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Mat. čas. 25, 1975, No 3, 289—291 

RINGS WITHOUT NILPOTENT ELEMENTS 

ALEXANDER ABIAN 

I n what follows R stands for an associative (but not necessarily commutative) 
ring without nonzero nilpotent elements. 

I n this paper, without the use of the axiom of Choice, we prove Theorem 1 
which states that if a product r±r2 ...rn of (not necessarily distinct) elements 
(factors) r% of R is equal to zero then every product (of elements of R) whose 
factors include (in any order whatsoever) a t least once every distinct factor 
of TiT2 .. . rn is also equal to zero. 

Based on the axiom of Choice and Theorem 1 we easily derive Theorem 2 
which in turn implies t h a t R is isomorphic to a subdirect product of rings 
without divisors of zero (cf. [1], Thm. 2). 

Let a and b be elements of R such t h a t ab = 0. But then (ba) (ba) = b(ab)a = 
= 0 and since R has no nonzero nilpotent elements we see that ba = 0. Thus, 
for every element a and b of R we have: 

(1) ab = 0 if and only if ba = 0 

Next, let a, 6, r be elements of R such t h a t ab = 0. Then from (1) it follows 
t h a t r(ba) = (rb)a = arb = 0. Thus, for every element a, 6, r of R we have: 

(2) ab = 0 implies arb = 0 

Let us call a product sis% ... sn of elements si of R a supersequent of a product 
r±r2 ...rm of elements n of R if and only if r±, r2, . . . , rm is a subsequence 
of si, S2, . . . , sn. Thus, the product acbabcas is a supersequent of the product 
cbc. However, the product abc is not a supersequent of the product cab. 

From (2) it readily follows t h a t for every element r±, T2 . . . , rm of R we have: 

(3) if r±rz ...rm = 0 then every supersequent of rrT2 ...rm is also equal 
to zero. 

Based on (3) we prove. 

Theorem 1. Let r±r2 ... rm be a product of (not necessarily distinct) elements 
n of R. Let S1S2 ... sn be a product of elements St of R which includes (in any 
order whatsoever) at least once every distinct factor of r±r2 ...rm. Then 
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(4) r\r2 ... rm = 0 implies s\S2 ... sn = 0 

Proof . Clearly (s\S2 . . . sn)
m is a supersequent of r\r2 ... rm and therefore 

from (3) and the hypothesis of (4) it follows that (s\s2 ... sn)
m = 0. But then 

S\s2 ... sn = 0 since R has no nonzero nilpotent elements. Thus, (4) is estab
lished. 

Accordingly, if in R we have aabac = 0 then 

cba = pcbca = qbbca = paaacccbcabbq = 0. 

Lemma 1. Let M be a multiplicative system (i.e., ueM and v eM imply 
uv e M) ofR such that M is maximal with respect to the property of not containing 0 
as an element. Then R — M is a completely prime ideal (i.e., xy e (R — M) 
implies xe(R — M) or y e (R — M) of R. 

Proof . First we show that R — M is closed under subtraction. Assume 
on the contrary that for some elements a and b of R it is the case that 

(5) ae(R-M) and b e (R — M) and (a — 6) e M. 

From the maximality of M it follows that there are elements x\, ...,xm 

of R with x\ . . . xm = 0 such that , for every i e {1, . . . , m), either x% eM 
or Xi = a. But then from Theorem 1 it follows that 

m\ ... mica = 0 with mi e M 

Since M is a multiplicative system, from the above equality we obtain 

(6) m[a = 0 with m[ e M. 

Similarly, we obtain 

(7) m'2b = 0 with m'2 e M. 

But then from (6), (7) and Theorem 1 it follows that 

m'xm'2a = m\m'2b = m^m'^a — b) = 0 

which in view of (5) and the fact that m\m'2 e M implies 0 e M, contradicting 
0 £ M . 

Thus, our assumption is false and R — M is closed under subtraction. 
Next we show that R — M is closed under outside (left and right) multi

plication. Assume on the contrary that for some elements a and b of R it is 
the case that 

(8) a e (R — M) and abeM (or ba e M) 

Let M(a) be the smallest multiplicative system of R described above. But 
then again we see tha t (8) implies (6). Therefore m^m^ab = 0 (with m% e M 
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and m* e M), and also msm^ba = 0, by Theorem 1. Hence, from (8) in view 
of the fact tha t m^m* e M it follows (under either assumption) that 0 e M, 
contradicting 0 ^ M. 

Thus, R —- M is closed under outside (left and right) multiplication. 
From the above it follows tha t R — M is an ideal of R. Moreover, R — M 

is a completely prime ideal of R since M is a multiplicative system. 

Theorem 2. Let a be a nonzero element of R. Then there exists a completely 
prime ideal P of R such that a$P. 

Proof. Clearly, A = {a, a2, a3, ...} is a multiplicative system of R such 
that 0 $ A. But then from Zorn's lemma it follows that there exists a multi
plicative system M of R such tha t A ^ M and M is maximal with respect 
to the property of not containing 0 as an element. Hence, the conclusion 
of Theorem 2 follows from Lemma 1 by choosing R — M for P. 

From Theorem 2 we see that the family (P<) of all completely prime ideals 
Pi of R has zero intersection. Moreover, it is clear that R/Pt is a ring without 
divisors of zero. Furthermore, it is obvious that a subdirect product of rings 
without divisors of zero is a ring without nonzero nilpotent elements. Thus, 
we have: 

Corollary (cf. [1], Thm. 2). A ring is without nonzero nilpotent elements if 
and only if it is isomorphic to a subdirect product of rings without divisors of zero. 
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