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RIGHT PRIME IDEALS AND MAXIMAL RIGHT IDEALS
IN SEMIGROUPS

BEDRICH PONDELICEK, Podsbrady

In [1] St. Schwarz studies some properties of prime ideals and of maximal
ideals in a semigroup. In this note we shall study analogous properties of right
prime ideals and of maximal right ideals.

A two-sided ideal ¢ of a semigroup S is said to be prime if AB < ) implies
that A < @ or B < @, A, B being two-sided ideals of S. '

Theorem 1. 4 two-sided ideal Q of a semigroup S is a prime ideal of S if and
only if AB N BA < @ vmplies that A < Q or B < @, A, B being two-sided
ideals of S.

Proof. Let @ be a prime two-sided ideal of S. Let 4, B be two-sided ideals
of S and AB N BA < Q. Clearly AB, BA are two-sided ideals of S and
(AB)(BA) € AB N BA < @. From this it follows that 4B < @ or BA < Q.
Hence 4 < Q or B < Q.

Let @ be a two-sided ideal of S and let AB N BA < @ imply that 4 < @
or B < @, A, B being two-sided ideals of S. If 4, B are two-sided ideals of S
and AB < @, then ABN BA < AB < @. Thus we have 4 < Q or B < Q.
Hence @ is a prime ideal.

There is an analogous definition for right ideals of §.

Definition 1. 4 right ideal @ of a semigroup S is said to be right prime if
AB N BA < @ tmplies that A < Q or B < @, A, B being right ideals of S.

Remark. 1f § is a commutative semigroup, then every prime ideal is
a right prime ideal and conversely.

Example 1. The following example shows that a right prime ideal need
not be necessarily a prime ideal.

Let 81y = {a, b} be a semigroup in which 2y = z for every z, y € S;. Evidently
{a}, {b} and 8; are all right ideals of S;. Thus @; = {a} is a right prime ideal
of 8;. But ¢ is not a left ideal of S;. Hence @; is not a prime ideal of S;.

Example 2. The following example shows that a prime ideal need not be
necessarily a right prime ideal.

Let S = 81 U {0}, where 20 = O = Oz for every « € S» (S1 is as in Example
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1). Clearly {O}, Sz are all two-sided ideals of S;. Thus @; = {0} is a prime
ideal of Sz. Put 4 = {a, 0}, B = {b, O}. Evidently 4, B are right ideals
of Sz2. Since AB= A, BA =B, we have ABNBA =ANB =(:. But
A ¢ @2 and B ¢ Q2. Thus @2 is not a right prime ideal of S,.

Definition 2. 4 right ideal R of a semigroup S is called maximal if B < S
and there does not exist a right ideal Ry of S such that R S Ry S 8.

Example 3. The following example shows that a maximal right ideal of
S with § = 82 need not be necessarily a right prime ideal. (See Theorem 1
in [1].)

Let S3 = {(i, n — ¢) [ for all positive integers n and for ¢ = 0, 1}. Define
in Ss a multiplication by

xy = (¢, n + m)
if 2 = (¢,n) €Ss and y = (j, m) € S3. Then Sz'is a semigroup and S5 = Ss.
Put P3; = {p}, where p = (0, 1). Clearly R3 = S3 — P3 is a maximal right
ideal of S3. Put A = {p»/ for all positive integers n}. Evidently A4 is a right
ideal of S3and 44 N AA = A2 = Rs. But pe 4 ¢ Rs. Thus Rs is not a right
prime ideal of Ss.

Theorem 2. If R is a maximal right ideal of a semigroup S such that P N P2 ()
where P = 8 — R, then R is a right prime ideal of S.

Proof. Let R be a maximal right ideal of S. If R is not a right prime ideal
of 8, then there exist two right ideals 4, B of § such that ABN BA < R
and A ¢ R, B¢ R. Since R is maximal, we have A UR =8 = BU R,
hence P< A and P< B. Thus P2c ABNBA < R. Since PN P24
we have P N R +# . This is a contradiction. Consequently R is a right prime

ideal of 8.
Corollary. If R is a maximal right ideal of a semigroup S such that S — R

contains an idempotent, then R is a right prime ideal of S.
Example 4. The following example shows that a maximal right ideal

R of S where card (S — R) = 2 need not be necessarily a right prime ideal.
(See Theorem la in [1].)

Let G be an arbitrary group. Let 84 = S3 X G, Py = P3 X G, Ry = R3 X
X G =84 — Pyand B = 4 X G, where S3, P3, B3 and A4 are as in Example
3. Then R4, B are right ideals of the semigroup S,, S; = and card Py =
= card @. Clearly B ¢ R4y and BB N BB = B? < R4. Thus R, is not a right
prime ideal of Ss. Finally, we prove that R4 is a maximal right ideal of Ss.
Let R’ be a right ideal of S such that By & R’ < §84. Then there exists g € G
such that (p, g) € R’, where p € P3. If h € G, then (p, &) = (p, g9)(m, g7k) € R’
where m € 83 and m = (1, 0). Thus R’ = S;.

Theorem 3. If S is a semigroup with S = eS for some ¢ € S, then every maximal
right ideal of S is a right prime ideal of S.
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Proof. Let R be a maximal right ideal of S. Denote P = § — R. First
we prove that xS = S (for some x € S) implies « € P. Indeed, if x € R, then
S = a8 < RS < R. This contradicts R+ S. Now eS = S implies e P and

e2 e P2, Since €28 = S = 8, hence e2 € P. Then e2 € P N P2+ ) and it follows
from Theorem 2 that R is a right prime ideal of S.

Corollary. If S is a semigroup with a left identity element, then every maximal
right ideal of S is a right prime ideal of S.
Remark. Example 3 shows that the semigroup Ss has a right identity ele-

ment m = (1, 0) and the maximal right ideal R3 of S3 is not a right prime
ideal of Ss.

Theorem 4. Let {Ry| x €A} be the set of all different maximal right ideals
of a semigroup S. Suppose card A = 2 and denote Py, = S — Ry and R*
= N R,. We then have:

x34
a) PoyN Pg=0 for o~ B.
b) 8 =[ U Pa]l U R*.

-7}

c) For every o= f we have Py < Rg.

d) If A is a right ideal of S and A N Py~ 0, then Py < 4.

e) For a we have P,S < N Rg.

Bea, B#a

Remark. The case card A = 1 is trivial.

Proof. a)—d). The proof is similar to the proof of Theorem 2 in [1].

e) If f+# a («, p € A), then from c) it follows that Py = Rz. Thus P,S <
< RgS < Rg. Hence PoS = N Rp.

BeA, B#e

Remark. Example 1 gives a semigroup in which R* = {a} N {b} = 0.
(See Theorem 2d in [1].)

Let R = {Ry | a € A} be the set of all maximal right ideals of S and (as above)
R* = N Ry.

acAd

Theorem 5. Let S be a semigroup containing maximal right ideals. Then every

right prime ideal of S containing R* and different from S is a maximal right
ideal of 8.

Proof. The proof is an easy adaptation of the proof of Theorem 3 in [1].
Let @ be a right prime ideal of S and R* < @ = S. We use the notations of

Theorem 4. By b), d) we have
Q=8S—[UP]=nN(S— Py) = NRy,
acH acH acH
where 04 H < A.

If card H 2 2, then @ = R’ N Ry, where R" = N R,. Thus R'RsN
acH, a#p
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N BgR" < R’ N Rz = @. Since  is right prime, we have R’ < Q or Rz < Q.

Thus R’ < Rg or BRg = R'. If R’ < Rg, then by Theorem 4c we have

Pg<= N Ry=R' Hence Pg< Rg, a contradiction with PsN Rz = 0.
«cH, a#f

If Rg = R’, then it follows from Definition 2 that R’ = Rs. Thus Ps < R’ =
= Rg. This is a contradiction. It follows that card H = 1. Thus @ = R,, i. e.
@ is a maximal right ideal of S and our Theorem is proved.

Theorem 6. Let S be a semigroup containing maximal right ideals. A rihgt
prime ideal Q 5 S is @ maximal right ideal of S if and only if R* < Q.

Proof follows from Theorem 5.

Let now be @ = {Q / o € A1} the set of all right prime ideals of S and different

from 8 and Q@* = N Q.

Bea
Theorem 7. Let S be a semigroup containing mazximal right ideals. Then every
right prime ideal of S (and # S) is a maximal right ideal of S if and only if
R* < @*.
Proof follows from Theorem 6.
Theorem 8. Let S be a semigroup with S = eS for some e € S, containing

maximal right ideals. Then @ = R if and only if Q* = R*.
Proof. This follows from Theorem 3 and Theorem 7.
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