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Matematický časopis 21 (1971). No. 2 

A NOTE ON A THEOREM OF A. D. ALEXANDROFF 

ZDENA RIECANOVA, Bratislava 

In the present paper wre generalize the well-known Alexandroff theorem 
stating t h a t any regular additive measure on a ring is countably additive. 
The problem to prove such a generalization was suggested by L. M i s i k 
and I. K l u v a n e k i n connection with the author's paper [4] (see also [1], 
§59—61). 

We present here two theorems for non-negative measures and one theorem 
for vector-valued measures. The paper contains also some remarks concerning 
paper [3] by E. M a r c z e w s k i and paper [2] by N. D i n c u l e a n u and 
I. K l u v a n e k . 

Let J7 be a set. If Q) is a system of subsets of T and /i is a non-negative 
set-function on Q) with finite or infinite values, then we write// : 2$-> <0, oo>. 
Let 01, <€, tft be systems of subsets of T. 

Theorem 1. Let 01, <%, tfl and /x : ® -> <0, oo} satisfy the following conditions: 
(i) A,Be&=>A \J Be@. 

00 

(ii) / / C <-= ( J Ui, C e <£, Ui e °U (i = 1, 2, . . . ) , then there exists a positive 

n 

integer n such that ( ? c ^J Ui. 
i=i 

(iii) /i is additive, subadditive and monotone on 01. 

(iv) /i is (<%, °ll)-regular on 01, i. e. /i(E) = sup {/u(F) : F e 0! and there is 

C e<£ such that F c: C <= E}* = inf {/u(G) :Ge 01 and there is U e °ll such that 

E c U c: G}for any Ee0t. 

Then /x is a-additive on Si. 

Proof . Let {Ei}^Lt be a sequence of pairwise disjoint sets of 0! and let 

E={jEte0. 
i = l 

From (iii) we get 

/i(E)^/i(\}Ei) = \/x(Ei) (n=l,2,...). 

00 

If /u(Ej) = co for some j , then ju(E) = ^/x(Ei) according to (iii). 
i = i 

154 



Let fi(Ei) < co for i = 1, 2, . . . Let e > 0 be an arbitrary number. Then 
according to (iv), there exist C e <&, F e ffl, such that F c C cz E and 

/i(F) > 2e if //(#) = oo 

and 

/x(F) + e > p{E) if //(#) < oo . 

Further according to (iv) there exist sets Ui^°tt, Gi e £% (i = 1, 2, ...) such 
tha t Gi ZD Ui z> Ei and 

fjL(Gt) -/i{Ei)<—, i= 1,2, . . . 
2* 

According to (ii) there exists a positive integer N such that 

N N N 

FaC<^\JUi^\JGi and according to (iii) we have /JL(F) ^ %ii{Gi). 
i—l i=l i=l 

Hence we have 

fl(E) < p(F) + ez^2 ^Gi) + * < 2 M^<) + 2* -S 
1=1 l - l 

00 

^ 2 M-?.) + e > if ME) < oo , 

and 

2e < p(F) ^ 2 f*Wi) < £ + 2 ,«(-?.) » i f M#) = oo . 
i=l i=l 

N o t e 1. I f ^ U ^ c : ^ ? then the condition (iv) is equivalent to the con
dition /u(E) = sup {/Lt(C) : E =) C e V} = inf {u(U) : E c C7 e $r} for a n y E e # . 

E x a m p l e 1. Let 8% be the ring generated by all intervals of the form 
(a, 6), where — oo < a :g 6 < oo. Let F be a continuous to the left, non-
decreasing, finite real-valued function defined on the real line. Every set E 

r 

in M can be written in the form E = ( J {at, hi), where the intervals (ai, hi) 
£ = 1 

are mutually disjoint. One may define the set function /J, on 8& by the formula 
r 

fx(E) — 2 [F(bi) — F(di)]. Evidently /JL is additive and non-negative on M. 
i=-i 

From the continuity to the left of F the (<£, ^ - r egu la r i ty of /JL on 0t follows, 
where (#, °li) is the system consisting of 0 and of all finite sums of bounded 
closed (open) intervals. 

E x a m p l e 2. Let I7 be a Hausdorff topological space. Let 01 be a system 
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of subsets of T closed under finite unions. Let # (°f/) be any system of compact 
(open) subsets of T. Let ft : 0t-> <0, oo} be additive subadditive, monotone 
and (<€, ^ - r e g u l a r on 0t. Then ft is cx-additive according to Theorem 1. 

Theorem 2. Let 0t, <€ and fi : 0t-> <0, oo> satisfy the following conditions: 
(v) ^ i8 a ring. 

(vi) IfCteV (i =1,2, ...) and f]d ^0(n= 1,2, ...), then f\ d ^ 0. 
i=i i=i 

(vii) If Ae0t, A cz C e^, then fi(A) < oo. 
(ii) ft is additive on 0%. 

(viii) fx is inner ^-regular on 0t i. e. fi(E) = sup {/u(F) :F e 0t and there 
is C Etf such that F ^ C ^ E}. 

Then fi is a-additive on 0t. 
P r o o f . Let {At}^x be a sequence of pairwise disjoint sets of 0! such that 

00 

A = \J At e 0t. 
»«i 

n 

If fx(A) < co, then the setsEn = A — ( J At (n = I, 2, ...) form a non-
i=i 

00 

increasing sequence of sets of 01 with f] En = 0 and fx(En) < oo. Similarly 
w = l 

as in [3] §4, Theorem (i) it can be proved that l i m ^ i ^ ) = 0 and hence 
ft-* 00 

limrA ,(A)-2(Ai)] = 0. 
«-»oo 1=1 

Let fi(A = co and K > 0 be an arbitrary number. According to (vii) and 
(viii) there exists sets C e^,F e 0t such tha t F c C c 4̂ and oo > ^(i^) > if. 

00 00 

Hence F7 = ( J (.4* OF) and by the foregoing we have K < JU(F) = ]> M<(Ai n 7̂ ) 
i= l i=i 

f - i 

N o t e 2. I f ^ c : ^ then the condition (vii) is equivalent to the condition 
fi(C) < oo for every C E ^ and the condition (viii) to the condition fi(E) = 
= sup {[i(C) : E cz C e V} for every E E 0t. 

N o t e 3. If 0t is an algebra of subsets of T and fi(T) = 1, then the assertion 
of Theorem 2 is identical with the assertion of Theorem (i), 8 4 of [3]. 

N o t e 4. The assertion of Theorem 2 need not hold if we replace the assump
tion (v) by the assumption (i) even if fi is finite additive, subadditive and 
monotone (see example 3). 

E x a m p l e 3. Let T = {1, 2, . . . } . Let 08o = {E c T: either E = 0 or E is 
finite}; 08x = {E <= T:T - E e 380, 1 6 # } ; 38 = 08o U J r . Then 08 satisfies 
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the properties (i) and (vi). Let /u: 0 -> <0, co) be defined in the following way: 
/u(E) = 0 if E e 0O and [JL(E) = 1 if E e 0\. Evidently /J, is additive subadditive, 
monotone and inner ^-regular on 0. But /a is not cx-additive on 0 since 1 = 

= fi(T) # J fi({n}) = 0. 
n=l 

N o t e 5. If the systems r€ and °li satisfy the property (ii), then ^ need 
not satisfy the property (vi). If, e. g. ^ is an arbitrary system and °li is a finite 
system of subsets of T. 

Let T be a set, 0, <€, °li be systems of subsets of T. Let O be an operator 
defined on °ti such that 0(c7) c: 17 for every U e°li. Let X be a locally convex 
space with the topology defined by the family { U ^ ^ p of seminorms. Let /u be 
a vector-valued set function on 0 with values in X (write /u : 0 ^ X}. We say 

n 

that JU : 0 -> X is cr-additive on ^ if lim \/bt(E) — 2 M^I)\P = 0 for every 

00 

sequence {^}^i of pairwise disjoint sets from 0 such that E = [J Et e 0 

and for every p e P. 
uг 

Theorem 3. Let 0, <tf, °li and /u : 0 -> X satisfy the following conditions: 
(a) 0 is a ring and °ii <-= 0. 
(b) 7/ C7i, U2 s <%, then Ui n ?72 e «T and 0(Ul n c72) c 0([ji) n 0(c72). 

oo 

(c) If G eV, Ui e°U (i = 1, 2, ...) and C c ( J 0(77*), then there exists 
i=l 

a positive integer N such that C <= jjj &(Ut). 

(d) /* i8 additive on 0. 
?-л 

(e) /i is (^, °ti)-regular on 0, i. e. to any set E e 0 and any neighbourhood V 
ofO in X there exist sets C e & and U e % such that G c E c 0 ( L 7 ) and ^(5) e V 
for every Be0, B a U — C. 

Then /u is a-additive on 0. 

Proof . Let {E^°?=l be a sequence of pairwise disjoint sets of 0 and let 

E = j j Et e 0. 
?;=i 

Let p e P and s > 0 be an arbitrary number. According to (e) there exist 
sets C e V, U e <& such that G <= E c 0(U) and 

(1) IM-8)|p < ™ for every set B e 0, B c [7 — C. 
4 
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According to (b) and (e) there exist sets Ui e °ll (i = 1,2,...) Ut cz U such 
that Ei c= 0(Ui) and 

(2) \f*{B)\p < — for every set B e 0, B c Ut — Et (i = 1, 2, ...) 

N 
According to (c) there exists a positive integer N such that C <=• \J Ui 

UI 
and hence 

n n w 

(3) E-\JUtc:U-C, [JUi-E^U-C, \jU{e^ 
UI UI UI 

for every n ^ A7. From the condition (d) and from (1) —(3) we get 

(4) !/,(__) - p(\J Ui)\p = \p(E) - [p(\J Ui -E) + p(\J UtnE)]\p = 
UI UI UI 

= HE - (U U<)] - Ml) Ui - E)\p <; 
UI i=l 

W W £ 

.- l ^ - ( U ^)J!p + IMU * ? < - # ) . * < - . 
i=l i=l 2 

From (d) and from (2) we obtain 

n n n 

(5) H U ui) ~ MU Ei)\p = \iAUi -(\JE )i|« + 
i_l i=l =̂1 

n n j-l n £ 

2 \/*{[Uj - (U -?<)] - U \uk - ( i j _7.)]}|., < - . 
j-2 .=i K=l i=l 2 

From (4) and (5) and the condition (d) we obtain 

n n n u 

\lx(E) - 2(Et)\P S \p(E) - /.(U Ui)lp + IMU Ui) -fx(\J Ei)\p < e 
i - l i=l UI UI 

for every n ^ N. 
E x a m p l e 4. Let T be a Hausdorff topological space, 01 be a ring of subsets 

of T, <€ be the system of all compact subsets of T, % = 0 and &(U) = In t U 
for U eW. Then the (^, ^ - r egu l a r i t y of a vector-valued function /u : 0-> X 
means: 

(PJ2) To any set E e 0 and any neighbourhood V of 0 in X there exists 
a compact set C and a set U e 0 such that C c j_7 c_ In t C7 and /̂ (_3) e F 
for every set _5 e 0, B c U — C. 

The following holds: If /* : _f -> X is additive and (Rg) regular on _f then 
fjt is o*-additive on _^. 
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This assertion is a strengthening of Theorem 3 of [2] in two directions: 
1. T need not be locally compact. 2. The (R'2) regularity is weaker than the (R?) 
regularity, which is assumed in Theorem 3 of [2]. 

E x a m p l e 5. Let T be a set and 01 be a ring of subsets of T. Let pt : 01 -> X 
be a vector-valued additive set function on 0t. Let there for any E e 01 and 
any neighbourhood V of 0 in X exist a finite set C c y such that C <=• E 
and /u(B) e V for any B e R, B <= E — C. Then JJL is c-additive on 0t according 
to Theorem 3. I t suffices to put <% = the system of all finite subsets of T 
and °U = 01. 
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