Matematický časopis

Alexander Abian

Rings without Nilpotent Elements

Matematický časopis, Vol. 25 (1975), No. 3, 289--291

Persistent URL: http://dml.cz/dmlcz/126404

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

RINGS WITHOUT NILPOTENT ELEMENTS

ALEXANDER ABIAN

In what follows R stands for an associative (but not necessarily commutative) ring without nonzero nilpotent elements.

In this paper, without the use of the axiom of Choice, we prove Theorem 1 which states that if a product $r_{1} r_{2} \ldots r_{n}$ of (not necessarily distinct) elements (factors) r_{i} of R is equal to zero then every product (of elements of R) whose factors include (in any order whatsoever) at least once every distinct factor of $r_{1} r_{2} \ldots r_{n}$ is also equal to zero.

Based on the axiom of Choice and Theorem 1 we easily derive Theorem 2 which in turn implies that R is isomorphic to a subdirect product of rings without divisors of zero (cf. [1], Thm. 2).

Let a and b be elements of R such that $a b=0$. But then $(b a)(b a)=b(a b) a=$ $=0$ and since R has no nonzero nilpotent elements we see that $b a=0$. Thus, for every element a and b of R we have:

$$
\begin{equation*}
a b=0 \quad \text { if and only if } \quad b a=0 \tag{1}
\end{equation*}
$$

Next, let a, b, r be elements of R such that $a b=0$. Then from (1) it follows that $r(b a)=(r b) a=a r b=0$. Thus, for every element a, b, r of R we have:

$$
\begin{equation*}
a b=0 \quad \text { implies } \quad a r b=0 \tag{2}
\end{equation*}
$$

Let us call a product $s_{1} s_{2} \ldots s_{n}$ of elements s_{i} of R a supersequent of a product $r_{1} r_{2} \ldots r_{m}$ of elements r_{i} of R if and only if $r_{1}, r_{2}, \ldots, r_{m}$ is a subsequence of $s_{1}, s_{2}, \ldots, s_{n}$. Thus, the product acbabcas is a supersequent of the product $c b c$. However, the product $a b c$ is not a supersequent of the product $c a b$.

From (2) it readily follows that for every element $r_{1}, r_{2} \ldots, r_{m}$ of R we have:
(3) if $r_{1} r_{2} \ldots r_{m}=0$ then every supersequent of $r_{1} r_{2} \ldots r_{m}$ is also equal to zero.

Based on (3) we prove.
Theorem 1. Let $r_{1} r_{2} \ldots r_{m}$ be a product of (not necessarily distinct) elements r_{i} of R. Let $s_{1} s_{2} \ldots s_{n}$ be a product of elements s_{i} of R which includes (in any order whatsoever) at least once every distinct factor of $r_{1} r_{2} \ldots r_{m}$. Then

$$
r_{1} r_{2} \ldots r_{m}=0 \quad \text { implies } \quad s_{1} s_{2} \ldots s_{n}=0
$$

Proof. Clearly $\left(s_{1} s_{2} \ldots s_{n}\right)^{m}$ is a supersequent of $r_{1} r_{2} \ldots r_{m}$ and therefore from (3) and the hypothesis of (4) it follows that $\left(s_{1} s_{2} \ldots s_{n}\right)^{m}=0$. But then $s_{1} s_{2} \ldots s_{n}=0$ since R has no nonzero nilpotent elements. Thus, (4) is established.

Accordingly, if in R we have $a a b a c=0$ then

$$
c b a=p c b c a=q b b c a=p a a a c c c b c a b b q=0
$$

Lemma 1. Let M be a multiplicative system (i.e., $u \in M$ and $v \in M$ imply $u v \in M)$ of R such that M is maximal with respect to the property of not containing 0 as an element. Then $R-M$ is a completely prime ideal (i.e., $x y \in(R-M)$ implies $x \in(R-M)$ or $y \in(R-M)$ of R.

Proof. First we show that $R-M$ is closed under subtraction. Assume on the contrary that for some elements a and b of R it is the case that

$$
\begin{equation*}
a \in(R-M) \quad \text { and } \quad b \in(R-M) \quad \text { and }(a-b) \in M . \tag{5}
\end{equation*}
$$

From the maximality of M it follows that there are elements x_{1}, \ldots, x_{m} of R with $x_{1} \ldots x_{m}=0$ such that, for every $i \in\{1, \ldots, m\}$, either $x_{i} \in M$ or $x_{i}=a$. But then from Theorem 1 it follows that

$$
m_{1} \ldots m_{k} a=0 \quad \text { with } \quad m_{i} \in M
$$

Since M is a multiplicative system, from the above equality we obtain

$$
\begin{equation*}
m_{1}^{\prime} a=0 \quad \text { with } \quad m_{1}^{\prime} \in M \tag{6}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
m_{2}^{\prime} b=0 \quad \text { with } \quad m_{2}^{\prime} \in M \tag{7}
\end{equation*}
$$

But then from (6), (7) and Theorem 1 it follows that

$$
m_{1}^{\prime} m_{2}^{\prime} a=m_{1}^{\prime} m_{2}^{\prime} b=m_{1}^{\prime} m_{2}^{\prime}(a-b)=0
$$

which in view of (5) and the fact that $m_{1}^{\prime} m_{2}^{\prime} \in M$ implies $0 \in M$, contradicting $0 \notin M$.

Thus, our assumption is false and $R-M$ is closed under subtraction.
Next we show that $R-M$ is closed under outside (left and right) multiplication. Assume on the contrary that for some elements a and b of R it is the case that

$$
\begin{equation*}
a \in(R-M) \quad \text { and } \quad a b \in M \quad \text { (or } b a \in M) \tag{8}
\end{equation*}
$$

Let $M(a)$ be the smallest multiplicative system of R described above. But then again we see that (8) implies (6). Therefore $m_{3} m_{4} a b=0$ (with $m_{3} \in M$
and $m_{4} \in M$), and also $m_{3} m_{4} b a=0$, by Theorem 1. Hence, from (8) in view of the fact that $m_{3} m_{4} \in M$ it follows (under either assumption) that $0 \in M$, contradicting $0 \notin M$.

Thus, $R-M$ is closed under outside (left and right) multiplication.
From the above it follows that $R-M$ is an ideal of R. Moreover, $R-M$ is a completely prime ideal of R since M is a multiplicative system.

Theorem 2. Let a be a nonzero element of R. Then there exists a completely prime ideal P of R such that $a \notin P$.

Proof. Clearly, $A=\left\{a, a^{2}, a^{3}, \ldots\right\}$ is a multiplicative system of R such that $0 \notin A$. But then from Zorn's lemma it follows that there exists a multiplicative system M of R such that $A \subseteq M$ and M is maximal with respect to the property of not containing 0 as an element. Hence, the conclusion of Theorem 2 follows from Lemma 1 by choosing $R-M$ for P.

From Theorem 2 we see that the family (P_{i}) of all completely prime ideals P_{i} of R has zero intersection. Moreover, it is clear that R / P_{i} is a ring without divisors of zero. Furthermore, it is obvious that a subdirect product of rings without divisors of zero is a ring without nonzero nilpotent elements. Thus, we have:

Corollary (cf. [1], Thm. 2). A ring is without nonzero nilpotent elements if and only if it is isomorphic to a subdirect product of rings without divisors of zero.

REFERENCE

[1] ANDRUNAKEVIC, V. A.-RJABUHIN, Ju. M.: Rings without nilpotent elements and completely prime ideals. Dokl. Akad. Nauk SSSR, 180, 1968, 9-11.

