Matematický časopis

Jan Stanisław Lipiński; Tibor Šalát
On the Generalized Banach Indicatrix

Matematický časopis, Vol. 22 (1972), No. 3, 219--225

Persistent URL: http://dml.cz/dmlcz/126524

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE GENERALIZED BANACH INDICATRIX

J. S. LIPIŃSKI, Gdańsk and T. ŠALÁT, Bratislava

In paper [7] the notion of the Banach indicatrix is generalized in the following natural way: Let X, Y be two sets, let f be a mapping from X to Y. If the set $f^{-1}(\{y\})=\{x \in X ; f(x)=y\}$ is finite, then $\tau_{f}(y)$ denotes the number of its elements, if $f^{-1}(\{y\})$ is infinite, then we put $\tau_{f}(y)=+\infty$. The so defined function $\tau_{f}\left(\tau_{f}: Y \rightarrow\{0,1, \ldots,+\infty\}\right)$ is called a (generalized) Banach indicatrix of the function f.

It follows from the results of paper [7] that, if I_{0} is an interval (it may be $I_{0}=(-\infty,+\infty)=E_{1}$) and $f: I_{0} \rightarrow E_{1}$ is a Darboux function, then τ_{f} is a Borel measurable function in the second class (and so τ_{f} is a Lebesgue measurable function, too).

We shall give some further classes of functions $f: I_{0} \rightarrow E_{1}$, for which $\tau_{f}\left(\tau_{f}: E_{1} \rightarrow\{0,1, \ldots,+\infty\}\right)$ is Lebesgue measurable.

Theorem 1. Let $f: I_{0} \rightarrow E_{1}$ be a monotone function. Then τ_{f} is a function in the second Baire class.

Proof. Let, e. g., f be a nondecreasing function on I_{0} and $Y_{0}=f\left(I_{0}\right)$. If x_{0} is a discontinuity point of the function f and x_{0} is an interior point (lefthand and right-hand endpoint, respectively) of the interval I_{0}, then for $y \neq f\left(x_{0}\right), y \in\left(f\left(x_{0}-0\right), f\left(x_{0}+0\right)\right)\left(y \in\left(f\left(x_{0}\right), f\left(x_{0}+0\right)\right)\right.$ and $y \in\left(f\left(x_{0}-0\right)\right.$, $f\left(x_{0}\right)$), respectively) we have $\tau_{f}(y)=0$. Further for each $y \in Y_{0}$ precisely one of the following possibilities holds:

1) There exists the only x such that $y=f(x)$;
2) The set $\left\{x \in I_{0} ; f(x)=y\right\}$ is an interval.

Obviously the set of all such y for which 2) occurs is countable. Thus for all $y \in Y_{0}$ but the points of a countable set we have $\tau_{f}(y)=1$ and Y_{0} arises from E_{1} by ommitting a countable set of intervals. From this the assertion of Theorem follows at once.

The following theorem gives a criterion for the continuity of monotone functions.

Theorem 2. The monotone function $f:\langle a, b\rangle \rightarrow E_{1}$ is continuous if and only if

$$
\begin{equation*}
{ }_{a}^{b}(f)=\int_{-\infty}^{\infty} \tau_{f}(y) \mathrm{d} y \tag{*}
\end{equation*}
$$

$(V(f)$ denotes the variation of the function $f)$.
Proof. 1) S. Banach proved that if f is a continuous function, then $\left({ }^{*}\right)$ holds (cf. [5], p. 246-248; [6], p. 374-375).
2) Let, e. g., f be discontinuous at a point $x_{0} \in(a, b)$ and f be nondecreasing on $\langle a, b\rangle$. Then

$$
Y_{0}=f(\langle a, b\rangle) \subset\left\{<f(a), f(b)>-\left(f\left(x_{0}-0\right), f\left(x_{0}+0\right)\right)\right\} \cup\left\{f\left(x_{0}\right)\right\}=M
$$

Further $\tau_{f}(y)=1$ almost everywhere on the set Y_{0} (see the proof of Theorem 1) and $\tau_{f}(y)=0$ for $y \notin Y_{0}$. Hence

$$
\begin{gathered}
\int_{-\infty}^{\infty} \tau_{f}(y) \mathrm{d} y=\int_{Y_{0}} \mathrm{~d} y \leqq \int_{M} \mathrm{~d} y=f(b)-f(a)-\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right)< \\
<f(b)-f(a)={ }_{a}^{b}(f)
\end{gathered}
$$

In connection with Theorem 1 we shall prove the measurability of the function τ_{f} for functions f of a certain more extensive class which contains the class of monotone functions.

Theorem 3. Let $f: I_{0} \rightarrow E_{1}$ be a Baire function. Then τ_{f} is Lebesgue measurable.

Proof. Let, e. g., $I_{0}=\langle a, b\rangle$. We put

$$
\begin{gathered}
D_{1}^{n}=\left\langle a, a+\frac{b-a}{2^{n}}\right\rangle, D_{i+1}^{n}=\left(a+i \frac{b-a}{2^{n}}, a+(i+1) \frac{b-a}{2^{n}}\right\rangle \\
\left(i=1,2, \ldots, 2^{n}\right)
\end{gathered}
$$

Further let $E_{i}^{n}=f\left(D_{i}^{n}\right)\left(i=1,2, \ldots, 2^{n}\right)$. The sets E_{i}^{n} are analytic since D_{i}^{n} are Borel sets and f is a Baire function (cf. [3], p. 458, § 38. III. Th. 5). Hence E_{i}^{n} are Lebesgue measurable. Put

$$
\chi_{n, i}(y)=\nearrow_{0}^{1} \text { if } \quad y \in E_{i}^{n}, ~ i f ~ y \notin E_{i}^{n} \quad\left(i=1,2, \ldots, 2^{n}\right)
$$

and $L_{n}(y)=\sum_{i=1}^{2^{n}} \chi_{n, i}(y)(n=1,2, \ldots)$. Then the functions L_{n} are Lebesgue measurable, the sequence $\left\{L_{n}(y)\right\}_{n=1}^{\infty}$ is nondecreasing and $\tau_{f}(y)=\lim _{n \rightarrow \infty} L_{n}(y)$. Hence τ_{f} is Lebesgue measurable.

The assertion of Theorem 3 cannot be improved even if the function f is supposed to have only countable many points of discontinuity. This shows the following

Theorem 3'. There exists a function $f: I_{0} \rightarrow E_{1}$ with the following propertise:
i) the set of discontinuity points of the function f is countable,
ii) τ_{f} is not a Baire function.

Proof. Let E be an analytic set which is not a Borel set. It is well-known (cf. [8], p. 78-80) that there exists a function f such that $f\left(I_{0}\right)=E$ and the set of all discontinuity points of the function f is countable. According to Theorem $3 \tau_{f}$ is Lebesgue measurable. Now we have $\left\{y ; \tau_{f}(y)>0\right\}=E$. Hence τ_{f} is not a Baire function.

In connection with the result of paper [7] quoted at the beginning of this paper the question arises whether to each ordinal number $\alpha, 0 \leqq \alpha<\Omega$ (Ω denotes the first uncountable ordinal number) there exists such a function $f: E_{1} \rightarrow E_{1}$ that τ_{f} belongs precisely to the Baire class α. The following theorem gives a positive answer to this question.

Denote by $\mathbf{B}_{\xi}(0 \leqq \xi<\Omega)$ the class of all functions $g: E_{1} \rightarrow E_{1}^{*}\left(E_{1}^{*}=\right.$ $=\langle-\infty,+\infty\rangle$) belonging to the Baire class ξ. Put $\mathbf{C}_{\mathbf{0}}=\mathbf{B}_{\mathbf{0}}, \mathbf{C}_{\xi}=\mathbf{B}_{\xi}-\bigcup_{\eta<\xi} \mathbf{B}_{\eta}$ $(1 \leqq \xi<\Omega)$.

Theorem 4. a) There exists for each $\gamma, 0 \leqq \gamma<\Omega$ a Borel measurable function $f: E_{1} \rightarrow E_{1}$ in the class γ such that $\tau_{f} \in \mathbf{C}_{\gamma}$.
b) There exists a function $f: E_{1} \rightarrow E_{1}$ such that τ_{f} is a Lebesgue but not a Borel measurable function.

We prove first the following auxiliary result.
Lemma 1. Let \mathbf{A}_{α} and \mathbf{M}_{α}, respectively, denote the system of all Borel subsets of E_{1} belonging to the additive and multiplicative, respectively, class $\alpha, 0 \leqq \alpha<\Omega$. Then for each $\gamma, \mathbf{l} \leqq \gamma<\Omega$ there exists a set $E \in \mathbf{A}_{p} \cap \mathbf{M}_{p}$ such that $E \notin$ $\notin \bigcup_{\beta<\gamma}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$.

Proof of Lemma. It is well known that for each α there exists a set $H \subset E_{1}$ such that $H \notin \mathbf{A}_{\alpha}, H \in \mathbf{M}_{\alpha}-\bigcup_{\beta<\alpha}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$ (cf. [6], p. 196). If we put $H^{\prime}=E_{1}-H$, then $H^{\prime} \notin \mathbf{M}_{\alpha}, H^{\prime} \in \mathbf{A}_{\alpha}-\bigcup_{\beta<\alpha}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$. There exists an interval $(a, b)(a<b)$ such that

$$
H \cap(a, b) \in \mathbf{M}_{\alpha}-\bigcup_{\beta<\alpha}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right),(a, b)-H \in \mathbf{A}_{\alpha}-\bigcup_{\beta<\alpha}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)
$$

Without loss of generality it can be supposed that $a=0, b=\frac{1}{2}$. Put $H_{\alpha+1}=$ $=\left[H \cap\left(0, \frac{1}{2}\right)\right] \cup\left\{[(0,1)-H]+\frac{1}{2}\right\}\left(M+\frac{1}{2}\right.$ denotes the set which arises through the translation of the set M by $\frac{1}{2}$). Then $H_{\alpha+1} \in \mathbf{A}_{\alpha+1} \cap \mathbf{M}_{\alpha+1}$, $H_{\alpha+1} \notin \bigcup_{\beta<\alpha+1}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$. The same is true also for $H_{\alpha+1}^{\prime}$. Let γ be an ordinal number, $1 \leqq \gamma<\Omega$. There are two possibilities: 1) γ is an isolated number,
2) γ is a limit number. In case 1) we put $\gamma-1=\alpha$, thus $\gamma=\alpha+1$. From the foregoing the existence of such a set $F_{p}\left(=H_{\alpha+1}\right)$ follows that $F_{\gamma} \subset(0,1)$, $F_{\gamma} \in \mathbf{A}_{\gamma} \cap \mathbf{M}_{\gamma}, F_{\gamma} \neq \bigcup_{\beta<\gamma}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$. Without loss of generality we can take $(n-1, n)(n \geqq 2)$ instead of $(0,1)$.

In case 2) denote by Γ the set of all isolated ordinal numbers $\alpha<\gamma$. Then Γ is a countable set, $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$. It follows from the foregoing that there exists an $F_{\alpha_{n}}(n=1,2, \ldots)$ such that

$$
F_{\alpha_{n}} \subset(n-1, n), F_{x_{n}} \in \mathbf{A}_{\alpha_{n}} \cap \mathbf{M}_{\alpha_{n}}, F_{\alpha_{n}} \notin \bigcup_{\beta<\alpha_{n}}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)
$$

Put $F_{\gamma}=\bigcup_{n=1}^{\infty} F_{\alpha_{n}}$. Then $F_{\gamma} \in \mathbf{A}_{\gamma}, F_{\gamma} \subset(0,+\infty)$. Further $F_{\gamma}=\bigcap_{n=1}^{\infty}\left\{\left[F_{\gamma} \cap\right.\right.$ $\cap(0, n)] \cup(n,+\infty)\}$. From the definition of F_{γ} we obtain $F_{\gamma} \cap(0, n) \in \mathbf{M}_{\tau}$, where $\tau=\max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ and obviously $\mathbf{M}_{\tau} \subset \mathbf{M}_{\gamma}$. Hence $\boldsymbol{F}_{\gamma} \in \mathbf{M}_{\gamma}$, $F_{\gamma} \in \mathbf{A}_{\gamma} \cap \mathbf{M}_{\gamma}$. But $F_{\gamma} \notin \bigcup_{\beta<\gamma}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$ since in the reverse case we have $\boldsymbol{F}_{\gamma} \in \mathbf{A}_{\beta} \cup \mathbf{M}_{\boldsymbol{\beta}}$ for a suitable $\beta<\gamma$. Then there exists an $\alpha_{n}, \beta<\alpha_{n}<\gamma$ such that $F_{\alpha_{n}}=F_{\gamma} \cap(n-1, n) \in \mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}$ and this contradicts the properties of the set $F_{\alpha_{n}}$.

Putting in both cases 1), 2) $E=F_{\gamma}$, we see that E has the required properties.

Proof of Theorem 4. a) Put $f(x)=x$ for $x \in E_{1}$. Then f is continuous and $\tau_{f}(y)=1$ for each $y \in E_{1}$. Hence $\tau_{f} \in \mathbf{C}_{0}$.

Let $1 \leqq \gamma<\Omega$. Choose $E \subset E_{1}$ such that $E \in \mathbf{A}_{\gamma} \cap \mathbf{M}_{\gamma}, E \notin \bigcup_{\beta<\gamma}\left(\mathbf{A}_{\beta} \cup \mathbf{M}_{\beta}\right)$. Such a set exists on account of Lemma 1 . Let $t_{0} \in E$. Put $f(x)=x$ for $x \in E$ and $f(x)=t_{0}$ for $x \in E_{1}-E$. Then f is a Borel measurable function in the class γ. Further we have $\tau_{f}(y)=1$ for $y \in E-\left\{t_{0}\right\}, \tau_{f}\left(t_{0}\right)=+\infty$ and $\tau_{f}(y)=0$ for $y \in E_{1}-E$. We show that for each set $G \subset E_{1}^{*}$ open in E_{1}^{*} the set $\tau_{f}^{-1}(G)$ is a Borel set in the class γ. It suffices to take for G the sets of the following form:

1) $G=(b,+\infty)$,
2) $G=\langle-\infty, a)$,
3) $G=(b,+\infty)$,
4) $G=(-\infty, a)$.
5) $\left\{y ; \tau_{f}(y)>b\right\}= \begin{cases}\left\{t_{0}\right\} & \text { for } \quad b \geqq 1, \\ E & \text { for } 0 \leqq b<1, \\ E_{1} & \text { for } b<0 ;\end{cases}$
6) $\left\{y ; \tau_{f}(y)<a\right\}= \begin{cases}\emptyset & \text { for } a \leqq 0, \\ E_{1}-E & \text { for } 0<a \leqq 1, \\ E_{1}-\left\{t_{0}\right\} & \text { for } 1<a ;\end{cases}$
7) $\left\{y ; b<\tau_{f}(y)<+\infty\right\}=\left\{\begin{array}{lll}E_{1}-\left\{t_{0}\right\} & \text { for } & b<0, \\ E-\left\{t_{0}\right\} & \text { for } & 0 \leqq b<1, \\ \emptyset & \text { for } & 1 \leqq b ;\end{array}\right.$
8) we proceed in the same way as in case 2).

From these facts it is obvious that $\tau_{f} \in \mathbf{B}_{\gamma}$ and since $\left\{y ; \tau_{f}(y)>0\right\}=E$, we have $\tau_{f} \in \mathbf{C}_{\gamma}$.
b) The assertion follows at once from Theorems 3 and 3^{\prime}.

We put in the sequel $\mathbf{T}=Z^{E_{1}}$ ($=$ the system of all functions $g: E_{1} \rightarrow Z$, $Z=\{0,1,2, \ldots,+\infty\})$. In connection with Theorem 4 a) we prove the following result.

Theorem 5. The functions $g(y) \equiv 1$ and $g(y) \equiv m(m \geqq 3)$ are the only continuous functions from \mathbf{T} which are Banach indicatrices of some continuous functions $f: E_{1} \rightarrow E_{1}$.

Remark 1. It will be shown that the function $g(y) \equiv 2$ is a Banach indicatrix of a function $f: E_{1} \rightarrow E_{1}$ (see Theorem 6 b)) which on account of the foregoing theorem cannot be continuous on E_{1}.

Proof of Theorem 5. Put $f_{1}(x)=x$ and $f_{2}(x)=x \sin x$ for $x \in E_{1}$. Obviously $\tau_{f_{1}}(y) \equiv 1$ and $\tau_{f_{2}}(y) \equiv+\infty$.

Further it is well-known (cf. [4]) that for each natural number $m \geqq 3$ there exists a continuous function $f: E_{1} \rightarrow E_{1}$ such that for each $y \in E_{1}$ the set $\left\{x \in E_{1} ; f(x)=y\right\}$ consists of precisely m points. It is also well-known (cf. [1], [2], [4]) that there exists no continuous function $f: E_{1} \rightarrow E_{1}$ for which the set $\left\{x \in E_{1} ; f(x)=y\right\}$ would consist of precisely two points for each $y \in E_{1}$. This completes the proof.

Denote by $\mathbf{S}\left(\mathbf{S}_{\mathbf{0}}\right)$ the class of all Banach indicatrices of real functions defined on arbitrary non-void sets (defined on E_{1}). Then $\mathbf{S}, \mathbf{S}_{0}$ are subsets of the set \mathbf{T}. We shall investigate the structure of the set \mathbf{T} from the point of view of sets $\mathbf{S}, \mathbf{S}_{\mathbf{0}}$.

Theorem 6 a) Let g_{0} denote the function which is identically equal to zero on E_{1}. Then $\mathbf{S}=\mathbf{T}-\left\{g_{0}\right\}$.
b) Let \mathbf{T}_{0} denote the system of all such functions $g \in \mathbf{T}$ for which the set $A_{g}=$ $\left\{y \in E_{1} ; g(y)>0\right\}$ is countable and for each $y \in A_{g}$ we have $g(y)<+\infty$. Then $\mathbf{S}_{\mathbf{0}}=\mathbf{T}-\mathbf{T}_{\mathbf{0}}$.

Proof. a) Obviously g_{0} cannot be a Banach indicatrix of any function $f: X \rightarrow E_{1}$ with $X \neq \emptyset$. Let $g \in \mathbf{T}-\left\{g_{0}\right\}$. Put $C_{k}=g^{-1}(\{k\})(k=1,2, \ldots,+\infty)$, $D_{k}=\{1,2, \ldots, k\} \times C_{k}(k=1,2, \ldots), \quad D_{\infty}=\{1,2, \ldots, n, \ldots\} \times C_{\infty}$. Let $X-\bigcup_{k=1}^{\infty} D_{k} \cup D_{\infty}$. Since $g \neq g_{0}$ at least one of the sets C_{k} and consequently at least one of the sets $D_{k}(1 \leqq k \leqq+\infty)$ is non-void. Hence $X \neq \emptyset$.

Let us define the function f on X in the following way: If $x \in$
$\in D_{k}(1 \leqq k \leqq+\infty)$ then $x=(l, y)$ for some natural l and $y \in C_{k}$, and we put $f(x)=y$. Then $f: X \rightarrow E_{1}$ and obviously $\tau_{f}=g$.
b) Obviously any function $g \in \mathbf{T}_{0}$ cannot be a Banach indicatrix of any function $f: E_{1} \rightarrow E_{1}$. Hence $\mathbf{S}_{0} \subset \mathbf{T}-\mathbf{T}_{\mathbf{0}}$.

Let $g \in \mathbf{T}-\mathbf{T}_{\mathbf{0}}$. Then we have the following possibilities:

1) The set $A_{g}=\{y ; g(y)>0\}$ is uncountable;
2) The set A_{g} is countable but for some $y \in A_{g}$ we have $g(y)=+\infty$.

Case 1) can be decomposed into the following two cases:
11) For each $y \in A_{g}$ we have $1 \leqq g(y)<+\infty$;
12) There exists some $y \in A_{g}$ such that $g(y)=+\infty$.

In case 11) let $\overline{\bar{A}}_{g}$ denote the cardinal number of the set A_{g} and Ω^{*} be the least ordinal number of the cardinality $\overline{\bar{A}}_{g}$. Let

$$
\begin{equation*}
y_{0}, y_{1}, \ldots, y_{\xi}, \ldots\left(\xi<\Omega^{*}\right) \tag{1}
\end{equation*}
$$

denote the one-to-one transfinite sequence of all elements of the set A_{g} and

$$
\begin{equation*}
x_{0}, x_{1}, \ldots, x_{\eta}, \ldots(\eta<\Omega) \tag{2}
\end{equation*}
$$

denote the one-to-one transfinite sequence of all elements of the set E_{1}. Define the function $f: E_{1} \rightarrow E_{1}$ by transfinite induction in the following way:

1) Put $f\left(x_{0}\right)=f\left(x_{1}\right)=\ldots=f\left(x_{g\left(y_{0}\right)-1}\right)=y_{0}$.
2) If for each $y_{\xi}, \xi<\gamma$ from (1) the numbers $g\left(y_{\xi}\right)$ in (2) were found in which the function f is equal to y_{ξ}, then let β denote the least ordinal number such that the function f was yet not defined in x_{β}. Then we put

$$
f\left(x_{\beta}\right)=f\left(x_{\beta+1}\right)=\ldots=f\left(x_{\beta+g\left(y_{\gamma}\right)-1}\right)=y_{\gamma} .
$$

Thus we obtain the function $f: E_{1} \rightarrow E_{1}$ for which $\tau_{f}=g$.
In case 12) let (1) have the previous meaning and for a $\delta, 0 \leqq \delta<\Omega^{*}$ let $g\left(y_{\delta}\right)=+\infty$. Let

$$
F_{0}, F_{1}, \ldots, F_{\xi}, \ldots\left(\xi<\Omega^{*}\right)
$$

be a sequence of such infinite pair-wise disjoint sets that $\bigcup_{0 \leqq \xi<\Omega^{*}} F_{\xi}=E_{1}$. Define $f: E_{1} \rightarrow E_{1}$ in the following way: If $g\left(y_{\xi}\right)<+\infty\left(0 \leqq \xi<\Omega^{*}\right)$, then we take from the set F_{ξ} the points $x_{1}, x_{2}, \ldots, x_{g\left(y_{\xi}\right)}\left(x_{i} \neq x_{j}\right.$ for $\left.i \neq j\right)$ and put $f\left(x_{j}\right)=y_{\xi}\left(j=1,2, \ldots, g\left(y_{\xi}\right)\right)$. For $x \in F_{\xi}, x \neq x_{j}\left(j=1,2, \ldots, g\left(y_{\xi}\right)\right)$ we put $f(x)=y_{\delta}$. If $g\left(y_{\xi}\right)=+\infty$, then we put $f(x)=y_{\xi}$ for each $x \in F_{\xi}$. Thus we get the function $f: E_{1} \rightarrow E_{1}$ and obviously $\tau_{f}=g$.

In case 2) the existence of a function $f: E_{1} \rightarrow E_{1}$ with $\tau_{f}=g$ can be proved in an analogous way as in case 12). This ends the proof.

Let \mathbf{T}^{*} denote the set of all functions $g:\langle 1,+\infty) \rightarrow Z$. Let $\mathbf{S}^{*}, \mathbf{S}_{0}^{*}, \mathbf{T}_{0}^{*}$
have an analogous meaning to the sets $\mathbf{S}, \mathbf{S}_{0}, \mathbf{T}_{0}$ in Theorem 6 (i. e. $\mathbf{S}^{*}\left(\mathbf{S}_{0}^{*}\right)$ denotes the set of all $g \in \mathbf{T}^{*}$ for which there exists an $f: X \rightarrow\langle 1,+\infty), X \neq \mathfrak{O}$ $\left(f: E_{1} \rightarrow\langle 1,+\infty)\right)$ such that $g=\tau_{f} \mid\langle 1,+\infty) ; \mathbf{T}_{0}^{*}$ denotes the set of all $g \in \mathbf{T}^{*}$ for which the set $A_{g}=\{y \in\langle 1,+\infty) ; g(y)>0\}$ is countable and for each $y \in A_{g}$ we have $\left.g(y)<+\infty\right)$. It is easy to see from the proof of Theorem 6 that $\mathbf{S}^{*}=\mathbf{T}^{*}-\left\{g_{0}^{*}\right\}$, where g_{0}^{*} denotes the function which is identically equal to zero on $\langle 1,+\infty)$ and $\mathbf{S}_{0}^{*}=\mathbf{T}^{*}-\mathbf{T}_{0}^{*}$.

We can illustrate the mutual relation between the sets \mathbf{S}_{0}^{*} and \mathbf{T}_{0}^{*} also from the topological point of view.

If $g, h \in \mathbf{T}^{*}$ and $g=h$, then we put $\varrho(g, h)=0$. In the reverse case we put $\varrho(g, h)=\frac{1}{\inf \{x ; g(x) \neq h(x)\}}$. It is easy to see that ϱ is a metric (cf. [6], p. 67) and the space \mathbf{T}^{*} with this metric is a complete metric space.

Theorem 7. The set \mathbf{T}_{0}^{*} is non-dense in \mathbf{T}^{*}.
Corollary. The set \mathbf{S}_{0}^{*} is residual in \mathbf{T}^{*}.
Proof. Let $g \in \mathbf{T}^{*}, 0<\varepsilon<1,0<\varepsilon^{\prime}<\varepsilon$. Define $g_{1}(x)=g(x)$ for $x \in$ $\in\left\langle 1,1 / \varepsilon^{\prime}\right\rangle$ and $g_{1}(x)=1$ for $x>1 / \varepsilon^{\prime}$. Then we have $\varrho\left(g, g_{1}\right) \leqq \varepsilon^{\prime}<\varepsilon$. It is easy to check that for $0<\delta_{1}<\varepsilon^{\prime}$ we have $S\left(g_{1}, \delta_{1}\right) \subset S(g, \varepsilon)(S(h, \delta)=$ $\left.=\left\{f \in \mathbf{T}^{*} ; \varrho(h, f)<\delta\right\}\right)$. Let $f \in S\left(g_{1}, \delta_{1}\right)$. Then $f(x)=g_{1}(x)$ for $1 \leqq x \leqq 1 / \delta_{1}$ and from this and from the definition of the function g_{1} we get that $f(x)=1$ for $1 / \varepsilon<x<1 / \delta_{1}$. Hence $f \notin \mathbf{T}_{0}^{*}$. The proof is complete.

REFERENCES

[1] CIVIN, P.: Two-to-one mappings of manifolds. Duke Math. J., 10, 1943, 49-57.
[2] HAROLD, O. G.: The non-existence of certain type of continuous transformations. Duke Math. J., 5, 1939, 789-793.
[3] KURATOWSKI, K.: Topology I. Warszawa 1966.
[4] MIODUSZEWSKI, J.: Funkcje ciagle o stalej krotności skończonej na odcinku i prostej. Prace matem., 5, 1961, 79-93.
[5] НАТАНСОН, И. П.: Теория функций вещественной переменной. Москва 1957.
[6] SIKORSKI, R.: Funkcje rzeczywiste I. Warszawa 1958.
[7] SALÁT, T.: Generalization of the notion of Banach indicatrix. Fundam. math. 73, $197129-36$.
[8] SIERPIŃSKI, W.: Funkcje przedstawialne analitycznie. Lwów-Warszawa 1925. Received August 10, 1970

Instytut Matematyki Universytet Gdański
Gdańsk
Katedra algebry a teórie čisel
Prirodovedeckej fakulty
Univerzity Komenského
Bratislava

