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Matematický časopis 21 (1971), No. 2 

ON AN ABSTRACT FORMULATION OF REGULARITY 

ZDENA RIECANOVA, Bratislava 

There is a general concept of regularity presented in book [2] and in paper [5] 
including many known cases in topological spaces (differences between con­
cepts presented in [2] and [5] are only formal). On the other hand it was shown 
in [4], [6] and [7] that many problems of measure theory can be formulated 
only by means of systems of sets ,,of small measure". Hence in such a theory 
we have no measure, we have only a sequence {^w}^=0 °-? systems of measurable 
sets satisfying some axioms. 

The purpose of the present article is to construct a common generalization 
of both theories, since the regularity in [4] was studied only in a very special 
case. 

Let X, C, U, S and {yVn}n=o satisfy the following assumptions: X is a non­
empty set of elements, C, U, S are systems of subets of X with the following 
properties: 

Vi 0 e C, 0 e U 
00 

V2 If Un e U for n = 1, 2, . . . , then also ( J UneU. 

V 3 If Ci,C2e C, then Ci u C2 e C. 

V4 U - C e U, C - U e C for any U e U, C e C. 

V 5 To any C e C there are U e U, D e C such that G c [7 c D. 

V6 li c J(C) = S, where S(C) is the cr-ring generated by C. 
{^niW) * s a sequence of subsystems of the system S with the following 

properties: 

(i) ®eJrni0YU = 0, 1, 2, ...;E,FeJro=>EuFeJT0, 

(ii) To any positive integer n there exists a sequence {k^f^ of positive 
00 

integers such that [J E% e^Vn, whenever Ei EJ^ki (i = 1, 2, . . . ) . 
i=l 

00 

(iii) If {^}£i is a sequence of sets of S, Ei+1 <= Et {i = 1, 2, ...){} Et = 0 
i=l 
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and Et eJr
0 for some positive integer t, then to any positive integer n there 

is a positive integer m such tha t Em e JTn. 
(iv) UEeJr

n,F c E,F ES, then FEJr
n (n = 0, 1, 2, . . . ) . 

(v) C G JT0 for every C e C. 
N o t e 1. From the axioms V\ — V6 the following properties of C and U 

follow: 
00 

1. If C( e C {i = 1,2, . . . ) , then f) d e C (see [5] Lemma 1). 

2. If Ui, U2 e U, then Ui n U2 e U. Endeed, if Lli, t/2 e U, then according 
00 

to \76 we have U\ n U2 c ( J Cw, where C f l e C ( w = 1,2, . . . ) . According 
W - = l 

to V5 there are sets Vn e U, Dn e C such that Cn c Vw c J)7i. According to V4 

we have /72 nVn = Vn — (Dn — U2) E U and also Ui n t72 n F„ = (Vw n t72) — 
GO 

— (£>„ — Ui) e U. Hence Ui n U2 = \J (Ui n U2 n Vn) e U according to V2 . 
W - = l 

3. To any / ? e S there is a set U e U such that E cz U (see [5] Lemma 3). 
4. To any i ^ e S there are Ai e S, Ci e C (i = 1,2, . . .) such tha t At c ^ 4 m , 

00 

Ai c C< (i = 1, 2, . . . ) , ^/ = U Ai (see [5] Lemma 2). 
i=i 

We shall use also the following consequence of (i) and (ii): 
(vi) To any positive integer n there are positive integers k, m such that 

M e Jr
m, K e <yVk implies M u K e <A^n. 

Definition 1. Put 
Ri == {E E S: to any positive integer n there is a set U E U such that E c. JJ9 

u -EEjrn}, 

R2 = {E E S: to any positive integer n there is a set C E C such that C c: E, 
E-CEJr

n}, 
R3 = {E ES\ there are sets Ck e C, Ck cz E (k = 1, 2, ...) such tha t 

U<?k<^o}. 

Definition 2. Put Px = Ri u (S - JT0), P2 = R2 u R3, P - Pi n P2. 
N o t e 2. Evidently E E Rs => E $ JT0. Hence E EP2,E E Jr

0 implies E ER2. 

According to (i) we have C c p 2 > l / c P ^ A t the end of the article examples 
are given of systems {^w}*.0 as well as Pi, P2 and P. 

00 

Lemma 1. If EtEP2, E% e EM (i = 1, 2, . . .) then \J E{EP2. 
UA 

P r o o f 1. Assume that Et E R2(i = 1, 2, . . . ) . Let n be any positive integer 
and let k, m be the positive integers fulfilling the property (vi). To k there 
exists a sequence {&JJ1-. of positive integers with the property (ii). To kt and 

t he set Ei there is a set fteC such that d cz Et, ^ — C< e ^ f (i = 1, 2, . . . ) . 
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00 / 00 \ / 00 \ 

According to (ii) we have U iEt — CO e ^ k - Further I U Ei) ~~ I U C U C 

*=1 \ i=l / \ i = l / 
oo / 0 0 \ / 0 0 \ °° 

cz \J(Et- d) and hence [\J EA - [\J CA eJr
k according to (iv). If U Ct$ 

wl \ i = l / \ i = l / i=l 
00 00 

^J^o, then | J ^ G R 3 C P 2 . If U C< e-yfo- then according to (iii) to the 
i=l i=l 

sequence | J U C?- J ~~~ I U C*) I anc^ ^° ^^e P0 S l t ive integer m there is a positive 

integer £ such that I U C* I ~~ I U C/) $ J^m * Hence according to (vi) we have 

(y*Hy 4 = [ (H - (QCi)]u [(yc<) - ( y C i ) ] e ^ -
co 

i. e. U Ei G R 2 C p2 
i-=l 

2. If £7 ̂  R2 for some positive integer j , then 2£y e R3 and there are sets 
00 00 

Ck e C, Ck cz Ej (k = 1, 2, ...) such that \J Ck $ JT*. Then evidently U Ei e «3 
fc=l i=l 

00 

i.e. U EteP2. 
i=i 

Lemma 2. Le£ C e C. Then the system N = {B e P : B cz C}'is monotone. 
Proof . According to (v) and (iv) we have N cz ^0 n P = Ri n R2. Let 

{A{}fnl, {i^}£Li be sequences of sets of N and let At cz At+i, Bi ZD Bt+i 
00 00 

(i = 1, 2, . . . ) . Then evidently U At c C, f\ Bt cz C. Let n be any positive 
£=-1 i = l 

integer and let {fcĴ L-. be a sequence of positive integers with the property (ii). 
To any i the exists sets Ui e U, d e C such tha t 

(1) E7, z> ^ , £< -o C<, C/V - ^ eJr
ki, Bt - C, G ^ , 

00 CO 

We have \J UteU according to V2 and f\ d s C according to 1 of note 1. 
i=l i=i 

From (1) and (ii) it follows 

00 00 / 0 0 \ / 0 0 \ ° ° 

(2) U °i -- U A*> U Ui) - U ^ t c U (Ui - At) e^V„ and hence 
i-1 i_l \ i-1 / \ i-1 / i-1 

(jAiGPu 
i = l 

00 00 / 0 0 \ / 0 0 \ °° 

(3) f| Bi => f l <?*> ( PI -3«) ~ ( n C.) c U (B< - <?*) e ^ « and hence 
i^l t - l \ i = l / \ i = l / i=l 

i-1 
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To an arbitrarily chosen positive integer n there are positive integers k, m 

with the property (vi). According to (iii) to the number m and to the sequence 

\B] — I P | Bt J | there exists a positive integer such that Bt — I f] B% I eJr

m. 

To the number k there exists a set U e U such that U ZD Bt, U — Bte Jr

k. 

Hence according to (vi) we have 

U z> Q Bt, U - If] Bt) <=(U- Bt) u U - if] Bt)] 
oo oo 

and therefore f] Bt e Pi; [ J A% e P2 according to Lemma 1. 
i=l i=i 

Є.Vn 

Lemma 3. P n .yV'o *8 a n ^ . 

Proof . Let w be any positive integer. Choose m, & according to (vi). To the 

number k and a set E e P n «/f 0 there are according to the definition of P 

sets CeC,UeU such that C a E a U ,E - CeJr

k, U - E e Jr

k. Similarly 

to a set.F e P n Jr

0 there are sets D eC, V e U such that B c F c V,F — D e 

eJTm, V -FeJTm. 

Hence we have C7 u V ZD EuF ZD C U D, (U U V) — (E u F) c (U - E) u 

U (V - F) eJTn, (E U F) - (C U D) cz (E - C) u (F - D) eJr

n. Moreover 

U U V eU according to V2 and C u D eC according to V3. Hence E U F eP 

according to (iv) and the definition of P. 

Further U — D eU, C — V e C according to V4. Evidently C7 — D 3 

ZD E -F ZD C - V. Further (U - D) - (E - F) cz (U - E)u (F - D) e 

eJr

n, (E - F) - (C - V) cz (E - C) U (V - F) eJr

n. Hence E -FeP, 

according to (iv). 

Definition 3. Put 
V = {U eU: there is C e C such that U cz C}. 

Theorem 1. C cz Px if and only ifV^ P2. 

P r o o f 1. Let C cz p 1 # Let U eV be an arbitrary set. Then there is a set 

C e C such that C7 cz C. We have C — U e C according to V4 and C — U e Pi 

according to the assumption. Let n be any positive integer. Then there is 

VeU, VZDC-U, V — (C - U)eJTn. We have C-VeC according 

to V4 and C - V ^ U, U - (C - V) = U n V cz V - (C - U). Hence 

C7 — (C — V) e Jr

n and U cz p 2 according to the definition of P2. 

2. Let V cz p 2 . Let C e C be an arbitrary set. According to V5 there are 

U e U, D e C such that (7 c U <z D. U — C e U according to V4. Evidently 

U — C cz D and hence C7 — C e P 2 . To any positive integer n there is Ci e C 

such that d cz C7 - C, (U - C) - d Ge/f n - Further G = U - (U - C) cz 

cz U - d, (U - d ) - C = (U -C) - Ci e,rVn. We have C cz p x since 

U — CiE U according to V4. 
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Theorem 2. Let X, C, U, S satisfy the conditions YI—VQ and {Nn}n=o satisfy 
the condition (i)—(v). Then P = S if and only if one of the following conditions 
is satisfied: 

A C c Pu 

B V c P 2 . 

P roof . The necessity of the conditions A, B is obvious. With respect to 
Theorem 1 is suffices to prove that A is sufficient. Hence let C c plm 

Let A e S and there exist C eC such that A c C. Pu t N = {B eP: B c C}. 
Then evidently C c p hence C n C cz N (where C n (7 is the system of all 
all E e S such that E = D n C for some D e C). N is a cr-ring according to 
Lemmas 2 and 3. Hence N z> S(C n C) = S(C) nC = SnC. Therefore A e N 
since A = A C\C eS C\C. 

Let E e S he any set. According to 4 of Note 1 there are sets A% eS, Ci e C, 
00 

Ai c (?<, 4* c J . m (i = 1, 2, ...) such tha t F/ = ( J .4*. Hence At e P 
i=l 

(i = 1,2, . . . ) and EeP^z according to Lemma 1. If E^J^o, then EePi. 
00 

If JE/ ejVo, then F7 = [ J 4* e Pi can be proved similarly as in the Lemma 2. 
i=i 

Theorem 3. Let X, C, U, S satisfy the conditions Vi — V6 and 
00 

V7: To any C e C there are Ujc e U (k = 1,2,.. .) such that C = P | Ujc. Let 
k=l 

{Nu}n=o satisfy the conditions (i) — (v). Then P = S. 
Proof . Let CeC be an arbitary set. There are Ujc e U (k = 1,2, ...) 

00 

such that C = p | Ujc. According to V5 there are sets V e U, D e C such tha t 
k=l 

C c F c D , Hence C = f\ {Uk n V) = f\ Vi, where Vt = f) (Ujc n V) 
k=l i=l k=l 

(i = 1, 2, . . . ) . Vi e U (i = 1, 2, ...) according to 2 of Note 1. Further Vt <= Vm 

and Vi e.yTo (i = 1, 2, ...) according to (iv). Hence C e P± according to the 
second part of the proof of Lemma 2. Now apply Theorem 2. 

Theorem 4. Let X, C, U, S satisfy the conditions VI—VQ and 
00 

Vg: To any U e V there are Cjc e C (k = 1, 2, ...) swcft ^a^ L7 = ( J (7*;. 
&=i 

.Le£ {A ĵ̂ Lo satisfy the conditions (i) —(v). Then P = S. 

Proof . Let U e V and U = Q Ck, Cjc e C (k = I, 2, . . . ) . Evidently U eJ^o-
k=l 

i 

Put Di = \J Cjc. Then Dt c: D f + 1 and A e C (i = 1, 2, ...) according to V3 . 
k=i 

00 

Since C c P 2 and U = ( J A we have U eP^ according to 
ui 
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Lemma 2. Hence P = S according to Theorem 2. 

Finally, let us mention some applications. 
Examples of spaces X and systems C, U, 8 satisfying the conditions Vi— V6 

are, e. g. in [5], examples 1 — 5. 
Hence let X, C, U, S satisfy- the conditions Vi— V6. Let /u be a measure 

defined on S and finite on C. If jVn = {E eS: fx(E) < l/n} for n = 2, ... and 
JVO = {E eS: /u(E) < co} then the sequence {Nn}™=0 satisfies the conditions 
(i) —(v). The condition E e Pi is equivalent to the condition ju(E) = inf {/u(U): 
E <= U e U} and the condition E e P2 is equivalent to the condition ju(E) = 
= sup{u(C):E =D CeC}. 

Hence Theorem 8 of paper [5] is a consequence of Theorem 2. Similarly 
Theorem 4 p. 198 of [2] is a consequence of Theorem 2. Namely it can be shown 
that she system I—VII of axioms^of Theorem 4 of [2] is equivalent to the 
system Vi— V6 (cf. Note 1). 

The well-known theorem on regularity of Borel measure (theorem F of [1] 
p. 228) is a consequence of these theorems, as well as the assertion included 
in examples 3 and 4 of [5]. 

The theorem on the regularity of the Baire measure (theorem G of [I] p . 228) 
and Theorems 10 and 11 of [5] are consequences of Theorem 3. 

Also Theorem 2 of paper [4] is a consequence of Theorem 2. If we put Aro = 
= S, then Pi = Ri, P2 = R2. If X = <0, 1> and S is the system of all Borel 
subsets of <0, 1>, if C is the system of all closed and U the system of all open 
subsets of <0, 1>, we get a special case of Theorem 2. 

Let m be a vector-valued measure defined on S with values in a normed 
space, \m\ be the variation of m (see [3]). Let \m\(C) < co for every CEC. 
Then the sequence {jVn}^0 defined by the equalities j\ro = {E e S: \m\(E) < 
< co} and jVn = {E e S: \m\(E) < l/n} for n = 1, 2, . . . satisfies the conditions 
(i)—(v). If JVo = S, then the equality P = S implies the (C, U)-regularity 
of m on S, i. e. the following condition: If A e S then to any e > 0 there are 
CeC, U eU such tha t C c A c U and \m(B)\ < e for any B c U - C. 
Indeed, if JVO = S, then Pi = Ri, P2 = R2. A set A is regular is and only 
if to any e > 0 there are sets CeC and U eU such tha t C cz A <= JJ and 
\m(Bi)\ < e, (m(B2)\ < e for any Bi c: A — C and any B2 a JJ _ A. Our 
assertion follows from the inequatlity |m(j?)| ^ \m\(B) for any B eS. 

If JVO * S then P = S implies S n J/*o = P C\ JVO = R\C\R2. Hence if 
A e S n R2 and the regularity of A can be shown similarly as in the previous 
case. As a corrolary of Theorems 3 and 4 we get the following theorem. 

Theorem 5. Let X, C, U, S satisfy the assumptions Vi—V6 and V7, resp. Vs. 
Let m be a vector-valued measure defined on S with values in a normed space such 
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that \m\(C) < oo for C e C. Then m is (C, U)-regular on S n ~/To = { S e S : 
|m|(2?) < oo}, i. e. /or every A e S n e/To ^ following holds: 

To any L > 0 £&ere are C EC, U E U s^lch that C ^ A ^ U and for every 
B e S, B C IJ — C we have \m(B)\ < e. 
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