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Matematický časopis 23 (1973). No. 4 

ON CERTAIN GENERALIZATIONS OF THE NOTION 
OF CONTINUITY 

ANNA NEUBRUNNOVA, Bratislava 

We shall deal with mutual connections among various generalizations 
of the notion of a continuous function. The generalizations were introduced 
by different authors and it turns out t h a t sometimes different definitions give 
the same result, at least for certain types of spaces. 

The notions which will be dealt with are quasi-continuity, cliquishness, 
semi-continuity, simple continuity, pseudo-continuity and almost continuity. 

1. Semi-continuity and quasi-continuity 

In what follows X and Y denote topological spaces. The notion of the quasi-
continuous function was introduced by S. K e m p i s t y [1]. An equivalent 
definition was given by N. W. B l e d s o e [2], where the quasi-continuous 
function is called neighbourly. The equivalency was proved by S. M a r c u s [3]. 
One of the definitions is as follows. 

The function / : X -> Y is said to be quasi-continuous at the point x e X 
if for any open neighbourhood V of x and any open neighbourhood G of f(x) 
there exists a non-empty open set U <~ V such that/(U) <~ G. 

We shall prove that the notion of the quasi-continuous function is equivalent 
with t h a t of a semi-continuous function as defined by N. L e v i n e [4] by means 
of the notion of the semi-open set. A set A <~ X is said to be semi-open provided 
t h a t there is an open set O such t h a t O <~ A <~ O (0 denotes the closure of O). 

The function / : X -> Y is called semi-continuous if for any open set G <~ Y 
the set f~x(G) is a semi-open set. 

Theorem 1.1. Let f: X -> Y. Thus f is semi-continuous if and only if it is 
quasi-continuous (i. e. quasi-continuous at every point x e X). 

Proof . Let / be semi-continuous. Let xo~X and G any open set such that 
f(xo) ~ G. Let V be any open set containing a*0. Under the assumption /_1(C7) 
is a semiopen set. Hence 

in /-ҶÖ)=/-ҶÖ) 
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according to [4, Theorem 1]. Put U = V nintf^G). Since x0 ef~1(G) <= 
<~ int/_ 1(6r), there is a point in V belonging to intf-1(G), hence U is a non
empty set. Evidently U <= V and /(C/) = / ( V n in t / -*(#)) <~ f(f~x(G)) <~ G. 

Hence / is quasi-continuous at xo. Since xo was arbitrarily chosen, the 
function / is quasi-continuous on X. 

Conversely, let / be quasi-continuous on X. Choose any non-empty open 
set G. Let x0ef~l(G) and let V be any open set containing x0. The quasi-
continuity of / at xo implies the existence of U 7^ 0, U <~ V, U open such 
that f(U) <~G,U<~ f-i(G). Thus U a int f~i(G). Hence 0 ^ U = V n U cz 
<~ V n intf~1(G). I t means that for any open set V containing x0 

V n h i t / - i (G) ^ 0 . 

Henco xo~mtf~1(G). Since the point x0 was arbitrarily chosen in f~x(G) 

we have /_1(O) <= int/"1(O) . Thus f~x(G) is semi-open. 
The notion of semi-continuity may be formulated also for a point. Thus 

a function / : X -> Y will be called semicontinuous at the point x e X if for 
any open set G <~ Y such that f(x) e G there is a semi-open set U such tha t 
xeU and/(U) c (?. 

A function / is semi-continuous on X if and only if it is semi-continuous 
at every point x e X. The proof of this assertion gives Theorem 12 in [4]. 
(Let us remark that the notion of semi-continuity at the point is not explicitely 
introduced in [4]). 

A question arises whether the semi-continuity at a point is equivalent 
to the quasi-continuity of the function at tha t point. 

The fact tha t semi-continuity at a point x implies quasi-continuity at x can 
be proved in the same way as the first part of Theorem 1.1. The second part-
of Theorem 1.1 uses quasi-continuity a t every point XEX. But the proof" 
of the last may be modified so that the following theorem holds. 

Theorem 1.2. The function f: X •-» Y is quasi-continuous at xo e X if and' 
only if it is semi-continuous at xo. 

Proof . From what was said it follows that it is sufficient to prove tha t 
quasi-continuity at xo implies semicontinuity at x0. 

Thus let G be open so tha t f(xo) e G. Let V be open containing x0. There* 
exists an open U <~ V such that 0 =?--- U and/(U) <= G. The union of all those U 
for all open V containing xo is an open set W. Put S = W U {xo}. Evidently 
f(S) <= G. But the set S is semiopen. The proof is finished. 

I t is well known that the notion of the semi-continuity is different from 
that of the upper and lower semi-continuity according to which the real 
function / is said to be lower semi-continuous at xo provided tha t for any 
a < f(x0) there exists a U open such that x0eU and for any x e U f(x) > a. 
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The upper semi-continuity is defined analogously. 
E x a m p l e 1.1. (See also [4]). Let X= r = < 0 ; l > . Define / : X -> Y 

as follows: 

/ 0 if xe<0; 1/2) u (1/2; 1> 
fix) = ( 

\ 1 if x = 1/2 

/ is not semi-continuous but it is upper semi-continuous at any ; r e < 0 ; 1>. 

E x a m p l e 1.2. Put X = <0, 1>, Y = (—oo, co). Consider the following 
/ l \ (I 1\ / l 1 \ (I l \ 

sequence of intervals: Ji = (—, 1 \ , / 2 = | —, —I, J3 = ( — \ / 4 = 1 ,— , 
\ 2 / \ 3 2) \ 4 3 / \ 5 4 / 

J 5 = (—> — )>Is = \ — , — h t c . Evidently ( J /% = (0, 1>. Define the function/ 
\ 6 5 / \ 7 6 / n i 

on <0, 1> in the following way: f(x) = 1 if # e / —-, 1 ) , f(x) = — 1 if x el —, J, 

f(x) = ^ if are / ^ ^ , /(x) = 1 if * e | ^ J , f(x) - - 1 if . re A * 

1 . / I 1\ 
jf(.r) — — if x e | —,— , etc., so that the function will take the value 1 on 
J 2 \ 7 ' 6 / 

1 
7 j , J4, F7, Iio, • • • > the value — 1 on I2,15, Is, In, ••• and the value on 

2 
Is, I6, IQ, I12* .. Further put /(0) = 1/2. The function / is neither upper, 
nor lower semi-continuous at the point 0. But it is evidently quasi-continuous, 

/ V 

hence semi-continuous at an}7 x e ( 0, 

2. Simple continuity and cliquishness 

The notion of the cliquish function was introduced as a neighbourly function 
by W. W. B l e d s o e [2] for the functions of real variable taking the values 
in a metric space. I t was generalized by T h i e l m a n [5] for the functions 
defined on a topological space taking values in a metric space. 

The function / : X -> Y, where X is a topological space and Y a metric 
space with the metric o, is said to be cliquish at the point x e X provided 
tha t for any e > 0 and any neighbourhood U of x there exists a non-empty 
open set G cz U such that for any xi, x% e G Q f(%i),f{%2)] < £• 

Evidently the above notion is more general than that of a continuous and 
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quasi-continuous function. Simple examples showing that a cliquish function 
need not be quasi-continuous are well-known. 

In paper [6] the notion of the simply-continuotis function was introduced 
by means of the notion of the simply open set. 

A set A is said to be simply open if A =-= O U N, where O is open and N 
a nowhere dense set. A func t ion / : X --- Y (X, Y topological spaces) is called 
simply continuous if for any open G <= Y f~x(G) is a simply open set. 

Since any semi-open set is simply7 open [6, Theorem 1.1 A] it follows that 
any semi-continuous function is simply continuous. The converse is not true. 
[G, Example 1.1.2]. 

Theorem 2.1. L^et X be a topological space of the second category at each 
of its points and Y a separable metric space. Then a function f: X -> Y which 
is simply-continuous is also cliquish. 

Proof . Let s > 0, xoeX and V any open set containing #o. Let {yn} be 
a countable dense set in Y. Denote by K(yn, e/2) the open sphere with the 

00 00 

centre yn and the radius e/2. Since ( J K(yn, e/2) = Y we have [ ( J f~l(K(yn, e/2))] 
n-l n=l 

n V — V. Under the assumption f~} K(yn, e/2)] = GnU Zn, where Gn is 
open and Zn nowhere dense in X. Thus 

00 00 

[ (U G «)n F ] u [ | j Z 3 n F ] = F . 
n 1 n 1 

00 

Since [ J Zn n V is of the first category in V and V is of the second category, 
n 1 

00 

we have [ J Gn n V 7^ 0. Hence there is wo such tha t Gno n V 7^ 0. Putt ing 
M 1 

?/ G\0 n V, we have an open set U <= V such tha t for any x\,x^e U, 
/(XT) G K(H„0, e/2), /(x2) e K(?/Wo, e/2), so Q(f(xi), f(x2)) < e. Thus / is cliquish 
at the point xo. 

The converse of the above theorem is not true. 
E x a m p l e . Let X = Y = <0, 1>. Let / be the Riemann function 

I \\q if x - p\q e <0, 1>, p, q are relatively prime integers, q > 0 

\ 0 if x e <0, 1> is irrational. 

Thus / is cliquish. I t is not simply continuous because if G — (0, 1>, then 
/ *(G) is the set of all rational numbers which is not simply open. 

The proof of Theorem 2.1 uses to a great extent the fact that X is of the 
second category at each of its points. Nevertheless it may be shown tha t 
this assumption is not essential at least for those cases where the metric 
spaco Y has suitable properties. 
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Theorem 2.2. Let X be a topological space and Y a totally bounded metric 
space. Then any function f: X -> Y which is simply continuous on X is cliquish 
on X. 

Proof . Let s > 0. Let x e X and U any neighbourhood of x. Since Y is 
totally bounded there exists a finite number t7i, C?2, .. •, Gn of open sets with 

a 

the diameters less then s and such that Y ~ \J} G%. We h a v e / - 1 (6?*) = Ut U Zi, 
t=i 

where U% are open and Zi nowhere dense in X. I t is sufficient to prove that 
there exists io such that Uu n U =£ 0. But the latter is true because 

n n n 

U = XnU =f-HY) nU = [\Jf-i(Gt)] n U = [ | J P ( n [ / ] u [(J Z» n £/]. 
i 1 i -1 » 1 

n n 

The set ( J Zi n U is nowhere dense in U. Hence ( J U% n U -^ 0. Thus Z7i n 
i=l i-» 

n U ^ 0 for some i0 . 

3. Pseudo-continuity and some other types of continuities 

The notion of the simply continuous function may be generalized by means 
of the pseudo-open set to the notion of the pseudo-continuous function. 

A set A in a topological space X is said to be pseudo-open if A — O U N, 
where O is open and N is of the first category. A function/ : X -> Y (X, Y topo
logical spaces) is said to be pseudo-continuous on X if for any open set G c: Y 
the set /_ 1(O) is pseudo-open. 

Since any simply open set is pseudo-open, it follows that any simply con
tinuous function is pseudo-continuous. The converse is not true. For the proof 
it is sufficient to take the Riemann function. 

The following theorem is a generalization of Theorem 2.1 and may be proved 
by the same method as the latter. 

Theorem 3.1. Let X be a topological space of the second category at each of its 
points and Y a separable metric space. Let f: X -> Y be pseudo-continuous. 
Then f is cliquish. 

The converse of the last theorem may be proved in a more general form. 

Theorem 3.2. Let X be topological and Y a metric space. Ijet f: X - Y 
be cliquish. Then f is pseudo-continuous. 

Proof . I f / is cliquish, then the set of its points of discontinuity7 is of the 
first category in X [7]. H e n c e / is pseudo-continuous [6, Theorem 1.1 AOJ. 

Note that Theorem 1.1.10 in paper [6] is formulated for the case where Y is 
a separable metric space and gives a necessary and sufficient condition for / to 
be pseudocontinuous. Nevertheless the part of the theorem w^hich was used 
in our proof docs not use the separability of Y. 
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Theorem 3.3. Let X be of the second category in each of its points and Y 
a separable metric space. Then f: X -> Y is pseudo-continuous if and only 
if f is cliquish. 

Proof . A consequence of Theorems 3.1 and 3.2. 
Of course there are many other types of continuities and the types which 

wo have discussed here do not exhaust all which are used. We shall mention 
another type which is sometimes studied. 

Tn [8] and [9] almost continuous functions were studied. 
The function f: X -> Y (X, Y topological spaces) is said to be almost 

continuous at the point x e X provided that for any open set G <= Y with 
f(x) G G we have x e int/_1((3). 

The almost continuous function need not be pseudocontinuous and hence 
need not belong to any of the foregoing types. 

E x a m p l e 3.1. Let X =-= Y = <0, 1>. 

1 if x is rational 
Let f(a 

irrational 

, 1 if x is ration 
•(x) = / 

\ 0 if x is irratic 

Evidently / is almost continuous. I t is not pseudo continuous because 
if G <0, 1/2), then/_1((7) is the set of all irrational numbers in <0, 1> which 
is not pseudo-open. 

To prove that none of the foregoing types of continuity imply the almost 
continuity it is sufficient to show that the quasi-continuity does not imply 
the almost continuity. 

E x a m p l e 3.2. Let X = Y =-. <(), 1>. 

0 if x e < 0 , l/2> 
Put/(*)=-= 

1 if a: (1/2, 1>. 

/ i s quasi-continuous at any point x e <0, 1) but it is not almost continuous 
at the point x — 1/2. 
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