cok such that 

II 2 ^ m l l "̂  ° ° > 
(n,m)eDjc 

for k-> co. 
Since the linear mapping 2#« ® yi-> Hxtyi from a dense subset of X ® X 

into Z is bounded, the partial sums of 2 2 xn ® xm are not bounded in X ® X. 
R e m a r k s . 1. Let X and Y be locally convex topological linear spaces, 

S? and 3" cr-algebras of subsets of sets S and T9 respectively, and // : S? -> X 
and v : ̂ ~ -> Y a-additive measures. If we put 

;,(K X F) = /i(.B) ® v(F), EeSf, f e J , 

then the additive extension of A onto the algebra generated by the sets E x F 
need not be bounded. In fact, it is enough to put ti = T = {1, 2, . . . } , Sf = ST = 
= set of all subsets of S and ju(E) = y(K) = ^neE xn,E e Sf = 3~, where Hxn is 
the series constructed in the Example. 

2. If 2^=1 xn and 2^=1 3/w are unconditionally convergent series in normed 
linear spaces X and Y, respectively, and if one of them possess an absolute 
basis then 2 2 ^ <§) ym.^ unconditionally convergent in X <g) Y. More generally, 
if one of the spaces X, Y is an ,admissible factor' then the last series is conver
gent unconditionally (see [2]). 

3. If liXn and Hyn are unconditionally convergent series in locally convex 
topological linear spaces X and Y, respectively, then 2 2 ^ (x) ym is uncondi
tionally convergent in I ® Y, the inductive tensor product of X and Y 
(see [3]). 

REFERENCES 

[1] Day M. M., Normed Linear Spaces, Ergebnisse cler Mathematik 21, Berlin 1962. 

8 2 



[2] Ducho i i M., On the projective tensor product of rector-valued measures, Mat. casop. I7 
(1967), 113-120. 

[3] Duchor i M., K l u v a n e k I., Inductive tensor product of vector-valued measures, Mat. 
casop. 17 (1967), 108-112. 

[4] K a k u t a n i S., An example concerning uniform boundedness of spectral measures, 
Pacific J. Math. 4 (1954), 363 -372. 

[5] M c C a r t h y C. A., Commuting Boolean algebras of projections, Pacific J . Math. 11 
(1961), 295-307. 
Received October 8, 1968 

Katedra matematickej analyzy 
Prirodovedeckejfakulty TJPJ& 

Kosice 

83 


		webmaster@dml.cz
	2012-07-31T17:27:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




