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Matematicky &asopis 21 (1971), No. 2

ON AN ABSTRACT FORMULATION OF REGULARITY

ZDENA RIECANOVA, Bratislava

There is a general concept of regularity presented in book [2] and in paper [5]
including many known cases in topological spaces (differences between con-
cepts presented in [2] and [5] are only formal). On the other hand it was shown
in [4], [6] and [7] that many problems of measure theory can be formulated
only by means of systems of sets ,,of small measure“. Hence in such a theory
we have no measure, we have only a sequence {4",};_, of systems of measurable
sets satisfying some axioms.

The purpose of the present article is to construct a common generalization
of both theories, since the regularity in [4] was studied only in a very special
case.

Let X, C, U, S and {4}, satisfy the following assumptions: X is a non-
empty set of elements, C, U, S are systems of subets of X with the following
properties:

ViPeC 0ecU

Vo If Up,eUforn =1, 2, ..., then also 0 U,eU.

Vs £ Ch, CheC, then U CheC.

Vo, U—-CeU,C—-UeCforany Ue U, CeC.

Vs To any C € C there are U € U, D € C such that C < U < D.
Ve U < §(C) = S, where §(C) is the o-ring generated by C. |

{N o is a sequence of subsystems of the system S with the following
properties:

iyPeANpforn=0,1,2,..; B, FecNo=>EUFecAHN,.
(ii) To any positive integer n there exists a sequence {k;}7, of positive

integers such that |J E; € 4", whenever E; e N G =1,2,..).

i=1

(iii) If {£;}7, is a sequence of sets of S, Biyy < By (1 =1,2,...)  Ei=0

=1
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and E; € .47 for some positive integer ¢, then to any positive integer n there
is a positive integer m such that Em e 4.

(ivy fEeANy, F <cE ,FeS,then FetA "), (n=0,1,2,...).

(v) C e A for every C € C.

Note 1. From the axioms Vi — Vs the following properties of C and U
follow:

1. IfC;eC (i =1,2,...), then [] C; e C (see [5] Lemma 1).

i1

2. If Uy, Uz e U, then U; N Uz € U. Endeed, if Uy, Uz € U, then according
to Vg we have Uy N Us < U Cn, where CpeC (n =1, 2,...). According

n=1

to Vs there are sets Vy € U, Dy € C such that Cy < Vy < Dy According to Vs
wehave Us NV =V, — (D — U.Z) eUandalso UrNUaNVy = (Ve N Uz) —

— (Dn — U1)eU. Hence Uy N Us = |J (Ur N U220 V) € U according to V.

n=1

3. To any E € S there is a set U € U such that £ < U (see [5] Lemma 3).
4. To any E € S there areA €S, C;eC(t=1,2,...) such that A4; < A1,

A;icCi(t=1,2,..), F = U A; (see [5] Lemma 2).

We shall use also the followmg consequence of (i) and (ii):
(vi) To any positive integer n there are positive integers k, m such that
MeN m, KeN implies M U Ke N ,.

Definition 1. Put

Ry = {E € S: to any positive integer n there is a set U e U such that E < U,
U—E GJVIn}

Ry = {E € S: to any positive integer n there is a set C' € C such that C < E,
E — CeANy},

R3 = {E €S: there are sets CyeC, Coh, < E (k=1,2,...) such that

kGC’k ¢ N0}

Deﬁnition 2. Put Pl == R1 V) (S — (/4/‘0)’ Pz = Rz W) R3, P —= P]. ) P2, )

Note 2. Evidently £ € R3 = E ¢ 4"y. Hence K € Py, E € A" implies £ € R.
According to (i) we have C < Py, U < P;. At the end of the article examples
are given of systems {/", };, , as well as Py, P, and P.

Lemma 1. If BE;€ Py, By < Eyyy (1 =1,2,...) then | Ei € Ps.

il

Proof. 1. Assume that I; e Ry(i = 1, 2, ...). Let n be any positive integer
and let k, m be the positive integers fulfilling the property (vi). To k there
exists a sequence {k;};; of positive integers with the property (ii). To k; and
the set E; there is a set C; € C such that C; < E;, E; — C; eENG (T=1,2,...).
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According to (ii) we have |J (E; — Ci) € /. Further (U E’i) — (U 01) <
i=1 i=1 i=1

c U (i — C}) and hence (U E) (U Oi) € A according to (iv). If | J Ci ¢

=1

¢ N, then |J EieRs < P. If U Ci e N, then according to (iii) to the

i=1 i=1

sequence { ( U 01) — (U Oi)} and to the positive integer m there is a positive
i=1 k=1
© t
integer ¢ such that (U Oi) —

\i=1 i=1

(G#)= () =[(9=) = (Ge)] [(Ge) = (ge)]er-

1. e. U EiERz < Ps.
=1

C’i) ¢ A ' m. Hence according to (vi) we have

2. If E; ¢ Ry for some positive integer j, then E; e Ry and there are sets

CreC,Cy < E;(k=1,2,...) such that U Cx ¢ Ao. Then evidently U E; R

=1

i.e. U Ei € Pz.
i-1
Lemma 2. Let C € C. Then the system N = {B € P : B < C} is monotone.
Proof. According to (v) and (iv) we have N < 4y N P = R; N Ry. Let
{4321, {B;}7, be sequences of sets of N and let 4; = 441, Bi > B

(1 =1,2,...). Then evidently | J 4; = C, [} Bi = C. Let n be any positive
=1 i=1

integer and let {k;}; , be a sequehce of positive integers with the property (ii).
To any ¢ the exists sets U; € U, C; € C such that

(]) Ui o Ai, B@ o} Ci, (J{ — AiE:/V‘k‘, Bi — CiEaVkl.

We have |J Ui € U according to V, and [} Ci € C according to 1 of note 1.
i1 i-1
From (1) and (ii) it follows

(2) U Ui > U Ai, (lj Ui)—(lo_oj Ai\) < G ;) € A", and hence
) ~ .

=1 i=1 / i=1

U A; e Py,
i1
3) N B> N0, (n Bi) - (n Oz‘) = U (Bi — €;) e &, and hence
i-1 i1 i1 i1 i1
n Bi S Pg.

t=1
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To an arbitrarily chosen positive integer n there are positive integers k, m

with the property (vi). According to (iii) to the number m and to the sequence

{ ( n Bi)} there exists a positive integer such that B, — (n Bi) eN .
j=1 1

To the number k there exists a set U € U such that U > B;, U — By e N.

Hence according to (vi) we have

U:éBi, (nB,) (U — Bt)u[ (63)] €N

i=1

and therefore () B;i € P1; |J 4i € P; according to Lemma 1.

i-1 i1

Lemma 3. P N A"y is a ring.

Proof. Let n be any positive integer. Choose m, k according to (vi). To the
number £ and a set £ € P N A" there are according to the definition of P
sets Ce C,UeUsuchthat C « ¥ <« U,E — CeN%,, U — E € N). Similarly
toaset F e PN\ A gtherearesets De C, Ve Usuchthat D c F <« V,F — D¢
ENmy, V—-—FeNn.

Hencewehave UUV s FUF s CUD, (UVUV)—(BEUF)< (U— E)u
UV —-—FyeN ", BVF)— (CUD) < (& —C)U(F — D) eANy,. Moreover
U U V e U according to Vs and C U D e C according to V3. Hence £ U F € P
according to (iv) and the definition of P.

Further U — DeU, C — V € C according to V;. Evidently U — D 5
>E—F>C—V. Further (U—-D)— (E—F)<(U—E)u({F —D)e
ENp, B —F)—(C—V)c(E—-C)u(V —F)eANy. Hence E — F P,
according to (iv).

Definition 3. Put
V= {U € U: there is C € C such that U < C}.

Theorem 1. C < Py if and only if V < Ps.
Proof 1. Let C = P;. Let U €V be an arbitrary set. Then there is a set

C € C such that U < C. We have C' — U € C according to Vyand C — U € P,
according to the assumption. Let » be any positive integer. Then there is
VeU VsC—U, V—(C—U)eAN . We have C — V e C according
to Vs and C— V< U, U—(C—V)=UnNnV<cV—(C— U). Hence

—(C — V)eAN "y and U < Py according to the definition of Ps.

2. Let V < P;. Let C'e C be an arbitrary set. According to Vs there are
UeU, DeCsuch that C = U < D. U — C € U according to V. Evidently
U — C c Dandhence U — C € P,. To any positive integer n there is C1 € C
such that ¢y <« U — C, (U — C) — C1 €A 'n. Further O = U — (U — () <
cU—-C, (U—=0C)—C=((U-—-C)—CieN",. We have C < Py since

U — C; € U according to Vj.
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Theorem 2. Let X, C, U, S satisfy the conditions V1—Vg and {Nnu}, o satisfy
the condition (i)—(v). Then P = S if and only if one of the following conditions
s satisfied:

A Cc P1,

B Vc Pz.

Proof. The necessity of the conditions A, B is obvious. With respect to
Theorem 1 is suffices to prove that A is sufficient. Hence let C < P;.

Let 4 € § and there exist C € C such that A < C. Put N = {BeP: B < C}.
Then evidently C < P hence C N C < N (where C N C is the system of all
all £ € § such that E = D N C for some D e C). N is a o-ring according to
Lemmas 2 and 3. Hence N - S(C N C) = S(€) N C = S N C. Therefore 4 e N
since d =ANCeSNC.

Let E € S be any set. According to 4 of Note 1 there are sets 4;€ S, C; € C,
A= Ci, Ay < 4in (t=1,2,...) such that E = |J 4;. Hence A;eP

i=1

(¢=1,2,...) and E € P; according to Lemma 1. If £ ¢ 47y, then £ €P;.
If £ e Ny, then B = U A; € Py can be proved similarly as in the Lemma 2.
inl

Theorem 3. Let X, C, U, S satisfy the conditions Vi—Ve and

V7: To any C € C there are Uy e U (k= 1,2,...) such that C = [} Ug. Let
k=1
{N o satisfy the conditions (i)—(v). Then P = S.

Proof. Let C € C be an arbitary set. There are UxeU (k=1,2,...)
such that C = n Uk. According to Vs there are sets VV € U, D € C such that
k-1
C = V < D. Hence n (U0 V) = th where Vi= N (UxN V)
ko1 k-1 A
(t=1,2,...).V;eU(t=1,2, )accordmg to 2 of Note 1. Further V; < Vi

and Vie Ao (1 =1,2,...) accordlng to (iv). Hence C € P, according to the
second part of the proof of Lemma 2. Now apply Theorem 2.

Theorem 4. Let X, C, U, S satisfy the conditions V1—Vs and

Vg: To any UE€V there are CxeC (k=1,2,...) such that U = Cl Cy.
Let {N,}» o satisfy the condmons (i)—(v). Then P = S§.

Proof. Let UeVand U = U Cr,CreC(k=1,2,...). Evidently U € 4.

k=1

Put D; = |J Ck. Then Dy < Dyyy and D;e C (¢ = 1, 2, ...) according to Vj.
s}

Since € = Py and U = |J D; we have U € P3 according to

=1
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Lemma 2. Hence P = § according to Theorem 2.

Finally, let us mention some applications.

Examples of spaces X and systems C, U, § satisfying the conditions V;—Vj
are, e. g. in [5], examples 1—5.

Hence let X, C, U, S satisfy the conditions Vi—Vg. Let u be a measure
defined on S and finite on C. If /7, = {E € S: u(E) < 1/n}forn = 2, ... and
No={E€S: u(l) < oo} then the sequence {N,}, , satisfies the conditions
(i)—(v). The condition £ € P; is equivalent to the condition u(E) = inf {u(U):
E < U e U} and the condition ¥ € P is equivalent to the condition u(f) =
=sup {u(C): £ > CeC}.

Hence Theorem 8 of paper [5] is a consequence of Theorem 2. Similarly
Theorem 4 p. 198 of [2] is a consequence of Theorem 2. Namely it can be shown
that she system I—VII of axioms of Theorem 4 of [2] is equivalent to the
system V;—Vs (cf. Note 1).

The well-known theorem on regularity of Borel measure (theorem F of [1]
p- 228) is a consequence of these theorems, as well as the assertion included
in examples 3 and 4 of [5].

The theorem on the regularity of the Baire measure (theorem C of [1] p. 228)
and Theorems 10 and 11 of [5] are consequences of Theorem 3.

Also Theorem 2 of paper [4] is a consequence of Theorem 2. If we put A"y =
= §, then Py = Ry, P, = Rs. If X = (0, 1> and S is the system of all Borel
subsets of <0, 1), if C is the system of all closed and U the system of all open
subsets of (0, 1>, we get a special case of Theorem 2.

Let m be a vector-valued measure defined on S with values in a normed
space, |m| be the variation of m (see [3]). Let |m|(C') < oo for every C e C.
Then the sequence {A4",}; , defined by the equalities 47y = {£ € §: |m|(E) <
< oo} and N, = {E €S: |m|(E) < 1/n} for n =1, 2, ... satisfies the conditions
(i)—(v). If #9p =S, then the equality P = S implies the (C, U)-regularity
of m on §, i. e. the following condition: If 4 € § then to any ¢ > 0 there are
CeC, UeU such that C € 4 < U and |m(B)| < ¢ for any B< U — C.
Indeed, if #79 =S, then P; = Ry, P, = Ry. A set A4 is regular is and only
if to any ¢ > O there are sets C € C and U € U such that C < 4 < U and
Im(B1)| < &, (m(Bs)] < e for any By « A — C and any Bs < U — A. Our
assertion follows from the inequatlity |m(B)| < |m|(B) for any B €.

If # 9+ S then P=S implies SN A9 =P NA9g= RN Ry. Hence if
A €S N R; and the regularity of 4 can be shown similarly as in the previous
case. As a corrolary of Theorems 3 and 4 we get the following theorem.

Theorem 5. Let X, C, U, S satisfy the assumptions V1— Ve and V, resp. Vg.
Let m be a vector-valued measure defined on S with values in a normed space such
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that |m|(C) < oo for C e C. Then m is (C, U)-regular on SN Ny = {E€S:
Im|(E) << oo}, i. e. for every A € S N Ny the following holds:

To any ¢ > 0 there are C € C, U e U such that C < A < U and for every
BeS, Bc U — C we have |[m(B)| < e.

REFERENCES

[1] Halmos P. R., Measure Theory, New York 1950.
[2] Berberian S. K., Measure and Integration, New York 1965.
[3] Dinculeanu N., Vector Measures, Berlin 1966.

[4] Riecan B., Abstract formulation of some theorems of measure theory, Mat. ¢asop. 16
(1966), 268 —273.

[6] Rie¢anova Z., O peryaaprnocmu mepsr, Mat. ¢asop. 17 (1967), 38 —47.
[6] Neubrunn T., On an abstract formulation of absolute continuity and dominancy,
Mat. céasop. 19 (1969), 202—215.

[7] Rie&an B., Abstract formulation of some theorems of measure theory 11, Mat. ¢asop. 19
(1969), 138 — 144.

Received August 1, 1969
Katedra matematiky a deskriptivnej geometrie
Elektrotechnickej fakulty
Slovenskej vysokej Skoly technickej
Bratislava

123



		webmaster@dml.cz
	2012-07-31T17:57:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




